Comptes Rendus
Article de recherche
An engineering methodology for predicting crack growth of 2024-T3 aluminium alloys under variable amplitude loading
[Une méthodologie d’ingénierie pour prédire la croissance des fissures des alliages d’aluminium 2024-T3 sous charge d’amplitude variable]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1385-1404

The propagation of fatigue cracks can significantly reduce the lifespan of components, potentially leading to failures. This study presents an engineering approach that accounts for variable-amplitude loading while incorporating residual stresses at the crack tip.

The objective is to evaluate the fatigue life of 2024-T3 aluminum alloys under variable loading by transforming the problem into an equivalent one with constant loading, eliminating complex cycle-by-cycle calculations.

The proposed strategy is integrated into the two-parameter fatigue crack growth model, which considers both the total maximum stress intensity factor $K_{\max \_\mathrm{tot}}$ and the total stress intensity factor range $\Delta K_{\mathrm{tot}}$. Initially, plastic zone interaction effects are neglected to establish an equivalence relationship between variable and constant loading.

The Willenborg model is then used to determine the equivalent stress, ensuring a comparable crack growth rate. To refine the approach, a finite element (FE) elasto-plastic analysis based on the Chaboche model is conducted. This analysis estimates the residual stress distribution at the crack tip, converted into a residual stress intensity factor $K_{\mathrm{r}}$. This factor is integrated into a correction coefficient equation to account for plastic zone interaction effects.

Three loading spectra were examined. Predicted results were compared with experimental data, showing that the proposed model improves crack growth life in 2024-T3 aluminum alloy structures subjected to variable-amplitude loading.

La propagation des fissures de fatigue peut réduire considérablement la durée de vie des composants, ce qui peut entraîner des défaillances. Cette étude présente une approche d’ingénierie qui tient compte des charges d’amplitude variable tout en incorporant des contraintes résiduelles à l’extrémité de la fissure.

L’objectif est d’évaluer la résistance à la fatigue des alliages d’aluminium 2024-T3 sous charge variable en transformant le problème en un problème équivalent à charge constante, en éliminant les calculs complexes cycle par cycle.

La stratégie proposée est intégrée dans le modèle de croissance des fissures de fatigue à deux paramètres, qui prend en compte à la fois le facteur d’intensité de contrainte maximal total $K_{\max \_\mathrm{tot}}$ et la plage de facteurs d’intensité de contrainte totale $\Delta K_{\mathrm{tot}}$. Initialement, les effets d’interaction de la zone plastique sont négligés afin d’établir une relation d’équivalence entre le chargement variable et le chargement constant.

Le modèle de Willenborg est ensuite utilisé pour déterminer la contrainte équivalente, garantissant ainsi un taux de croissance des fissures comparable. Pour affiner l’approche, une analyse élasto-plastique par éléments finis (EF) basée sur le modèle de Chaboche est réalisée. Cette analyse permet d’estimer la distribution des contraintes résiduelles à l’extrémité de la fissure, convertie en facteur d’intensité des contraintes résiduelles $K_{\mathrm{r}}$. Ce facteur est intégré dans une équation de coefficient de correction pour tenir compte des effets d’interaction de la zone plastique.

Trois spectres de charge ont été examinés. Les résultats prédits ont été comparés aux données expérimentales, montrant que le modèle proposé améliore la concordance avec les résultats expérimentaux améliore la durée de vie de la croissance des fissures dans les structures en alliage d’aluminium 2024-T3 soumises à une charge d’amplitude variable.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.339
Keywords: Fatigue crack growth life, Variable amplitude loading, Residual stress intensity factor, Equivalent stress level, Optimization
Mots-clés : Durée de vie de la propagation des fissures de fatigue, Chargement à amplitude variable, Facteur d’intensité de contrainte résiduelle, Niveau de stress équivalent, Optimisation

Brahim Bouaziz 1 ; Maher Eltaief 1 ; Chokri Bouraoui 1

1 Mechanical Laboratory of Sousse, National Engineering School of Sousse, University of Sousse, BP 264, Erriadh, 4023 Sousse, Tunisia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_1385_0,
     author = {Brahim Bouaziz and Maher Eltaief and Chokri Bouraoui},
     title = {An engineering methodology for predicting crack growth of {2024-T3} aluminium alloys under variable amplitude loading},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1385--1404},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.339},
     language = {en},
}
TY  - JOUR
AU  - Brahim Bouaziz
AU  - Maher Eltaief
AU  - Chokri Bouraoui
TI  - An engineering methodology for predicting crack growth of 2024-T3 aluminium alloys under variable amplitude loading
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 1385
EP  - 1404
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.339
LA  - en
ID  - CRMECA_2025__353_G1_1385_0
ER  - 
%0 Journal Article
%A Brahim Bouaziz
%A Maher Eltaief
%A Chokri Bouraoui
%T An engineering methodology for predicting crack growth of 2024-T3 aluminium alloys under variable amplitude loading
%J Comptes Rendus. Mécanique
%D 2025
%P 1385-1404
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.339
%G en
%F CRMECA_2025__353_G1_1385_0
Brahim Bouaziz; Maher Eltaief; Chokri Bouraoui. An engineering methodology for predicting crack growth of 2024-T3 aluminium alloys under variable amplitude loading. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1385-1404. doi: 10.5802/crmeca.339

[1] E. R. Sérgio; F. V. Antunes; D. M. Neto Improving the fatigue crack growth prediction by accurate calibration of the constitutive material parameters, Theoret. Appl. Fract. Mech., Volume 138 (2025), 104957 | DOI

[2] A. H. Noroozi; G. Glinka; S. Lambert A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force, Int. J. Fatigue, Volume 29 (2007), pp. 1616-1633 | DOI | Zbl

[3] A. Remadi; A. Bahloul; C. H. Bouraoui Fatigue crack growth behavior of AA2024T3 under mixed mode loading within the framework of EPFM, J. Mech. Sci. Technol., Volume 37 (2023) no. 4, pp. 1761-1771 | DOI

[4] O. E. Wheeler Spectrum loading and crack growth, J. Basic Eng., Volume 94 (1972), pp. 181-186 | DOI

[5] F. Wang; J. Zheng; K. Liu; M. Tong; J. Zhou Numerical analysis of crack propagation in an aluminum alloy under random load spectra, Modelling, Volume 5 (2024) no. 2, pp. 424-437 | DOI

[6] W. Elber Fatigue crack closure under cyclic tension, Eng. Fract. Mech., Volume 2 (1970), pp. 35-47

[7] A. Garcia-Gonzalez; J. A. Aguilera; P. M. Cerezo; C. Castro-Egler; P. Lopez-Crespo A literature review of incorporating crack tip plasticity into fatigue crack growth models, Materials, Volume 16 (2023) no. 24, 7603 | DOI

[8] G. Glinka; A. Buczynski Experimental and numerical analysis of elastic–plastic strains and stresses ahead of a growing fatigue crack, Workshop on Characterisation of Crack Tip Stress Fields (L. Susmel et al., eds.), GruppoItalianaFrattura, Forni di Sopra, Italy, 2011

[9] Q. Wu; Y. Zhao; X. Liu Fatigue life prediction of metal materials under random loads based on load spectrum extrapolation, Int. J. Fatigue, Volume 187 (2024), 108473

[10] A. H. Noroozi; G. Glinka; S. Lambert A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force, Int. J. Fatigue, Volume 29 (2007), pp. 1616-1633 | DOI | Zbl

[11] J. Willenborg; R. M. Engle; H. A. Wood A crack growth retardation model using an effective stress concept (1971) no. AFFDL-TM-71-1-FBR (Technical Report)

[12] M. A. Meggiolaro; J. T. P. Castro Comparison of load interaction models in fatigue crack propagation, XVI Congresso Brasileiro de Eng. Mecânica (COBEM), ABCM, Uberlândia, MG (2001), pp. 247-256

[13] R. A. Neto; A. E. A. Chemin; W. W. Bose Filho; C. T. Ruchert On the use of NASGRO software to estimate fatigue life under constant and variable amplitude loadings in aluminum alloy SAE-AMS 7475-T7351, 2023

[14] P. Gallagher A generalized development of yield zone models (1974) no. AFFDL-TM-74-28-FBR (Technical Report)

[15] G. Henauff; F. Morel Fatigue of Structures: Endurance, Design Criteria, Crack Propagation, Fracture, Ellipses, Paris, 2005

[16] S. Jiang; W. Zhang; Z. Wang Probabilistic fatigue crack growth analysis under stationary random loading with spike loads, IEEE Access, Volume 6 (2018), pp. 16878-16886 | DOI

[17] Y. Xiang; Y. Liu Efficient probabilistic methods for real-time fatigue damage prognosis, Annu. Conf. PHM Soc., Volume 2 (2010) no. 1, pp. 1-12

[18] T. L. Anderson Fatigue Crack Propagation Fracture Mechanics: Fundamental and Application, CRC Press, Boca Raton, FL, 2005, pp. 451-507

[19] N. E. Dowling; M. V. Kral; S. L. Kampe Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Pearson Education, Inc., Hoboken, NJ, 2019

[20] A. J. McEvily Phenomenological and microstructural aspects of fatigue, Third International Conference on the Strength of Metals and Alloys, Cambridge, England, The Institute and The Iron and Steel Institutes, Publication, W36 (1974), pp. 204-213

[21] R. W. Lardner A dislocation model for fatigue crack growth in metals, Philos. Mag., Volume 17 (1968) no. 145, pp. 71-82 | DOI

[22] T. Sireteanu; A. M. Mitu; M. Giuclea; O. Solomon; D. Stefanov Analytical method for fitting the ramberg-osgood model to given hysteresis loops, Proc. Rom. Acad. Ser. A - Math. Phys. Tech. Sci. Inf. Sci., Volume 15 (2014) no. 1, pp. 35-42 | MR

[23] A. Remadi; A. Bahloul; C. Bouraoui Residual plastic zone in front of crack tip under variable amplitude loading, International Conference Design and Modeling of Mechanical Systems, Springer International Publishing, Cham, 2021

[24] A. Remadi; A. Bahloul; C. Bouraoui Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis, C. R. Mec., Volume 347 (2019), pp. 576-587 | DOI

[25] Dassault Systèmes Simulia, Inc. (DS Simulia Corp.) ABAQUS/Standard User’s Manual (Version 6.14), Dassault Systèmes Simulia, Inc. (DS Simulia Corp.), 2014/2015

[26] P. Hu; Q. Meng; W. Hu; F. Shen; Z. Zhan; L. Sun A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy, Corros. Sci., Volume 113 (2016), pp. 78-90 | DOI

[27] G. Glinka; G. Shen Universal features of weight functions for cracks in mode I, Eng. Fract. Mech., Volume 40 (1991) no. 6, pp. 1135-1146 | DOI

[28] P. Kumar Elements of Fracture Mechanics, McGraw-Hill Education LLC, New York, NY, 2009

[29] Z. Lu; Y. Liu A comparative study between a small time scale model and the two driving force model for fatigue analysis, Int. J. Fatigue, Volume 42 (2012), pp. 57-70 | DOI

[30] S. Mikheevskiy; G. Glinka Elastic–plastic fatigue crack growth analysis under variable amplitude loading spectra, Int. J. Fatigue, Volume 31 (2009) no. 11–12, pp. 1828-1836 | DOI

[31] T. Kebir; B. Mohamed; M. Abdelkader Simulation of the cyclic hardening behavior of aluminum alloys simulation of the cyclic hardening behavior of aluminum alloys, Mech. Eng., Volume 79 (2017), pp. 240-250

[32] A. Bahloul; C. H. Bouraoui The overload effect on the crack tip cyclic plastic deformation response in SA333 Gr 6 C-Mn steel, Theoret. Appl. Fract. Mech., Volume 99 (2018), pp. 27-35 | DOI

[33] W. J. Wang; M.-S. Yim A fatigue crack growth prediction model for cracked specimen under variable amplitude loading, Int. J. Fatigue, Volume 168 (2023), 107387

Cité par Sources :

Commentaires - Politique