[Influence du comportement du substrat en acier sur la déformation et la fissuration des revêtements Zn–Al–Mg sur les tôles d’acier galvanisées]
The objective of this study is twofold: (i) to comprehensively describe the deformation modes of zinc coatings depending on their crystallographic texture and (ii) to investigate the effect of Lüders banding occurring in the steel substrate on the coating deformation and cracking modes. Microscopic characterization and mechanical tests were conducted on three types of galvanized steel: a mild steel substrate and a high-strength low-alloy (HSLA) steel substrate known to exhibit the Lüders banding phenomenon, and a dual-phase steel substrate. The results reveal a direct correlation between the coating texture, plastic deformation modes, and the mechanical behavior of the respective substrates. Digital Image Correlation (DIC) was employed to measure the strain fields and characterize strain localization phenomena resulting from Lüders banding. The strain field measured on the galvanized substrate specimens showed that Lüders band propagation leads to accelerated plastic deformation and cracking in the Zn–Al–Mg coating. Finite element simulations were performed by considering the real coating microstructure and incorporating the macroscopic behavior of the substrate. The simulation results demonstrate that slip and twinning activities of the coating grains are strongly influenced by the underlying substrate behavior.
L’objectif de cette étude est double : (i) décrire de manière exhaustive les modes de déformation des revêtements de zinc en fonction de leur texture cristallographique et (ii) étudier l’effet des bandes de Lüders se développant dans le substrat en acier sur les modes de déformation et de fissuration du revêtement. Une caractérisation microscopique et des essais mécaniques ont été réalisés sur trois types d’acier galvanisé : un substrat en acier doux, un substrat en acier à haute résistance et faiblement allié (HSLA) connu pour présenter le phénomène de bandes de Lüders, et un substrat en acier à microstructure biphasée (Dual-Phase). Les résultats révèlent une corrélation directe entre la texture du revêtement, les modes de déformation plastique et le comportement mécanique des substrats respectifs. La corrélation d’images numériques (DIC) a été utilisée pour mesurer les champs de déformation et caractériser les phénomènes de localisation associés aux bandes de Lüders. Les champs de déformation mesurés sur les éprouvettes de substrat galvanisé montrent que la propagation des bandes de Lüders entraîne une accélération de la déformation plastique et favorise la fissuration dans le revêtement Zn–Al–Mg. Des simulations par éléments finis ont été réalisées en considérant la microstructure réelle du revêtement et en intégrant le comportement macroscopique du substrat. Les résultats de la simulation démontrent que les mécanismes de glissement et de maclage au sein des grains du revêtement sont fortement influencés par le comportement mécanique du substrat sous-jacent.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Revêtements de zinc, Texture cristallographique, Bandes de Lüders, Fissuration du revêtement, Glissement et maclage, Localisation de la déformation, Acier galvanisé
Ahmed Zouari 1, 2, 3 ; Samuel Forest 1 ; Sylvain Dépinoy 1 ; Yazid Madi 1 ; Jean-Michel Mataigne 2 ; Houssem Eddine Chaïeb 4 ; Pascal Bertho 2 ; Aymen Bouzid 2 ; Aurelien Chopin 2 ; Coralie Jung 2
CC-BY 4.0
@article{CRMECA_2025__353_G1_1425_0,
author = {Ahmed Zouari and Samuel Forest and Sylvain D\'epinoy and Yazid Madi and Jean-Michel Mataigne and Houssem Eddine Cha{\"\i}eb and Pascal Bertho and Aymen Bouzid and Aurelien Chopin and Coralie Jung},
title = {Influence of steel substrate behavior on the deformation and cracking of {Zn{\textendash}Al{\textendash}Mg} coatings on galvanized steel sheets},
journal = {Comptes Rendus. M\'ecanique},
pages = {1425--1449},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.340},
language = {en},
}
TY - JOUR AU - Ahmed Zouari AU - Samuel Forest AU - Sylvain Dépinoy AU - Yazid Madi AU - Jean-Michel Mataigne AU - Houssem Eddine Chaïeb AU - Pascal Bertho AU - Aymen Bouzid AU - Aurelien Chopin AU - Coralie Jung TI - Influence of steel substrate behavior on the deformation and cracking of Zn–Al–Mg coatings on galvanized steel sheets JO - Comptes Rendus. Mécanique PY - 2025 SP - 1425 EP - 1449 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.340 LA - en ID - CRMECA_2025__353_G1_1425_0 ER -
%0 Journal Article %A Ahmed Zouari %A Samuel Forest %A Sylvain Dépinoy %A Yazid Madi %A Jean-Michel Mataigne %A Houssem Eddine Chaïeb %A Pascal Bertho %A Aymen Bouzid %A Aurelien Chopin %A Coralie Jung %T Influence of steel substrate behavior on the deformation and cracking of Zn–Al–Mg coatings on galvanized steel sheets %J Comptes Rendus. Mécanique %D 2025 %P 1425-1449 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.340 %G en %F CRMECA_2025__353_G1_1425_0
Ahmed Zouari; Samuel Forest; Sylvain Dépinoy; Yazid Madi; Jean-Michel Mataigne; Houssem Eddine Chaïeb; Pascal Bertho; Aymen Bouzid; Aurelien Chopin; Coralie Jung. Influence of steel substrate behavior on the deformation and cracking of Zn–Al–Mg coatings on galvanized steel sheets. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1425-1449. doi: 10.5802/crmeca.340
[1] Effects of zinc bath temperature on the coatings of hot-dip galvanizing, Surf. Coat. Technol., Volume 202 (2008) no. 9, pp. 1785-1788 | DOI
[2] et al. Chemistry of corrosion products of Zn and Mg–Zn pure phases under atmospheric conditions, Corros. Sci., Volume 65 (2012), pp. 178-186 | DOI
[3] et al. Corrosion performance of Zn–Al–Mg coatings in open and confined zones in conditions simulating automotive applications, Mater. Corros., Volume 61 (2010), pp. 412-420 | DOI
[4] Thermodynamic analysis and experimental study on the oxidation of the Zn–Al–Mg coating baths, Appl. Surf. Sci., Volume 396 (2017), pp. 154-160 | DOI
[5] Local mechanical properties and plasticity mechanisms in a Zn–Al eutectic alloy, Mater. Des., Volume 157 (2018), pp. 337-350 | DOI
[6] Characterization of the failure behavior of zinc coating on dual phase steel under tensile deformation, Mater. Sci. Eng. A, Volume 528 (2011), pp. 6432-6437 | DOI
[7] Local mechanical properties and plasticity mechanisms in a Zn–Al eutectic alloy, Mater. Des., Volume 157 (2018), pp. 337-350 | DOI
[8] Orientation dependence of cracking in hot-dip Zn–Al–Mg alloy coatings on a sheet steel, Metall. Mater. Trans. A, Volume 48 (2017), pp. 1013-1020 | DOI
[9] Mechanical behavior and damage of zinc coating for hot dip galvanized steel sheet DP600, Coatings, Volume 10 (2020) no. 3, 202
[10] Correlative characterization of Zn–Al–Mg coatings by electron microscopy and FIB tomography, Mater. Charact., Volume 166 (2020), 110407 | DOI
[11] The effect of grain refinement on the deformation and cracking resistance in Zn–Al–Mg coatings, Mater. Sci. Eng. A, Volume 840 (2022), 142995 | DOI
[12] Fracture properties of zinc coating layers in a galvannealed steel and an electrolytically galvanized steel, Mater. Sci. Eng. A, Volume 732 (2018), pp. 320-325 | DOI
[13] Cracking behavior and formability of Zn–Al–Mg coatings: Understanding the influence of steel substrates, Mater. Des., Volume 212 (2021), 110215 | DOI
[14] Unraveling dislocation-mediated plasticity and strengthening in crack-resistant Zn–Al–Mg coatings, Int. J. Plast., Volume 144 (2021), 103041 | DOI
[15] Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part I, Metall. Mater. Trans. A, Volume 35 (2004), pp. 797-811 | DOI
[16] The cracking of zinc spangles on hot-dipped galvanized steel, Metall. Trans. B, Volume 11 (1980), pp. 631-635 | DOI
[17] Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II, Metall. Mater. Trans. A, Volume 35 (2004), pp. 813-823 | DOI
[18] Formation sequence of Fe–Al intermetallic phases at interface between solid Fe and liquid Zn–6Al–3Mg alloy, Mater. Sci. Eng. A, Volume 109 (2019), pp. 74-84
[19] Influence of Si addition to the coating bath on the growth of the Al–Fe alloy layer in hot-dip Zn–Al–Mg alloy-coated steel sheets, ISIJ Int., Volume 51 (2011), pp. 1895-1902 | DOI
[20] Effect of Mg on Fe–Al interface structure of hot–dip galvanized Zn–Al–Mg alloy coatings, Surf. Coat. Technol., Volume 337 (2018), pp. 313-320 | DOI
[21] Towards a dependable TEM characterization of hot-dip galvanized steels with low and high Si content, Mater. Des., Volume 227 (2023), 111684 | DOI
[22] Effects of grain interactions on deformation and local texture in polycrystals, Acta Metall. Mater., Volume 43 (1995) no. 7, pp. 2701-2719 | DOI
[23] Texture analysis with MTEX—free and open source software toolbox, Texture and Anisotropy of Polycrystals III (Solid State Phenomena), Volume 160, Trans Tech Publications Ltd., Wollerau, 2010
[24] Mtex2gmsh: a tool for generating 2D meshes from EBSD data, J. Open Source Softw., Volume 5 (2020) no. 52, 2094 | DOI
[25] Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., Volume 79 (2009) no. 11, pp. 1309-1331 | DOI | MR | Zbl
[26] Identification of a strain-aging model accounting for Lüders behavior in a C–Mn steel, Philos. Mag., Volume 92 (2012) no. 28–30, pp. 1-21
[27] Strain gradient plasticity modeling and finite element simulation of Lüders band formation and propagation, Continuum Mech. Thermodyn., Volume 27 (2015), pp. 83-104 | DOI | Zbl | MR
[28] Impurity effects on basal dislocation in zinc single crystals, Trans. Metall. Soc. AIME, Volume 242 (1968), pp. 132-139
[29] Experimental and digital twinning in ZnAlMg coatings, Mech. Mater., Volume 199 (2024), 105173 | DOI
[30] In-situ localization of damage in a Zn–Al–Mg coating deposited on steel by continuous hot-dip galvanizing, Scr. Mater., Volume 243 (2024), 115960 | DOI
Cité par Sources :
Commentaires - Politique
