[Amortissement d’une fibre unique : perspectives, avancées et défis]
This review paper provides insights into damping characterisation at the fibre scale. With the growing demand for composite materials, understanding damping behaviour within these materials is becoming increasingly crucial. However, research on damping characterisation at this scale remains limited, highlighting a notable gap in the field. This paper presents a detailed analysis of methodologies used to assess fibre-scale damping and examines the influence of environmental factors such as temperature, humidity, and pressure, as well as the impact of the identification method. While most studies have focused on ceramic and metallic fibres, some efforts have also been made to investigate natural fibres. However, these studies remain relatively scarce, and the characterisation of natural fibre damping is still in its early stages. Reported damping values vary significantly across studies, reflecting both the influence of fibre type and methodological differences. For instance, damping values for cotton fibres range from 13.7% to 21.7%, carbon fibres from 0.09% to 0.9%, and flax fibres from 3.6% to 11.5%. Moreover, a noticeable contrast can be observed between organic and inorganic fibres. One of the main findings of this review is the significant variation in damping values obtained for the same fibre type, depending on the characterisation method used. This highlights the need for standardisation and further refinement of experimental techniques to improve the reliability and comparability of damping measurements.
Cet article de review apporte un éclairage sur la caractérisation de l’amortissement à l’échelle de la fibre. Avec la demande croissante en matériaux composites, comprendre le comportement vibratoire et dissipatif de ces matériaux devient de plus en plus essentiel. Cependant, la recherche consacrée à la caractérisation de l’amortissement à cette échelle reste limitée, révélant un manque notable dans ce domaine. Cet article présente une analyse détaillée des méthodologies utilisées pour évaluer l’amortissement à l’échelle de la fibre et examine l’influence des facteurs environnementaux tels que la température, l’humidité et la pression, ainsi que l’impact de la méthode d’identification. Si la majorité des études se sont concentrées sur les fibres métalliques et céramiques, quelques travaux ont également porté sur les fibres naturelles. Néanmoins, ces études demeurent relativement rares, et la caractérisation de l’amortissement des fibres naturelles en est encore à ses débuts. Les valeurs d’amortissement rapportées varient fortement d’une étude à l’autre, reflétant à la fois l’influence du type de fibre et les différences méthodologiques. Par exemple, les valeurs d’amortissement pour les fibres de coton vont de 13,7% à 21,7%, celles des fibres de carbone de 0,09% à 0,9%, et celles du lin de 3,6% à 11,5%. On observe également un contraste marqué entre les fibres organiques et inorganiques. L’un des principaux constats de cette revue est l’importante variabilité des valeurs d’amortissement obtenues pour un même type de fibre selon la méthode de caractérisation employée. Cela met en évidence la nécessité de normaliser et d’améliorer les techniques expérimentales afin d’accroître la fiabilité et la comparabilité des mesures d’amortissement.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Fibre élémentaire, amortissement, paramètres influents
Fanny Pelisson 1 ; Morvan Ouisse 1 ; Vincent Placet 1 ; Pauline Butaud 1
CC-BY 4.0
@article{CRMECA_2025__353_G1_1405_0,
author = {Fanny Pelisson and Morvan Ouisse and Vincent Placet and Pauline Butaud},
title = {Single fibre damping: insight, advances and challenges},
journal = {Comptes Rendus. M\'ecanique},
pages = {1405--1423},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.341},
language = {en},
}
TY - JOUR AU - Fanny Pelisson AU - Morvan Ouisse AU - Vincent Placet AU - Pauline Butaud TI - Single fibre damping: insight, advances and challenges JO - Comptes Rendus. Mécanique PY - 2025 SP - 1405 EP - 1423 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.341 LA - en ID - CRMECA_2025__353_G1_1405_0 ER -
Fanny Pelisson; Morvan Ouisse; Vincent Placet; Pauline Butaud. Single fibre damping: insight, advances and challenges. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1405-1423. doi: 10.5802/crmeca.341
[1] Composite materials — History, types, fabrication techniques, advantages, and applications, Int. J. Mech. Prod. Eng., Volume 5 (2017) no. 9, pp. 82-87
[2] Natural fiber reinforced polymer composites: history, types, advantages and applications, Mater. Eng. Res., Volume 1 (2019) no. 2, pp. 69-85 | DOI
[3] Damping behavior of plant fiber composites: a review, Compos. Struct, Volume 275 (2021), 114392 | DOI
[4] Contribution à l’étude de composites unidirectionnels renforcés par des fibres de lin: relation entre la microstructure de la fibre et ses propriétés mécaniques, Ph. D. Thesis, Université de Caen/Basse-Normandie (France) (2008)
[5] Mechanical and damping performances of flax fibre composites — A review, Compos. C. Open Access, Volume 4 (2021), 100081, 18 pages | DOI
[6] Processing of natural-fibre reinforced polymers and the resulting dynamic–mechanical properties, J. Mater. Process. Technol., Volume 139 (2003) no. 1–3, pp. 140-146 | DOI
[7] Study of the tensile properties of stinging nettle fibres (Urtica dioica), Mater. Lett., Volume 62 (2008) no. 14, pp. 2143-2145 | DOI
[8] Is the low shear modulus of flax fibres an advantage for polymer reinforcement?, Mater. Lett., Volume 185 (2016), pp. 534-536 | DOI
[9] Damping studies in fiber-reinforced composites — A review, Compos. Struct, Volume 46 (1999) no. 1, pp. 41-51 | DOI
[10] Damping analysis of nonwoven natural fibre-reinforced polypropylene composites used in automotive interior parts, Polym. Test., Volume 89 (2020), 106692 | DOI
[11] Damping of thermoset and thermoplastic flax fibre composites, Compos. A. Appl. Sci. Manuf., Volume 64 (2014), pp. 115-123 | DOI
[12] A study of damping in fiber-reinforced composites, J. Sound Vib., Volume 262 (2003) no. 3, pp. 475-496 | DOI
[13] Crosslinking of an epoxy with a mixed amine as a function of stoichiometry. II. Final properties via dynamic mechanical spectroscopy, J. Appl. Polym. Sci., Volume 41 (1990) no. 11–12, pp. 2539-2554 | DOI
[14] In situ damping identification of plant fiber composites using dynamic grid nanoindentation, Compos. A. Appl. Sci. Manuf., Volume 163 (2022), 107158 | DOI
[15] Multi-scale damping characterization of plant fiber composite materials, Ph. D. Thesis, Université Bourgogne Franche-Comté (France) (2021)
[16] The chemistry of textile fibres, RSC eTextbook Collection, Royal Society of Chemistry, 2015 | DOI
[17] Dynamic bending properties of fibers: effect of temperature on nylon 66, terylene, orlon, and viscose rayon, Journal of polymer science, Volume 61 (1962) no. 172, pp. 271-292
[18] Effect of air damping on transverse vibrations of stretched filaments, J. Appl. Phys., Volume 26 (1955) no. 5, pp. 540-544 | DOI
[19] 30 — The Torsional Rigidity of Textile Fibres, J. Text. Inst., Volume 45 (1954) no. 7, p. T489-T503 | DOI
[20] The dynamic longitudinal shear modulus and damping of carbon fibres, J. Phys. D: Appl. Phys., Volume 8 (1975) no. 7, 738 | DOI
[21] Les propriétés vibratoires transversales des fibres de kératine. Influence de l’eau et d’autres agents, Int. J. Cosmet. Sci., Volume 2 (1980) no. 5, pp. 231-241 | DOI
[22] Dynamic modulus and damping of boron, silicon carbide, and alumina fibers (1980) no. NASA-TM-81422 (Conference paper: Annual Conference on Composites and Advanced Materials) (technical memorandum)
[23] Effects of humidity, ageing, annealing, and tensile loads on the torsional damping of wool fibers, Text. Res. J., Volume 57 (1987) no. 7, pp. 415-420 | DOI
[24] Apparatus and process for measuring mechanical properties of fibers no. 5269181A (US patent)
[25] Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength, J. Mater. Sci., Volume 29 (1994) no. 14, pp. 3658-3664 | DOI
[26] High-temperature dynamic mechanical testing of ceramic fibers: Apparatus and preliminary results, Mater. Sci. Eng. A, Volume 215 (1996) no. 1–2, pp. 9-17 | DOI
[27] Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers, Text. Res. J., Volume 68 (1998) no. 9, pp. 623-629 | DOI
[28] A new method for measuring damping in flexural vibration of thin fibers, Exp. Mech., Volume 45 (2005) no. 5, pp. 433-439 | DOI
[29] Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites, Compos. A. Appl. Sci. Manuf., Volume 40 (2009) no. 8, pp. 1111-1118 | DOI
[30] Effect of water desorption on the rheology and dynamic response of human hair to a non-contact impact, J. Mech. Behav. Biomed. Mater., Volume 46 (2015), pp. 176-183 | DOI
[31] Mechanical properties of cellulose fibers measured by Brillouin spectroscopy, Cellulose, Volume 27 (2020) no. 8, pp. 4209-4220 | DOI
[32] Dynamic micromechanical measurement of the flexural modulus of micrometre-sized diameter single natural fibres using a vibrating microcantilever technique, J. Micromech. Microeng., Volume 34 (2024) no. 1, 015009 | DOI
[33] Non-invasive determination of the complete elastic moduli of spider silks, Nature Mater., Volume 12 (2013) no. 3, pp. 262-267 | DOI
[34] An improved torsion pendulum for measuring internal damping, Rev. Sci. Instrum., Volume 40 (1969) no. 11, pp. 1450-1453 | DOI
[35] A torsion pendulum for dynamic and creep measurements of soft viscoelastic materials, J. Rheol., Volume 2 (1958) no. 1, pp. 39-51 | DOI
[36] An improved torsion pendulum for measuring internal damping, Rev. Sci. Instrum., Volume 40 (1969) no. 11, pp. 1450-1453
[37] An improved torsion pendulum based on image processing for single fibers, Meas. Sci. Technol., Volume 27 (2016) no. 7, 075601 | DOI
[38] Dynamic and transient characterization of silicon carbide fibers at elevated temperatures, Proceedings of the 11th International Conference on Composite Materials — Vol. 4: Composites processing and microstructure (Murray L. Scott, ed.), Australian Composite Structures Society (1997), pp. 633-642
[39] A novel method for the measurement of elastic moduli of fibres, Compos. A. Appl. Sci. Manuf., Volume 38 (2007) no. 1, pp. 71-79 | DOI
[40] Thermal and dynamic mechanical characterization of miscanthus stem fragments: Effects of genotypes, positions along the stem and their relation with biochemical and structural characteristics, Ind. Crops Prod., Volume 156 (2020), 112863 | DOI
[41] Brillouin microscopy: an emerging tool for mechanobiology, Nat. Methods, Volume 16 (2019) no. 10, pp. 969-977
[42] Brillouin spectroscopy of Nd-Ge co-doped silica fibers, J. Non Cryst. Solids, Volume 355 (2009) no. 7, pp. 403-413 | DOI
[43] Brillouin gain spectrum characterization in single-mode optical fibers, Journal of Lightwave Technology, Volume 15 (2002) no. 10, pp. 1842-1851
[44] Lattice site of Mg ion in crystal determined by Raman spectroscopy, J. Phys. Cond. Matt., Volume 12 no. 23, 5053 | DOI
[45] Investigation of the effects of air on the dynamic behavior of a small cantilever beam, J. Sound Vib., Volume 305 (2007) no. 1–2, pp. 243-260 | DOI
[46] Influence of air pressure on the micro-beam dynamics (Conference paper: International Modal Analysis Conference 2006)
[47] Damping characteristics of beam-shaped micro-oscillators, Sens. Actuators, A, Volume 49 (1995) no. 1–2, pp. 87-95 | DOI
[48] Air damping on micro-cantilever beams (2007) no. SAND2007-6842C (Technical report)
[49] On the air damping of flexible microbeam in free space at the free-molecule regime, Microfluid Nanofluid, Volume 3 (2007) no. 6, pp. 715-721 | DOI
[50] A bending and stretching mode crystal oscillator as a friction vacuum gauge, Vacuum, Volume 34 (1984) no. 8–9, pp. 731-735 | DOI
[51] Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry, J. Vac. Sci. Technol., B, Volume 10 (1992) no. 1, pp. 19-29 | DOI
[52] The theory of oscillating-vane vacuum gauges, Vacuum, Volume 16 (1966) no. 4, pp. 175-178 | DOI
Cité par Sources :
Commentaires - Politique
