[Vers un ensemble d’outils automatisés pour la simulation Navier–Stokes avec adaptation de maillage des véhicules hypersoniques]
A fully automated CAD-to-post toolset for Navier–Stokes and Reynolds Averaged Navier–Stokes (RANS) simulations of high speed vehicles flow is presented. The toolset combines the vertex-centered SoNICS solver with anisotropic mesh adaptation based on the REFINE toolbox, eliminating manual meshing and enabling efficient, parallelized simulations from CAD input to converged solutions. The tool is validated on open cases representative of the complexity of the flow encountered around high-speed vehicles including reentry and airbreathing cruise vehicles. This includes complex three-dimensional forebody laminar simulations and axisymmetric triconic cases. For the internal aerodynamics part, given the lack of proper validation references, a direct numerical simulation of the internal conduit of a generic dual mode ramjet air intake is conducted and compared to legacy RANS simulation and mesh-adapted RANS simulation. A demonstration on a full scramjet-powered cruise vehicle then highlights the toolset’s scalability and adaptability to industrial applications. The automated workflow reduces setup time and human error, making it a valuable asset for hypersonic vehicle design and optimization.
Un ensemble d’outils entièrement automatisé pour les simulations Navier–Stokes et Reynolds Averaged Navier–Stokes (RANS) des écoulements autour des véhicules à grande vitesse est présenté. Cet ensemble d’outils combine le solveur SoNICS avec l’adaptation de maillage anisotrope basée sur la boîte à outils REFINE, éliminant ainsi le maillage manuel et permettant des simulations parallélisées efficaces, depuis l’entrée CAO jusqu’aux solutions convergées. L’outil est validé sur des cas ouverts représentatifs de la complexité de l’écoulement rencontré autour des véhicules à grande vitesse, y compris les véhicules de rentrée et les véhicules de croisière à propulsion aérobie. Cela inclut des simulations laminaires tridimensionnelles complexes de l’avant du fuselage et des cas triconiques axisymétriques. Pour la partie aérodynamique interne, compte tenu du manque de références de validation appropriées, une simulation numérique directe du conduit interne d’une prise d’air générique pour statoréacteur est réalisée et comparée à une simulation RANS classique et à une simulation RANS avec adaptation de maillage. Une démonstration sur un véhicule de croisière propulsé par statoréacteur souligne ensuite l’évolutivité et l’adaptabilité de l’ensemble d’outils aux applications industrielles. Le flux de travail automatisé réduit le temps de configuration et les erreurs humaines, ce qui en fait un atout précieux pour la conception et l’optimisation des véhicules hypersoniques.
Accepté le :
Publié le :
Mots-clés : Hypersonique, RANS, adaptation de maillage
Mathieu Lugrin 1 ; Baptiste Isnard 1 ; Clément Benazet 2 ; Bruno Maugars 2 ; Cédric Content 2
CC-BY 4.0
@article{CRMECA_2025__353_G1_1451_0,
author = {Mathieu Lugrin and Baptiste Isnard and Cl\'ement Benazet and Bruno Maugars and C\'edric Content},
title = {Towards an automated toolset for mesh adapted {Navier{\textendash}Stokes} simulation of hypersonic vehicles},
journal = {Comptes Rendus. M\'ecanique},
pages = {1451--1475},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.344},
language = {en},
}
TY - JOUR AU - Mathieu Lugrin AU - Baptiste Isnard AU - Clément Benazet AU - Bruno Maugars AU - Cédric Content TI - Towards an automated toolset for mesh adapted Navier–Stokes simulation of hypersonic vehicles JO - Comptes Rendus. Mécanique PY - 2025 SP - 1451 EP - 1475 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.344 LA - en ID - CRMECA_2025__353_G1_1451_0 ER -
%0 Journal Article %A Mathieu Lugrin %A Baptiste Isnard %A Clément Benazet %A Bruno Maugars %A Cédric Content %T Towards an automated toolset for mesh adapted Navier–Stokes simulation of hypersonic vehicles %J Comptes Rendus. Mécanique %D 2025 %P 1451-1475 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.344 %G en %F CRMECA_2025__353_G1_1451_0
Mathieu Lugrin; Baptiste Isnard; Clément Benazet; Bruno Maugars; Cédric Content. Towards an automated toolset for mesh adapted Navier–Stokes simulation of hypersonic vehicles. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1451-1475. doi: 10.5802/crmeca.344
[1] Immersed boundary methods, Annu. Rev. Fluid Mech., Volume 37 (2005) no. 1, pp. 239-261 | DOI | Zbl
[2] Immersed boundary methods: historical perspective and future outlook, Ann. Rev. Fluid Mech., Volume 55 (2023) no. 1, pp. 129-155 | DOI | Zbl
[3] A dynamic linearized wall model for turbulent flow simulation: towards grid convergence in wall-modeled simulations, J. Comput. Phys., Volume 521 (2025), 113555 | DOI | Zbl | MR
[4] Application of generalized wall function forcomplex turbulent flows, J. Turbul., Volume 4 (2003) no. 1, 015 | DOI
[5] Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations, J. Comput. Phys., Volume 229 (2010) no. 8, pp. 2866-2897 | DOI | Zbl | MR
[6] High-order sonic boom modeling based on adaptive methods, J. Comput. Phys., Volume 229 (2010) no. 3, pp. 561-593 | DOI | Zbl | MR
[7] Achievement of global second order mesh convergence for discontinuous flows with adapted unstructured meshes, 18th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics (2007), AIAA 2007-4186 | DOI
[8] Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows, J. Comput. Phys., Volume 176 (2002) no. 1, pp. 40-69 | DOI | Zbl | MR
[9] Feature-based and goal-oriented anisotropic mesh adaptation for RANS applications in aeronautic and aerospace, J. Comput. Phys., Volume 439 (2021), 110340 | DOI | Zbl | MR
[10] Chapter Two - Practical use of metric-based anisotropic mesh adaptation for industrial applications, Error Control, Adaptive Discretizations, and Applications, Part 3 (Franz Chouly; Stéphane P. A. Bordas; Roland Becker; Pascal Omnes, eds.) (Advances in Applied Mechanics), Volume 60, Elsevier, 2025, pp. 57-111 | DOI
[11] Anisotropic unstructured mesh adaption for flow simulations, Int. J. Numer. Methods Fluids, Volume 25 (1997) no. 4, pp. 475-491 | DOI | Zbl | MR
[12] About theoretical and practical impact of mesh adaptation on approximation of functions and PDE solutions, Int. J. Numer. Methods Fluids, Volume 43 (2003) no. 5, pp. 507-516 | DOI
[13] Anisotropic mesh adaptation for CFD computations, Comput. Methods Appl. Mech. Eng., Volume 194 (2005) no. 48, pp. 5068-5082 | DOI | MR | Zbl
[14] 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Eng., Volume 194 (2005) no. 48, pp. 4951-4976 | DOI | MR
[15] Accounting for curved domains in mesh adaptation, Int. J. Numer. Methods Eng., Volume 58 (2003) no. 2, pp. 247-276 | DOI | Zbl
[16] Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results, AIAA J., Volume 49 (2011) no. 4, pp. 673-694 | DOI | Zbl
[17] Goal-oriented anisotropic grid adaptation, Comptes Rendus. Mathématique, Volume 346 (2008) no. 19–20, pp. 1109-1112 | DOI | Numdam | Zbl
[18] Error indicator and mesh adaption, in FreeFem++ (2009) https://www.ljll.fr/hecht/ftp/FH-Mamerm09.pdf Notes for the 3rd International Conference on Approximation Methods and numerical Modeling in Environment and Natural Resources (MAMERN ’09)
[19] Génération et Adaptation de Maillages pour le Calcul Scientifique, Ph. D. Thesis, Université Paris-Saclay (France) (2020)
[20] Separation and transition on a cone-cylinder-flare: computational investigations, AIAA J., Volume 63 (2025) no. 7, pp. 2615-2634 | DOI
[21] Separation bubble variation due to small angles of attack for an axisymmetric model at Mach 6, AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics (2021), AIAA 2021-0245 | DOI
[22] Ground tests on bolt at Mach 7: Cross-facility comparison and stability analysis, AIAA J., Volume 63 (2025) no. 6, pp. 2135-2150 | DOI
[23] Boundary-Layer Transition on BOLT in High Reynolds Number Mach-6 Quiet Flow, J. Spacecr. Rock. (2025) | DOI
[24] Boundary layer transition (BOLT) flight experiment overview, 2018 Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics (2018), AIAA 2018-2892 | DOI
[25] Measurements of natural turbulence during the BOLT II flight experiment, J. Spacecr. Rock., Volume 61 (2024) no. 5, pp. 1281-1292 | DOI
[26] Postflight Receptivity and Transition Analysis of BOLT-II Side A Descent Trajectory, AIAA SCITECH 2024 Forum, American Institute of Aeronautics and Astronautics (2024), AIAA 2024-0703 | DOI
[27] Numerical simulation of shock trains in a 3D channel, 54th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (2016), AIAA 2016-1018 | DOI
[28] A numerical and experimental investigation of multiple shock wave/turbulent boundary layer interactions in a rectangular duct (1988) no. UILU-ENG-88-4001 (Technical report)
[29] The Onera elsA CFD software: Input from research and feedback from industry, Mechanics and Industry, Volume 14 (2013) no. 3, pp. 159-174 | DOI
[30] SoNICS: a new generation CFD software for satisfying industrial users needs (2022) (Conference paper: OTAN/STO/Workshop AVT-366) | HAL
[31] Verification of anisotropic mesh adaptation for complex aerospace applications, AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics (2020), AIAA 2020-0675. | DOI
[32] DOE Exascale Requirements Review — Basic Energy Sciences (BES) (2017) no. DOE/SC-0187 https://blogs.anl.gov/... (Technical report)
[33] Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, J. Comput. Phys., Volume 43 (1981), pp. 357-372 | DOI | MR
[34] A novel flux splitting scheme with robustness and low dissipation for hypersonic heating prediction, Int. J. Heat Mass Transfer, Volume 127 (2018), pp. 126-137 | DOI
[35] Entropy stable, robust and high-order DGSEM for the compressible multicomponent Euler equations, J. Comput. Phys., Volume 445 (2021), 110584 | MR
[36] Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters, J. Comput. Phys., Volume 118 (1995) no. 1, pp. 120-130 | DOI
[37] A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., Volume 108 (1982) no. 1, pp. 76-84
[38] Criteria for the design of limiters yielding efficient high resolution TVD schemes, Comput. Fluids, Volume 27 (1998) no. 2, pp. 183-197 | DOI | MR
[39] Effective adjoint approaches for computational fluid dynamics, Prog. Aerosp. Sci., Volume 110 (2019), 100542 | DOI
[40] Hydrodynamic Stability Without Eigenvalues, Science, Volume 261 (1993) no. 5121, pp. 578-584 | DOI | MR
[41] Sensitivity and optimal forcing response in separated boundary layer flows, Phys. Fluids, Volume 21 (2009) no. 6, 064108 | DOI
[42] A critical-layer framework for turbulent pipe flow, J. Fluid Mech., Volume 658 (2010), pp. 336-382 | DOI | MR
[43] Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer, Theor. Comput. Fluid Dyn., Volume 27 (2013) no. 5, pp. 617-635 | DOI
[44] Nonlinear input/output analysis: application to boundary layer transition, J. Fluid Mech., Volume 911 (2021), A15 | DOI | MR
[45] 3D global optimal forcing and response of the supersonic boundary layer, J. Comput. Phys., Volume 398 (2019), 108888 | DOI | MR
[46] Multidisciplinary Design Optimization: A Survey of Architectures, AIAA J., Volume 51 (2013) no. 9, pp. 2049-2075 | DOI
[47] Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration, J. Aircraft, Volume 51 (2014) no. 1, pp. 144-160 | DOI
[48] A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput. Phys., Volume 305 (2016), pp. 758-774 | DOI | MR
[49] Turbulence Modeling in the Age of Data, Ann. Rev. Fluid Mech., Volume 51 (2019), pp. 357-377 | DOI
[50] A data-driven adaptive Reynolds-averaged Navier–Stokes - model for turbulent flow, J. Comput. Phys., Volume 345 (2017), pp. 111-131 | DOI | MR
[51] Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high Reynolds number backward-facing step, Phys. Rev. Fluids, Volume 5 (2020), 094603, 24 pages | DOI
[52] Deep Equilibrium Models, Advances in Neural Information Processing Systems 32 (NeurIPS 2019) (H. Wallach; H. Larochelle; A. Beygelzimer; F. d’Alché-Buc; E. Fox; R. Garnett, eds.) (Advances in Neural Information Processing Systems), Curran Associates, Inc. (2019) no. 32
[53] SoNICS: design and workflow of a new CFD software, Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1261-1287 | DOI
[54] Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations, Comput. Fluids, Volume 29 (2000) no. 1, pp. 89-118 | DOI | MR
[55] Towards the Ultimate Conservative Difference Scheme, J. Comput. Phys., Volume 135 (1997) no. 2, pp. 229-248 | DOI
[56] Feature-based and goal-oriented anisotropic mesh adaptation for RANS applications in aeronautics and aerospace, J. Comput. Phys., Volume 439 (2021), 110340 | DOI | MR
[57] Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations, Comput. Fluids, Volume 230 (2021), 105134 | DOI | MR
[58] Edge-Based Viscous Method for Mixed-Element Node-Centered Finite-Volume Solvers, AIAA J., Volume 62 (2024) no. 1, pp. 209-230 | DOI
[59] Scalable parallel linear solver for compact banded systems on heterogeneous architectures, J. Comput. Phys., Volume 468 (2022), 111443 | DOI | MR
[60] One-equation turbulence model for aerodynamic flows, Rech. Aerosp., Volume 439 (1994) no. 1, pp. 5-21 | DOI
[61] Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations, Aerosp. Sci. Technol., Volume 6 (2002) no. 3, pp. 171-183 | DOI
[62] Strategies for turbulence modelling and simulations, Int. J. Heat Fluid Flow, Volume 21 (2000) no. 3, pp. 252-263 | DOI
[63] On the construction of aircraft conceptual geometry for high-fidelity analysis and design, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics (2012), AIAA 2012-0683 | DOI
[64] An overview of the engineering sketch pad, AIAA SCITECH 2024 Forum, American Institute of Aeronautics and Astronautics (2024), AIAA 2024-1315 | DOI
[65] TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., Volume 41 (2015) no. 2, 11, 36 pages | DOI | MR | Zbl
[66] NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., Volume 1 (1997) no. 1, pp. 41-52
[67] Recent updates to the CFD general notation system (CGNS), 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics (2012), AIAA 2012-1264 | DOI
[68] onera/Maia: Distributed algorithms and manipulations over CGNS meshes https://github.com/onera/Maia (Accessed 2025-12-10)
[69] Maia CGNS trees, Maia documentation, 2021 https://onera.github.io/... (Accessed 2025-12-10)
[70] onera/paradigm: Library for managing meshes in a massively parallel distributed environment (2024) https://github.com/onera/paradigm/ (Accessed 2025-12-11)
[71] Dynamic load-balanced point location algorithm for data mapping (2025) (To appear in Comptes Rendus. Mécanique)
[72] Continuous mesh framework part II: validations and applications, SIAM J. Numer. Anal., Volume 49 (2011) no. 1, pp. 61-86 | DOI | MR
[73] BROADCAST: A high-order compressible CFD toolbox for stability and sensitivity using Algorithmic Differentiation, Comput. Phys. Commun., Volume 283 (2023), 108557 | DOI
[74] VULCAN-CFD User Manual: Ver. 7.2. 0 (2022) no. NASA/TM-20220008781 (technical memorandum)
[75] Metric-based mesh adaptation for hypersonic flows: capturing wall heat flux with anisotropic triangles and tetrahedrons (2025) (Conference paper: The 4th International Conference on High-Speed Vehicle Science & Technology)
[76] Development of the US3D code for advanced compressible and reacting flow simulations, 53rd AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (2015), AIAA 2015-1893 | DOI
[77] Fast: a compressible flow solver python package (2024) https://onera.github.io/Fast/ (Accessed 2025-12-11)
[78] Large Eddy Simulation of Flow Around an Airfoil Near Stall, AIAA J., Volume 40 (2002) no. 6, pp. 1139-1145 | DOI
[79] A sequel to AUSM, Part II: AUSM+-up for all speeds, J. Comput. Phys., Volume 214 (2006) no. 1, pp. 137-170 | MR | DOI
[80] Adjoint-based optimisation of time- and span-periodic flow fields with Space-Time Spectral Method: Application to non-linear instabilities in compressible boundary layer flows, Comput. Fluids, Volume 282 (2024), 106386, 17 pages | DOI | MR
[81] Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances, J. Fluid Mech., Volume 847 (2018), R3 | DOI | MR
[82] Transition scenario in hypersonic axisymmetrical compression ramp flow, J. Fluid Mech., Volume 907 (2021), A6 | DOI | MR
[83] Improved two-equation k-omega turbulence models for aerodynamic flows (1992) no. NASA-TM-103975 (technical memorandum)
[84] Improvement of corner flow prediction using the quadratic constitutive relation, AIAA J., Volume 52 (2014) no. 12, pp. 2795-2806 | DOI
Cité par Sources :
Commentaires - Politique
