Comptes Rendus
Article de recherche
Towards an automated toolset for mesh adapted Navier–Stokes simulation of hypersonic vehicles
[Vers un ensemble d’outils automatisés pour la simulation Navier–Stokes avec adaptation de maillage des véhicules hypersoniques]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1451-1475

A fully automated CAD-to-post toolset for Navier–Stokes and Reynolds Averaged Navier–Stokes (RANS) simulations of high speed vehicles flow is presented. The toolset combines the vertex-centered SoNICS solver with anisotropic mesh adaptation based on the REFINE toolbox, eliminating manual meshing and enabling efficient, parallelized simulations from CAD input to converged solutions. The tool is validated on open cases representative of the complexity of the flow encountered around high-speed vehicles including reentry and airbreathing cruise vehicles. This includes complex three-dimensional forebody laminar simulations and axisymmetric triconic cases. For the internal aerodynamics part, given the lack of proper validation references, a direct numerical simulation of the internal conduit of a generic dual mode ramjet air intake is conducted and compared to legacy RANS simulation and mesh-adapted RANS simulation. A demonstration on a full scramjet-powered cruise vehicle then highlights the toolset’s scalability and adaptability to industrial applications. The automated workflow reduces setup time and human error, making it a valuable asset for hypersonic vehicle design and optimization.

Un ensemble d’outils entièrement automatisé pour les simulations Navier–Stokes et Reynolds Averaged Navier–Stokes (RANS) des écoulements autour des véhicules à grande vitesse est présenté. Cet ensemble d’outils combine le solveur SoNICS avec l’adaptation de maillage anisotrope basée sur la boîte à outils REFINE, éliminant ainsi le maillage manuel et permettant des simulations parallélisées efficaces, depuis l’entrée CAO jusqu’aux solutions convergées. L’outil est validé sur des cas ouverts représentatifs de la complexité de l’écoulement rencontré autour des véhicules à grande vitesse, y compris les véhicules de rentrée et les véhicules de croisière à propulsion aérobie. Cela inclut des simulations laminaires tridimensionnelles complexes de l’avant du fuselage et des cas triconiques axisymétriques. Pour la partie aérodynamique interne, compte tenu du manque de références de validation appropriées, une simulation numérique directe du conduit interne d’une prise d’air générique pour statoréacteur est réalisée et comparée à une simulation RANS classique et à une simulation RANS avec adaptation de maillage. Une démonstration sur un véhicule de croisière propulsé par statoréacteur souligne ensuite l’évolutivité et l’adaptabilité de l’ensemble d’outils aux applications industrielles. Le flux de travail automatisé réduit le temps de configuration et les erreurs humaines, ce qui en fait un atout précieux pour la conception et l’optimisation des véhicules hypersoniques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.344
Keywords: Hypersonic, RANS, mesh adaptation
Mots-clés : Hypersonique, RANS, adaptation de maillage

Mathieu Lugrin 1 ; Baptiste Isnard 1 ; Clément Benazet 2 ; Bruno Maugars 2 ; Cédric Content 2

1 DAAA, ONERA, Institut Polytechnique de Paris, 92190 Meudon, France
2 DAAA, ONERA, Institut Polytechnique de Paris, 92320 Châtillon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_1451_0,
     author = {Mathieu Lugrin and Baptiste Isnard and Cl\'ement Benazet and Bruno Maugars and C\'edric Content},
     title = {Towards an automated toolset for mesh adapted {Navier{\textendash}Stokes} simulation of hypersonic vehicles},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1451--1475},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.344},
     language = {en},
}
TY  - JOUR
AU  - Mathieu Lugrin
AU  - Baptiste Isnard
AU  - Clément Benazet
AU  - Bruno Maugars
AU  - Cédric Content
TI  - Towards an automated toolset for mesh adapted Navier–Stokes simulation of hypersonic vehicles
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 1451
EP  - 1475
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.344
LA  - en
ID  - CRMECA_2025__353_G1_1451_0
ER  - 
%0 Journal Article
%A Mathieu Lugrin
%A Baptiste Isnard
%A Clément Benazet
%A Bruno Maugars
%A Cédric Content
%T Towards an automated toolset for mesh adapted Navier–Stokes simulation of hypersonic vehicles
%J Comptes Rendus. Mécanique
%D 2025
%P 1451-1475
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.344
%G en
%F CRMECA_2025__353_G1_1451_0
Mathieu Lugrin; Baptiste Isnard; Clément Benazet; Bruno Maugars; Cédric Content. Towards an automated toolset for mesh adapted Navier–Stokes simulation of hypersonic vehicles. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1451-1475. doi: 10.5802/crmeca.344

[1] Rajat Mittal; Gianluca Iaccarino Immersed boundary methods, Annu. Rev. Fluid Mech., Volume 37 (2005) no. 1, pp. 239-261 | DOI | Zbl

[2] Roberto Verzicco Immersed boundary methods: historical perspective and future outlook, Ann. Rev. Fluid Mech., Volume 55 (2023) no. 1, pp. 129-155 | DOI | Zbl

[3] Marc Terracol; Lucas Manueco A dynamic linearized wall model for turbulent flow simulation: towards grid convergence in wall-modeled simulations, J. Comput. Phys., Volume 521 (2025), 113555 | DOI | Zbl | MR

[4] Tsan-Hsing Shih; Louis A Povinelli; Nan-Suey Liu Application of generalized wall function forcomplex turbulent flows, J. Turbul., Volume 4 (2003) no. 1, 015 | DOI

[5] A. Loseille; A. Dervieux; F. Alauzet Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations, J. Comput. Phys., Volume 229 (2010) no. 8, pp. 2866-2897 | DOI | Zbl | MR

[6] F. Alauzet; A. Loseille High-order sonic boom modeling based on adaptive methods, J. Comput. Phys., Volume 229 (2010) no. 3, pp. 561-593 | DOI | Zbl | MR

[7] Adrien Loseille; A. Dervieux; P. J. Frey; Frederic Alauzet Achievement of global second order mesh convergence for discontinuous flows with adapted unstructured meshes, 18th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics (2007), AIAA 2007-4186 | DOI

[8] David A. Venditti; David L. Darmofal Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows, J. Comput. Phys., Volume 176 (2002) no. 1, pp. 40-69 | DOI | Zbl | MR

[9] Frédéric Alauzet; Loïc Frazza Feature-based and goal-oriented anisotropic mesh adaptation for RANS applications in aeronautic and aerospace, J. Comput. Phys., Volume 439 (2021), 110340 | DOI | Zbl | MR

[10] C. Tarsia Morisco; E. Guilbert; M. Maunoury; F. Alauzet Chapter Two - Practical use of metric-based anisotropic mesh adaptation for industrial applications, Error Control, Adaptive Discretizations, and Applications, Part 3 (Franz Chouly; Stéphane P. A. Bordas; Roland Becker; Pascal Omnes, eds.) (Advances in Applied Mechanics), Volume 60, Elsevier, 2025, pp. 57-111 | DOI

[11] M. J. Castro-Díaz; F. Hecht; B. Mohammadi; O. Pironneau Anisotropic unstructured mesh adaption for flow simulations, Int. J. Numer. Methods Fluids, Volume 25 (1997) no. 4, pp. 475-491 | DOI | Zbl | MR

[12] Alain Dervieux; David Leservoisier; Paul-Louis George; Yves Coudière About theoretical and practical impact of mesh adaptation on approximation of functions and PDE solutions, Int. J. Numer. Methods Fluids, Volume 43 (2003) no. 5, pp. 507-516 | DOI

[13] P. J. Frey; F. Alauzet Anisotropic mesh adaptation for CFD computations, Comput. Methods Appl. Mech. Eng., Volume 194 (2005) no. 48, pp. 5068-5082 | DOI | MR | Zbl

[14] Cyril Gruau; Thierry Coupez 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Comput. Methods Appl. Mech. Eng., Volume 194 (2005) no. 48, pp. 4951-4976 | DOI | MR

[15] Xiangrong Li; Mark S. Shephard; Mark W. Beall Accounting for curved domains in mesh adaptation, Int. J. Numer. Methods Eng., Volume 58 (2003) no. 2, pp. 247-276 | DOI | Zbl

[16] Krzysztof J. Fidkowski; David L. Darmofal Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics: Overview and Recent Results, AIAA J., Volume 49 (2011) no. 4, pp. 673-694 | DOI | Zbl

[17] Gilbert Rogé; Ludovic Martin Goal-oriented anisotropic grid adaptation, Comptes Rendus. Mathématique, Volume 346 (2008) no. 19–20, pp. 1109-1112 | DOI | Numdam | Zbl

[18] Frédéric Hecht Error indicator and mesh adaption, in FreeFem++ (2009) https://www.ljll.fr/hecht/ftp/FH-Mamerm09.pdf Notes for the 3rd International Conference on Approximation Methods and numerical Modeling in Environment and Natural Resources (MAMERN ’09)

[19] Adrien Loseille Génération et Adaptation de Maillages pour le Calcul Scientifique, Ph. D. Thesis, Université Paris-Saclay (France) (2020)

[20] Clément Caillaud; Anton Scholten; Joseph Kuehl; Pedro Paredes; Mathieu Lugrin; Sébastien Esquieu; Fei Li; Meelan M Choudhari; Elizabeth K Benitez; Matthew P Borg; Zachary A. McDaniel; Joseph S. Jewell Separation and transition on a cone-cylinder-flare: computational investigations, AIAA J., Volume 63 (2025) no. 7, pp. 2615-2634 | DOI

[21] Elizabeth K. Benitez; Joseph S. Jewell; Steven P. Schneider Separation bubble variation due to small angles of attack for an axisymmetric model at Mach 6, AIAA Scitech 2021 Forum, American Institute of Aeronautics and Astronautics (2021), AIAA 2021-0245 | DOI

[22] Loïc Sombaert; Mathieu Lugrin; Reynald Bur; François Nicolas; Sébastien Esquieu; Cameron S Butler; Bradley M Wheaton; Fei Li; Meelan M Choudhari; Pedro Paredes; Sebastian Willems Ground tests on bolt at Mach 7: Cross-facility comparison and stability analysis, AIAA J., Volume 63 (2025) no. 6, pp. 2135-2150 | DOI

[23] Brandon C Chynoweth; Adam Lay; Joseph S Jewell Boundary-Layer Transition on BOLT in High Reynolds Number Mach-6 Quiet Flow, J. Spacecr. Rock. (2025) | DOI

[24] Bradley M Wheaton; Dennis C Berridge; Thomas D Wolf; Ryan T Stevens; Brian E McGrath Boundary layer transition (BOLT) flight experiment overview, 2018 Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics (2018), AIAA 2018-2892 | DOI

[25] John M Wirth; Rodney DW Bowersox; Aaron T Dufrene; Timothy P Wadhams Measurements of natural turbulence during the BOLT II flight experiment, J. Spacecr. Rock., Volume 61 (2024) no. 5, pp. 1281-1292 | DOI

[26] Carter Vu; Anthony Knutson; Pramod K Subbareddy; Graham V Candler Postflight Receptivity and Transition Analysis of BOLT-II Side A Descent Trajectory, AIAA SCITECH 2024 Forum, American Institute of Aeronautics and Astronautics (2024), AIAA 2024-0703 | DOI

[27] Romain Fiévet; Heeseok Koo; Venkatramanan Raman; Aaron Auslender Numerical simulation of shock trains in a 3D channel, 54th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (2016), AIAA 2016-1018 | DOI

[28] J. C. Dutton; Bruce Frederick Carroll A numerical and experimental investigation of multiple shock wave/turbulent boundary layer interactions in a rectangular duct (1988) no. UILU-ENG-88-4001 (Technical report)

[29] Laurent Cambier; Sébastien Heib; Sylvie Plot The Onera elsA CFD software: Input from research and feedback from industry, Mechanics and Industry, Volume 14 (2013) no. 3, pp. 159-174 | DOI

[30] Denis Gueyffier; Sylvie Plot; Matthieu Soismier SoNICS: a new generation CFD software for satisfying industrial users needs (2022) (Conference paper: OTAN/STO/Workshop AVT-366) | HAL

[31] Aravind Balan; Michael A Park; Stephen Wood; William K Anderson Verification of anisotropic mesh adaptation for complex aerospace applications, AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics (2020), AIAA 2020-0675. | DOI

[32] U.S. Department of Energy (DOE) DOE Exascale Requirements Review — Basic Energy Sciences (BES) (2017) no. DOE/SC-0187 https://blogs.anl.gov/... (Technical report)

[33] P. L. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, J. Comput. Phys., Volume 43 (1981), pp. 357-372 | DOI | MR

[34] Shu-sheng Chen; Chao Yan; Kang Zhong; Hai-chao Xue; Er-long Li A novel flux splitting scheme with robustness and low dissipation for hypersonic heating prediction, Int. J. Heat Mass Transfer, Volume 127 (2018), pp. 126-137 | DOI

[35] Florent Renac Entropy stable, robust and high-order DGSEM for the compressible multicomponent Euler equations, J. Comput. Phys., Volume 445 (2021), 110584 | MR

[36] V. Venkatakrishnan Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters, J. Comput. Phys., Volume 118 (1995) no. 1, pp. 120-130 | DOI

[37] G. D. van Albada; B. van Leer; J. W. W. Roberts A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., Volume 108 (1982) no. 1, pp. 76-84

[38] Serge Piperno; Sophie Depeyre Criteria for the design of limiters yielding efficient high resolution TVD schemes, Comput. Fluids, Volume 27 (1998) no. 2, pp. 183-197 | DOI | MR

[39] Gaetan K. W. Kenway; Charles A Mader; Ping He; Joaquim R. R. A. Martins Effective adjoint approaches for computational fluid dynamics, Prog. Aerosp. Sci., Volume 110 (2019), 100542 | DOI

[40] Lloyd N. Trefethen; Anne E. Trefethen; Satish C. Reddy; Tobin A. Driscoll Hydrodynamic Stability Without Eigenvalues, Science, Volume 261 (1993) no. 5121, pp. 578-584 | DOI | MR

[41] Frédéric Alizard; Stefania Cherubini; Jean-Christophe Robinet Sensitivity and optimal forcing response in separated boundary layer flows, Phys. Fluids, Volume 21 (2009) no. 6, 064108 | DOI

[42] B. J. McKeon; A. S. Sharma A critical-layer framework for turbulent pipe flow, J. Fluid Mech., Volume 658 (2010), pp. 336-382 | DOI | MR

[43] Denis Sipp; Olivier Marquet Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer, Theor. Comput. Fluid Dyn., Volume 27 (2013) no. 5, pp. 617-635 | DOI

[44] Georgios Rigas; Denis Sipp; Tim Colonius Nonlinear input/output analysis: application to boundary layer transition, J. Fluid Mech., Volume 911 (2021), A15 | DOI | MR

[45] B. Bugeat; J. C. Chassaing; Jean-Christophe Robinet; P. Sagaut 3D global optimal forcing and response of the supersonic boundary layer, J. Comput. Phys., Volume 398 (2019), 108888 | DOI | MR

[46] Joaquim R. R. A. Martins; Andrew B. Lambe Multidisciplinary Design Optimization: A Survey of Architectures, AIAA J., Volume 51 (2013) no. 9, pp. 2049-2075 | DOI

[47] Gaetan K. W. Kenway; Joaquim R. R. A. Martins Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration, J. Aircraft, Volume 51 (2014) no. 1, pp. 144-160 | DOI

[48] Eric J. Parish; Karthik Duraisamy A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput. Phys., Volume 305 (2016), pp. 758-774 | DOI | MR

[49] Karthik Duraisamy; Gianluca Iaccarino; Heng Xiao Turbulence Modeling in the Age of Data, Ann. Rev. Fluid Mech., Volume 51 (2019), pp. 357-377 | DOI

[50] Zhiyong Li; Huaibao Zhang; Sean C. C. Bailey; Jesse B. Hoagg; Alexandre Martin A data-driven adaptive Reynolds-averaged Navier–Stokes k-ω model for turbulent flow, J. Comput. Phys., Volume 345 (2017), pp. 111-131 | DOI | MR

[51] Lucas Franceschini; Denis Sipp; Olivier Marquet Mean-flow data assimilation based on minimal correction of turbulence models: Application to turbulent high Reynolds number backward-facing step, Phys. Rev. Fluids, Volume 5 (2020), 094603, 24 pages | DOI

[52] Shaojie Bai; J. Zico Kolter; Vladlen Koltun Deep Equilibrium Models, Advances in Neural Information Processing Systems 32 (NeurIPS 2019) (H. Wallach; H. Larochelle; A. Beygelzimer; F. d’Alché-Buc; E. Fox; R. Garnett, eds.) (Advances in Neural Information Processing Systems), Curran Associates, Inc. (2019) no. 32

[53] Michael Lienhardt; Bertrand Michel SoNICS: design and workflow of a new CFD software, Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1261-1287 | DOI

[54] C Debiez; A Dervieux Mixed-element-volume MUSCL methods with weak viscosity for steady and unsteady flow calculations, Comput. Fluids, Volume 29 (2000) no. 1, pp. 89-118 | DOI | MR

[55] Bram van Leer Towards the Ultimate Conservative Difference Scheme, J. Comput. Phys., Volume 135 (1997) no. 2, pp. 229-248 | DOI

[56] F. Alauzet; L. Frazza Feature-based and goal-oriented anisotropic mesh adaptation for RANS applications in aeronautics and aerospace, J. Comput. Phys., Volume 439 (2021), 110340 | DOI | MR

[57] Luca Sciacovelli; Donatella Passiatore; Paola Cinnella; Giuseppe Pascazio Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations, Comput. Fluids, Volume 230 (2021), 105134 | DOI | MR

[58] Yi Liu; Boris Diskin; Hiroaki Nishikawa; William K. Anderson; Gabriel C. Nastac; Eric J. Nielsen; Aaron Walden; Li Wang Edge-Based Viscous Method for Mixed-Element Node-Centered Finite-Volume Solvers, AIAA J., Volume 62 (2024) no. 1, pp. 209-230 | DOI

[59] Hang Song; Kristen V. Matsuno; Jacob R. West; Akshay Subramaniam; Aditya S. Ghate; Sanjiva K. Lele Scalable parallel linear solver for compact banded systems on heterogeneous architectures, J. Comput. Phys., Volume 468 (2022), 111443 | DOI | MR

[60] P. R. Spalart; S. R. Allmaras One-equation turbulence model for aerodynamic flows, Rech. Aerosp., Volume 439 (1994) no. 1, pp. 5-21 | DOI

[61] Sébastien Deck; Philippe Duveau; Paulo d’Espiney; Philippe Guillen Development and application of Spalart–Allmaras one equation turbulence model to three-dimensional supersonic complex configurations, Aerosp. Sci. Technol., Volume 6 (2002) no. 3, pp. 171-183 | DOI

[62] P. R. Spalart Strategies for turbulence modelling and simulations, Int. J. Heat Fluid Flow, Volume 21 (2000) no. 3, pp. 252-263 | DOI

[63] Robert Haimes; Mark Drela On the construction of aircraft conceptual geometry for high-fidelity analysis and design, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics (2012), AIAA 2012-0683 | DOI

[64] John Dannenhoffer An overview of the engineering sketch pad, AIAA SCITECH 2024 Forum, American Institute of Aeronautics and Astronautics (2024), AIAA 2024-1315 | DOI

[65] Hang Si TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw., Volume 41 (2015) no. 2, 11, 36 pages | DOI | MR | Zbl

[66] Joachim Schöberl NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci., Volume 1 (1997) no. 1, pp. 41-52

[67] Christopher Rumsey; Bruce Wedan; Thomas Hauser; Marc Poinot Recent updates to the CFD general notation system (CGNS), 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, American Institute of Aeronautics and Astronautics (2012), AIAA 2012-1264 | DOI

[68] ONERA onera/Maia: Distributed algorithms and manipulations over CGNS meshes https://github.com/onera/Maia (Accessed 2025-12-10)

[69] ONERA Maia CGNS trees, Maia documentation, 2021 https://onera.github.io/... (Accessed 2025-12-10)

[70] ONERA onera/paradigm: Library for managing meshes in a massively parallel distributed environment (2024) https://github.com/onera/paradigm/ (Accessed 2025-12-11)

[71] Bastien Andrieu; Bruno Maugars; Eric Quémerais Dynamic load-balanced point location algorithm for data mapping (2025) (To appear in Comptes Rendus. Mécanique)

[72] Adrien Loseille; Frédéric Alauzet Continuous mesh framework part II: validations and applications, SIAM J. Numer. Anal., Volume 49 (2011) no. 1, pp. 61-86 | DOI | MR

[73] Arthur Poulain; Cédric Content; Denis Sipp; Georgios Rigas; Eric Garnier BROADCAST: A high-order compressible CFD toolbox for stability and sensitivity using Algorithmic Differentiation, Comput. Phys. Commun., Volume 283 (2023), 108557 | DOI

[74] Robert A Baurle; Jeffery A White; Matthew D O’Connell; Tomasz G Drozda; Andrew T Norris VULCAN-CFD User Manual: Ver. 7.2. 0 (2022) no. NASA/TM-20220008781 (technical memorandum)

[75] Guillaume Puigt; Valentin Golliet; Frédéric Alauzet Metric-based mesh adaptation for hypersonic flows: capturing wall heat flux with anisotropic triangles and tetrahedrons (2025) (Conference paper: The 4th International Conference on High-Speed Vehicle Science & Technology)

[76] Graham V Candler; Heath B Johnson; Ioannis Nompelis; Vladimyr M Gidzak; Pramod K Subbareddy; Michael Barnhardt Development of the US3D code for advanced compressible and reacting flow simulations, 53rd AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (2015), AIAA 2015-1893 | DOI

[77] ONERA Fast: a compressible flow solver python package (2024) https://onera.github.io/Fast/ (Accessed 2025-12-11)

[78] Ivan Mary; Pierre Sagaut Large Eddy Simulation of Flow Around an Airfoil Near Stall, AIAA J., Volume 40 (2002) no. 6, pp. 1139-1145 | DOI

[79] Meng-Sing Liou A sequel to AUSM, Part II: AUSM+-up for all speeds, J. Comput. Phys., Volume 214 (2006) no. 1, pp. 137-170 | MR | DOI

[80] Arthur Poulain; Cédric Content; Aldo Schioppa; Pierre Nibourel; Georgios Rigas; Denis Sipp Adjoint-based optimisation of time- and span-periodic flow fields with Space-Time Spectral Method: Application to non-linear instabilities in compressible boundary layer flows, Comput. Fluids, Volume 282 (2024), 106386, 17 pages | DOI | MR

[81] Christoph Hader; Hermann F. Fasel Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances, J. Fluid Mech., Volume 847 (2018), R3 | DOI | MR

[82] Mathieu Lugrin; Samir Beneddine; Colin Leclercq; Eric Garnier; Reynald Bur Transition scenario in hypersonic axisymmetrical compression ramp flow, J. Fluid Mech., Volume 907 (2021), A6 | DOI | MR

[83] Florian R Menter Improved two-equation k-omega turbulence models for aerodynamic flows (1992) no. NASA-TM-103975 (technical memorandum)

[84] Julien Dandois Improvement of corner flow prediction using the quadratic constitutive relation, AIAA J., Volume 52 (2014) no. 12, pp. 2795-2806 | DOI

Cité par Sources :

Commentaires - Politique