Couder et al. [] discovered that the behavior of droplets bouncing on a vibrated bath mimics a variety of quantum phenomena, through their coupling with a Faraday wave. Here, we introduce a continuous model inspired from this experiment, which encapsulates its essential features into a system of three simple differential equations. We show, numerically and analytically, the existence of self-propelled walkers in this framework. Finally, making use of the model’s familiar formulation, we suggest that a particle coupled with a propagating wave, instead of a standing one, behaves much like a bouncing droplet.
Mots clés : Walking droplets, Wave-particle interaction, Faraday waves, Non-linear dynamics, Helmholtz equation
Olivier Devauchelle 1 ; Éric Lajeunesse 1 ; François James 2 ; Christophe Josserand 3 ; Pierre-Yves Lagrée 4
@article{CRMECA_2020__348_6-7_591_0, author = {Olivier Devauchelle and \'Eric Lajeunesse and Fran\c{c}ois James and Christophe Josserand and Pierre-Yves Lagr\'ee}, title = {Walkers in a wave field with memory}, journal = {Comptes Rendus. M\'ecanique}, pages = {591--611}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.29}, language = {en}, }
TY - JOUR AU - Olivier Devauchelle AU - Éric Lajeunesse AU - François James AU - Christophe Josserand AU - Pierre-Yves Lagrée TI - Walkers in a wave field with memory JO - Comptes Rendus. Mécanique PY - 2020 SP - 591 EP - 611 VL - 348 IS - 6-7 PB - Académie des sciences, Paris DO - 10.5802/crmeca.29 LA - en ID - CRMECA_2020__348_6-7_591_0 ER -
%0 Journal Article %A Olivier Devauchelle %A Éric Lajeunesse %A François James %A Christophe Josserand %A Pierre-Yves Lagrée %T Walkers in a wave field with memory %J Comptes Rendus. Mécanique %D 2020 %P 591-611 %V 348 %N 6-7 %I Académie des sciences, Paris %R 10.5802/crmeca.29 %G en %F CRMECA_2020__348_6-7_591_0
Olivier Devauchelle; Éric Lajeunesse; François James; Christophe Josserand; Pierre-Yves Lagrée. Walkers in a wave field with memory. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 591-611. doi : 10.5802/crmeca.29. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.29/
[1] Dynamical phenomena: walking and orbiting droplets, Nature, Volume 437 (2005) no. 7056, p. 208 | DOI
[2] Particle–wave association on a fluid interface, J. Fluid Mech., Volume 554 (2006), pp. 85-108 | DOI | MR | Zbl
[3] Introduction to focus issue on hydrodynamic quantum analogs, Chaos, Volume 28 (2018) no. 9 (096001)
[4] Single-particle diffraction and interference at a macroscopic scale, Phys. Rev. Lett., Volume 97 (2006) no. 15 (154101) | DOI
[5] Unpredictable tunneling of a classical wave-particle association, Phys. Rev. Lett., Volume 102 (2009) (240401) | DOI
[6] Self-organization into quantized eigenstates of a classical wave-driven particle, Nat. Commun., Volume 5 (2014), p. 3219 | DOI
[7] Quantum mechanics writ large, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17455-17456 | DOI | MR | Zbl
[8] Path-memory induced quantization of classical orbits, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17515-17520 | DOI
[9] Faraday pilot-wave dynamics: modelling and computation, J. Fluid Mech., Volume 778 (2015), pp. 361-388 | DOI | MR | Zbl
[10] Dynamics and stability of anomalous Saffman–Taylor fingers, Phys. Rev. A, Volume 37 (1988) no. 3, p. 935 | DOI
[11] On the tip-splitting instability of viscous fingers, J. Fluid Mech., Volume 419 (2000), pp. 125-149 | DOI | MR | Zbl
[12] Viscous fingering as an archetype for growth patterns, Perspect. Fluid Dyn., Volume 2 (2000) no. 4.2, p. 3 | Zbl
[13] The self-oscillations of a charged particle, Phys. Rev., Volume 74 (1948) no. 12, p. 1789 | DOI | Zbl
[14] The mean forces exerted by waves on floating or submerged bodies with applications to sand bars and wave power machines, Proc. R. Soc. Lond. A, Volume 352 (1977) no. 1671, pp. 463-480
[15] Shedding light on pilot-wave phenomena, Phys. Rev. Fluids, Volume 1 (2016) no. 5 (050510)
[16] Visualization of hydrodynamic pilot-wave phenomena, J. Vis., Volume 20 (2017) no. 1, pp. 13-15 | DOI
[17] Walking droplets interacting with single and double slits, J. Fluid Mech., Volume 835 (2018), pp. 1136-1156 | DOI
[18] From bouncing to floating: noncoalescence of drops on a fluid bath, Phys. Rev. Lett., Volume 94 (2005) no. 17 (177801) | DOI
[19] Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory, J. Fluid Mech., Volume 727 (2013), pp. 612-647 | DOI | Zbl
[20] Wavelike statistics from pilot-wave dynamics in a circular corral, Phys. Rev. E, Volume 88 (2013) no. 1 (011001)
[21] Promenading pairs of walking droplets: dynamics and stability, Phys. Rev. Fluids, Volume 3 (2018) no. 1 (013604) | DOI
[22] Archimedean lattices in the bound states of wave interacting particles, Europhys. Lett., Volume 87 (2009) no. 5 (56002) | DOI
[23] Pilot-wave hydrodynamics, Annu. Rev. Fluid Mech., Volume 47 (2015), pp. 269-292 | DOI | MR
[24] Double-slit experiment with single wave-driven particles and its relation to quantum mechanics, Phys. Rev. E, Volume 92 (2015) no. 1 (013006)
[25] Information stored in faraday waves: the origin of a path memory, J. Fluid Mech., Volume 674 (2011), pp. 433-463 | DOI | MR | Zbl
[26] Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits, Phys. Rev. E, Volume 93 (2016) no. 3 (033122) | MR
[27] Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction, Phys. Rev. E, Volume 94 (2016) no. 4 (042224)
[28] Transition to chaos in wave memory dynamics in a harmonic well: deterministic and noise-driven behavior, Chaos, Volume 28 (2018) no. 9 (096109) | DOI | MR
[29] Non-specular reflection of walking droplets, J. Fluid Mech., Volume 804 (2016) (R3) | DOI
[30] Tunneling with a hydrodynamic pilot-wave model, Phys. Rev. Fluids, Volume 2 (2017) no. 3 (034801) | DOI
[31] Bouncing phase variations in pilot-wave hydrodynamics and the stability of droplet pairs, J. Fluid Mech., Volume 871 (2019), pp. 212-243 | DOI | Zbl
[32] A trajectory equation for walking droplets: hydrodynamic pilot-wave theory, J. Fluid Mech., Volume 737 (2013), pp. 552-570 | DOI | MR | Zbl
[33] Quantumlike statistics of deterministic wave-particle interactions in a circular cavity, Phys. Rev. E, Volume 93 (2016) no. 4 (042202)
[34] New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265 | MR | Zbl
[35] Statistical projection effects in a hydrodynamic pilot-wave system, Nat. Phys., Volume 14 (2018) no. 3, pp. 315-319 | DOI
[36] Faraday pilot-wave dynamics in a circular corral, J. Fluid Mech., Volume 891 (2020), p. A3 | DOI | MR | Zbl
[37] Chaos driven by interfering memory, Phys. Rev. Lett., Volume 113 (2014) no. 10 (104101) | DOI
[38] Handbook of Integral Equations, CRC Press, 1998 | DOI | Zbl
[39] Multistable free states of an active particle from a coherent memory dynamics, Phys. Rev. Lett., Volume 122 (2019) no. 10 (104303) | DOI
[40] Exotic states of bouncing and walking droplets, Phys. Fluids, Volume 25 (2013) no. 8 (082002) | DOI | Zbl
[41] Hydrodynamic quantum field theory, C. R. Méc. (2020) (This issue)
[42] Bouncing ball on a vibrating periodic surface, Chaos, Volume 28 (2018) no. 9 (096103) | DOI | MR | Zbl
[43] A review of the theoretical modeling of walking droplets: toward a generalized pilot-wave framework, Chaos, Volume 28 (2018) no. 9 (096111) | DOI
Cité par Sources :
Commentaires - Politique