Plan
Comptes Rendus

Multi-sensors acquisition, data fusion, knowledge mining and alarm triggering in health smart homes for elderly people
[Acquisition multi-capteurs, fusion de données, extraction de connaissances et déclenchement d’alarmes dans les appartements santé intelligents pour personnes âgées.]
Comptes Rendus. Biologies, Longevite et vieillissement, Volume 325 (2002) no. 6, pp. 673-682.

Résumés

We deal in this paper with the concept of health smart home (HSH) designed to follow dependent people at home in order to avoid the hospitalisation, limiting hospital sojourns to short acute care or fast specific diagnostic investigations. For elderly people the project of such a HSH has been called AISLE (Apartment with Intelligent Sensors for Longevity Effectiveness). For this purpose, system having three levels of automatic measuring (1) the circadian activity, (2) the vegetative state, and (3) some state variables specific of certain organs involved in precise diseases, has been developed within the framework of a 'Health Integrated Smart Home Information System' (HIS2). HIS2 is an experimental platform for technologic development and clinical evaluation, in order to ensure the medical security and quality of life for patients who need home based medical monitoring. Location sensors are placed in each room of the HIS2, allowing the monitoring of patient’s successive daily activity phases within the patient’s home environment. We proceed with a sampling in an hourly schedule to detect weak variations of the nycthemeral rhythms. Based on numerous measurements, we establish a mean value with confidence limits of activity variables in normal behaviour permitting to detect for example a sudden abnormal event (like a fall) as well as a chronic pathologic activity (like a pollakiuria), allowing us to define a canonical domain within which the patient’s activity is qualified to be ‘predictable’. Alerts are set off if the patient’s activity deviates from a predictable canonical domain. Moreover, we can follow the cardio-respiratory state by measuring the intensity of the respiratory sinusal arrhythmia in order to quantify the integrity of the bulbar vegetative system, and we finally propose to carefully watch abnormal symptoms like arterial pressure or presence of plasma proteins in the expired air flow for early detecting respectively hypertension or pulmonary oedema.

Cet article traite du concept d’appartement intelligent pour personnes dépendantes, en particulier âgées (pour lesquelles le projet est appelé AILE – appartements intelligents pour une longévité effective), dans le but d’éviter l’hospitalisation, en limitant les séjours hospitaliers aux soins aigus de court séjour et aux investigations diagnostiques spécifiques rapides. Pour cela, un système comportant trois niveaux de mesure automatique (1) de l’activité circadienne, (2) de l’état végétatif et (3) de variables spécifiques de certains organes impliqués dans des maladies précises a été développé dans le cadre d’un système d’information domotique–santé intégrée à domicile (SID2). Le SID2 est une plate-forme expérimentale, destinée au développement technologique et à l’évaluation clinique, en vue d’assurer la sécurité médicale et la qualité de vie de patients nécessitant une surveillance à domicile des phases successives de leur activité journalière. Nous réalisons un échantillonnage horaire pour détecter de faibles variations des rythmes nycthéméraux. Sur la base de nombreux enregistrements, nous établissons une valeur moyenne et un intervalle de confiance des variables liées à l’activité normale, pour repérer par exemple un événement soudain anormal (comme une chute) ou une activité chronique pathologique (comme une pollakiurie) permettant de définir un domaine d’activité « prédictible » canonique. Des alertes sont déclenchées lorsque l’activité du patient dévie d’un domaine prédictible canonique. De plus, nous pouvons suivre l’état cardio-respiratoire du patient en mesurant l’intensité de l’arythmie sinusale respiratoire pour quantifier l’intégrité du système bulbaire végétatif, et nous proposons enfin de surveiller soigneusement des symptômes anormaux tels que la pression artérielle ou la présence de protéines plasmatique dans l’air expiré, de manière à détecter précocement une hypertension ou un œdème pulmonaire, respectivement. Les travaux et réflexions présentés s’appuient sur une expérience concrète de réalisation de la plate-forme technologique expérimentale pour la télésurveillance médicale de personnes à leur domicile. Cette expérience, après des premiers travaux au début des années 90, a été mise en place depuis deux ans à la faculté de médecine du CHU de Grenoble. Toute personne fragilisée par une atteinte chronique, une perte d’autonomie due à la vieillesse ou par un risque médical passager ou durable, peut être concernée par le maintien au domicile. D’autre part, tout patient de long séjour chronique ou gériatrique est également susceptible, si le suivi hospitalier n’a pas montré d’alarme pendant une période suffisamment longue, de bénéficier d’un retour à domicile, pour y être surveillé avec l’essentiel des capteurs de sa chambre hospitalière. Issue à son origine du mariage entre capteur intelligent et système d’information médicale, l’activité de recherche présentée suppose une étude approfondie des besoins des acteurs concernés (patients, médecins, « aidants » familiaux, paramédicaux, sociaux...), ainsi qu’une attention particulière portée à l’éthique. Cette recherche permet l’augmentation des connaissances sur les rythmes d’activité circadiens et le contrôle végétatif du système cardio-respiratoire et du système vasculaire. Des exemples seront donnés, mettant en évidence la nécessité de constituer des bases de données et connaissances centrées « patients » et éventuellement « familles », en vue d’accroître la capacité prédictive des capteurs, donc le déclenchement d’alarmes spécifiques et sensibles, condition ultime de la confiance que les acteurs pourront donner à ce nouveau mode de surveillance, partant de l’usage qu’ils pourront en faire.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0691(02)01480-4
Keywords: health smart home, elderly people watching, telemedicine, multi-sensors acquisition, data fusion, knowledge mining, alarm triggering
Mots-clés : appartement santé intelligent, surveillance des personnes âgées, télémédecine, acquisition multi-capteurs, fusion de données, extraction de connaissance, déclenchement d’alarmes

Jacques Demongeot 1 ; Gilles Virone 1 ; Florence Duchêne 1 ; Gila Benchetrit 1 ; Thierry Hervé 1 ; Norbert Noury 1 ; Vincent Rialle 1

1 Laboratoire TIMC–IMAG, UMR CNRS 5525, faculté de médecine, université Joseph-Fourier de Grenoble, 38700 La Tronche, France
@article{CRBIOL_2002__325_6_673_0,
     author = {Jacques Demongeot and Gilles Virone and Florence Duch\^ene and Gila Benchetrit and Thierry Herv\'e and Norbert Noury and Vincent Rialle},
     title = {Multi-sensors acquisition, data fusion, knowledge mining and alarm triggering in health smart homes for elderly people},
     journal = {Comptes Rendus. Biologies},
     pages = {673--682},
     publisher = {Elsevier},
     volume = {325},
     number = {6},
     year = {2002},
     doi = {10.1016/S1631-0691(02)01480-4},
     language = {en},
}
TY  - JOUR
AU  - Jacques Demongeot
AU  - Gilles Virone
AU  - Florence Duchêne
AU  - Gila Benchetrit
AU  - Thierry Hervé
AU  - Norbert Noury
AU  - Vincent Rialle
TI  - Multi-sensors acquisition, data fusion, knowledge mining and alarm triggering in health smart homes for elderly people
JO  - Comptes Rendus. Biologies
PY  - 2002
SP  - 673
EP  - 682
VL  - 325
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-0691(02)01480-4
LA  - en
ID  - CRBIOL_2002__325_6_673_0
ER  - 
%0 Journal Article
%A Jacques Demongeot
%A Gilles Virone
%A Florence Duchêne
%A Gila Benchetrit
%A Thierry Hervé
%A Norbert Noury
%A Vincent Rialle
%T Multi-sensors acquisition, data fusion, knowledge mining and alarm triggering in health smart homes for elderly people
%J Comptes Rendus. Biologies
%D 2002
%P 673-682
%V 325
%N 6
%I Elsevier
%R 10.1016/S1631-0691(02)01480-4
%G en
%F CRBIOL_2002__325_6_673_0
Jacques Demongeot; Gilles Virone; Florence Duchêne; Gila Benchetrit; Thierry Hervé; Norbert Noury; Vincent Rialle. Multi-sensors acquisition, data fusion, knowledge mining and alarm triggering in health smart homes for elderly people. Comptes Rendus. Biologies, Longevite et vieillissement, Volume 325 (2002) no. 6, pp. 673-682. doi : 10.1016/S1631-0691(02)01480-4. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/S1631-0691(02)01480-4/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

During the recent years, the rapid development of the telemedicine (which consists in remote consultation, diagnosis and therapy using telecommunications procedures) pushes direct exchanges between the patient and the medical provider located in classical care structures (GP, hospital physician...). Medical monitoring thus becomes more frequent and effective, costs are reduced, diagnosis is faster, and patients in remote areas are covered. This is especially crucial for elderly patients living at home. After first research works at the beginning of the 90’s 〚1〛, a home tele-monitoring system (the ‘Health Integrated Smart Home Information System’, HIS2) 〚2–10〛 has been recently developed at the Faculty of Medicine of Grenoble. The system has been conceived to respect ethical constraints 〚11–14〛 and to be acceptable by the patient 〚15〛. It contains smart sensors linked to a domestic CAN (Controller Area Network) 〚16〛, and acquires physiological data (blood pressure, heart rate, weight, SaO2, etc.). An ambulatory actimetry sensor continuously detects physical activity such as posture, body vibrations and falls 〚2〛. (Actimetry is widely used in sleep research. Actimeters are used to measure fine limb movements, usually of the wrist, which are indicative of sleep disturbance; they are small, relatively inexpensive devices, worn like a wristwatch, and easily used in the home without supervision. They log and store data for many nights – editor’s note.) These data are transmitted to a personal computer (the ‘Homecare Station’, HS) using the Microsoft Windows operating system. Monitoring software is used based on LabVIEW™ instrumentation software. It downloads and saves the data from the different sensors in an interoperable XML file.

We will detail in the following the general concept of Health Smart Home (HSH), then present the sensors at the three, generic, vegetative and specific, levels. After, we will show alarm triggering procedures and give some examples of new medical knowledge we can extract from the long-time observation of patients at home.

2 The concept of Health Smart Home (HSH)

One of the first causes of hospitalisation in chronic or degenerative diseases is a major disorder at the individual or social activity level, like frequent falls or impossibility to have a social life because of incontinency, important memory loss or aggressiveness. The concept of Health Smart Home (HSH) has been developed in order to permit the return at home (after a sojourn in hospital or medical institution) or the stay at home (avoiding hospitalisation) by ensuring a transparent watching the general state of the patient and/or specific symptoms of particular chronic diseases 〚17〛. The sensors set needed for such a watching has to be acceptable (both in the fixed version and in the portable one accompanying the person during its displacements), needs to reassure helping people at home (family, paramedics, social home help.) and must authorise information restitution in an easy and clear way on usual devices (like numerical TV screen, watch or in case of saturation or degeneracy of certain sensorial ways, not ordinary stimulations, e.g. through skin or tongue). In order to be transparent, but useful, information communications have to be as often as possible wireless 〚18〛 (HF transmission) and miniaturised, especially in the portable version. The present equipment has been passed with success the phases 1 to 3 of the instrumentation life cycle (CAD – Computer-Aided Design – step, animal (if needed) and healthy voluntary tests) and will enter in the mono- then multi-site clinical evaluation. The industrialisation of an eventual final product will occur at the end of the present research process, first for the elderly people 〚19, 20〛 (people aged of more of 60 will represent the quarter of the French population within 12 years) and after for dedicated (especially renal and pulmonary) chronic patients. A HSH is made of a generic and dedicated intelligent sensors set 〚21〛 that we will describe below, a classical PC (Personal Computer) collecting the information and triggering alarms, if after data fusion certain thresholds are passed over. Finally, the alarms are transmitted to either a ‘hospital at home’ service, dispatching the information to the right medical or paramedical people for a rapid intervention, or to a ‘nurse at home’ association for a long-term action.

3 From generic to specific sensors

Clinical observations show that human daily activities periodically fluctuate (and are therefore predictable) according to an approximate 24 h-period 〚22〛, called circadian rhythm. It is qualified as nycthemeral when its period is exactly equal to 24 h. Imperative schedules (sleep, wake-up, meals, leisure, etc.) are based on the earth’s rotation and day-night alternation that calibrate our circadian rhythms. Our body temperature, weight, muscular force and many physiological functions follow these biological rhythms: certain variables, like temperature, have a strict endogenous control and are not sensitive to external changes and other, like heart, rate are more sensitive to an exogenous ‘Zeitgeber’ (an environmental cue, as the length of daylight or the degree of temperature, that helps to regulate the cycles of an organism’s biological clock – editors’ note) and can be entrained at periods different than 24 h. During a nycthemeral phase, the circadian variables, separated into different groups of weak or strong amplitudes 〚23〛, are defined by the following characteristics 〚24〛:

  • • period: the lapse of time separating the occurrence of two identical phenomena;
  • • acrophase (the occurrence time of the maximum amplitude value);
  • • bathyphase (the occurrence time of the minimum amplitude value);
  • • phase (the reference instant in the period interval).

These dynamical features enable the organism to respect a global homeostasis. Consequently, the essential information revealed by the biological rhythms cannot be ignored when making a medical diagnosis. For instance, chronobiological analysis based on the circadian amplitude and acrophase, in addition to the 24 h mean value of the hourly incidence of a ventricular arrhythmia in 24 h ECG records, succeeds in separating groups of patients who die or are still alive five years after a myocardial infarction 〚25〛. In order to follow the patient activity, we measure its nycthemeral variability using location sensors (infrared sensors and magnetic contacts in doors) in the HIS2. The continuous monitoring of the patient’s activity within his own environment allows the system to create a computerised application that subdivides the activity phases into hourly slices. At the end of a sufficient lapse of time, we consider that the statistical calculation of the mean value upon rapid and small rhythmic fluctuations while an hour well describes hourly biological data. Their juxtaposition on 24 h reveals the nycthemeral rhythm. Thus, data analysis is performed each hour, with a comparison between the actual hourly cycle and the usual hourly cycle according to thresholds based on the result of statistical calculations. Differences between both actual and usual cycles show deviations in the patient’s behaviour. The objective of this approach is to alert the medical provider of changes in activity or of unusual behaviour. With the elderly, for example, this system could indicate when a decrease of activity appears. The system also indicates to the provider the number of diurnal or nocturnal alerts made during the day along with their levels of importance. Tracking these variations allows close monitoring of certain disease symptoms. The sensors can be classified into three types.

3.1 Generic sensors

We can see in Fig. 1 infrared sensors giving information about the presence of the watched person in a specific room. Coupled with an accelerometer located on the body of the patient and with magnetic contacts on the room doors, they are able to detect a fall or an abnormally long or frequent presence in the toilet for example.

Fig. 1

Activity generic sensors (infrared volumetric sensors indicated by arrows).

3.2 Vegetative integrity sensors

On the monitoring screen located for example at the Hospital at Home service in the closest vicinity hospital, we can watch separately the respiratory rhythm by using a portable plethysmograph giving the inspiratory air flow signal, and the most important cardiac parameters like the heart rate and the pulse amplitude (see Fig. 2 below). We will see in the following that a new knowledge can be provided by the synchronous recording of these physiological variables and that a new variable characterising the relationship between respiratory and cardiac functions permits to control the vegetative bulbar integrity.

Fig. 2

Monitoring screen of sensors above and below the respiratory plethysmograph (1), the accelerometer (2), and the heart rate and arterial pressure recorder (2).

3.3 Specific disorders sensors

An example of specific sensor is the dedicated recorder monitoring in situ the capillaro-alveolar permeability. Any inflammation of the capillaro-alveolar membrane is a sign of an increase of its permeability that leads to pulmonary oedema. It can be a symptom of adult respiratory distress syndrome or asthma, which are major concerns in public health. In classical clinical exploration, a fluorescent marker (dextran-like) is injected in the patient’s blood. The marker diffuses towards pulmonary alveoli and remains in the Epithelium Lining Fluid that covers the walls. A broncho-alveolar lavage is then performed by the physician and at regular periods some fluid is extracted for later analysis in a distant laboratory. The typical analysis consists in a fluorescence spectrometry that enables measuring the concentration of dextran contained by the broncho-alveolar fluid. The specific sensor that we propose 〚26〛 allows direct in situ recording of the dextran (or of any protein characteristic of the oedema) concentration, providing, short term, the kinetics of the marker diffusion from blood to alveoli. The corresponding device is a micro-system based on silicon micro-machining and a bio-receptor membrane made of a Mach–Zehnder micro-interferometer. A sensitive window is designed by adding a super-stratum layer on one arm of the interferometer. This super-stratum layer interacts with the evanescent part of the wave in such a way that it modifies the effective refractive index of this part of the guide. Any variation of the refractive index of one arm of the interferometer induces interferences ΔΦ, so that:

IΔΦI0=121+cos2πλLΔneff

I being the intensity, λ the wavelength and L the length of the sensitive window. A sensitivity of 10–4 to 10–6 is targeted for detecting changes in effective refractive index Δneff. In order to detect the molecules of dextran, a bio-molecular film is deposited onto the sensitive window, as shown in Fig. 3. When dextran is fixed by the receptors, the effective refractiveness of the sensitive window is changed, thus generating interferences.

Fig. 3

Micro-interferometer for in situ measurement of capillaro-alveolar permeability via dosage of a marker and the Y junction of the micro-interferometer wave-guide obtained by reactive ion etching (RIE) of the SiO2 upper layer on Si substrate.

4 Examples of alarm triggering

4.1 The fall

The fall is detected by combining the infrared volumetric sensors, the magnetic door contacts and the accelerometer: the corresponding data fusion 〚27, 28〛 leads to a score (whose weights can be obtained from a classical factorial analysis): we improve progressively its specificity and sensitivity by reducing in a Receiver Operating Characteristic (ROC) analysis the number of both false positive and negative triggering. Then the alarm is symbolised by the icon of a people on the ground on the monitoring screen of the Hospital at Home proximity service (cf. Fig. 4).

Fig. 4

Fall detection (above) and abnormal activity compared to the canonical one (below).

4.2 The pollakiuria

From the calculations of the mean value m and of the standard deviation s of the distribution of the score of activity obtained by the data fusion described above, we define four symmetrical thresholds S1, S1* and S2, S2* with parameters μ1 and μ2:

S1*, S1〛 = 〚m – μ1 s, m – μ1 s〛, with μ1 a ‘benign’ parameter;

S2*, S2〛 = 〚m – μ2 s, m – μ2 s〛, with μ2 a ‘critical’ parameter.

The behaviour outside the 〚S1*, S1〛 interval is considered as unusual. Outside the 〚S2*, S2〛 interval, the behaviour is considered as even more critical. The threshold levels are represented by information depending on the score distribution. The results in terms of rate and profile of both occupation and information calculations are represented with the typical values μ1 = 1.5 and μ2 = 2. Although it has not yet been definitively proved through the experimentation, the distribution is probably of Gaussian type. In this case, the ‘μ1 = 1.5’ value gives the confidence interval 〚m – 1.5 s, m + 1.5 s〛 where 87% of the observations are included. A minor alert is triggered if the benign threshold is exceeded. The ‘μ2 = 2’ value triggers a major alert. The limit interval is 〚m – 2 s, m + 2s〛 and corresponds to a probability of 5% of being outside this interval. The comparison of the actual occupation rate of a room with the canonical statistical occupation profile (calculated from the normal activity periods) leads to the triggering of an eventual alert each hour. As soon as the rate exceeds one of the limit thresholds, luminous indicators (traffic lights), synonymous with (sup or sub)-presences, are in consequence triggered, depending on the importance of the alert: the pollakiuria will then been detected from significantly too frequent short stays in the toilet.

4.3 The arterial hypertension

The discrepancy measure between the normal pressure (obtained from a long period of stability) and the pathologic one permits to trigger alarms, the threshold (cf. Fig. 5) being improved by optimising the point chosen in a ROC analysis.

Fig. 5

Detecting an arterial hypertension crisis by measuring the normal (red) versus actual pathologic pressure (blue) discrepancy.

5 Creating a new knowledge: from elderly people watching to the patient-centred self-information system

By observing large samples of patients we will be able to constitute standards of actimetric or vegetative values. We can then extract a physiological knowledge from these data, e.g. concerning the integration in the vegetative system of the respiratory and cardiac controls. By analysing the nycthemeral curves of a patient equipped by holter specific sensors, we observe that the cardiac instantaneous period (just the lapse of time between two cardiac beats) is anti-correlated with the time in the inspiration the actual cardiac cycle occurs (cf. Fig. 6 below).

Fig. 6

Respiratory sinusal arrhythmia detection.

Then we can calculate the intensity of the coupling (in the bulb) between the two (respiratory and cardiac) pacemakers (Fig. 7). We consider that these pacemakers can be modelled by van der Pol oscillators like two regulons (the simplest regulation systems having one positive and one negative loop 〚29〛) in interaction. Indeed, for the sake of simplicity, if I is a set of inspiratory neurons (firing synchronously with the phrenic nerve) containing auto-activatory loops interacting with E, a set of expiratory neurons (firing during the phrenic silence): the expiratory centre E is activated by the inspiratory centre I (via the pleural stretch receptors) and E inhibits I (through intra-bulbar connections, cf. Fig. 8). We neglect in this simplified description the other classical groups of neurons coming from the Richter classification, but taking into account them leads to a system of higher dimension having the same qualitative dynamical properties, in particular the entrainment ability 〚30〛. In the same spirit, by neglecting the peripheral Aschow–Tawara node, we can consider the cardiac control system as made of two groups of excitable cells, one located in the bulb, composed of neurons and called the cardio-moderator centre CM, and the other located in the heart septum and called the sinusal node S (cf. Fig. 8).

Fig. 7

Calculation of the correlation coefficient ρ between the cardiac instantaneous period T and the actual respiratory time t.

Fig. 8

Coupling between the respiratory oscillator (left) and the cardio-moderator (right).

The van der Pol system representing the rhythmic respiratory activity reads:

dx/dt=y,dy/dt=-x+ϵ1-x2y

where ϵ represents the anharmonic parameter of the oscillator, withy a free run (proper period) τ, equal (near the bifurcation of the van der Pol limit cycle obtained for ϵ = 0) to the ratio τ = 2π/i, where i = (2 – ϵ2/2)1/2 is the imaginary part of the eigenvalues of the Jacobian matrix of the system:

𝐉=01-1-2ϵxyϵ1-x2

The van der Pol system representing the rhythmic cardiac activity reads:

dz/dt=w,dw/dt=-z+η1-z2w+kyy

where η is the anharmonic parameter and k(y) is the coupling intensity between I and CM. The entrained period of the cardiac oscillator is equal to:

T=2π/2-η21-kyy22/21/2

The values of ϵ et η are fixed by the proper periods of the respiratory (4s) and cardiac (1s) oscillators, then k(y) can be obtained by measuring the instantaneous cardiac period T (which is just the inter-beats duration) and by calculating the slope of the regression line between T and the respiratory activity y (represented by the actual inspiratory time t where occurs the cardiac beat of period T). This slope is directly related to the correlation coefficient between T and t (cf. Fig. 7, showing the periodical evolution of T, which proves the coupling between the two oscillators). The integrity of the coupling allows the bulbar vegetative system to adapt to the effort: first the breathing is entrained by a muscular activity and secondarily entrains the heart. Such a capacity of adaptation disappears in degenerative diseases like the Parkinson or the diabetes. Watching a parameter like ρ is then particularly interesting in the elderly people and the HIS2 will permit the emergence of a new knowledge about the vegetative regulation.

This new knowledge allows a better restitution of information: Fig. 9 shows that we can restitute a high-level information to the patient at home by giving its respiratory rhythm (on the screen of its own numerical TV) in a ‘tube’ of admissible trajectories 〚31, 32〛 corresponding to the succession in time of the threshold alarm intervals described above. In a bio-feedback procedure, he will learn to respect the frontiers of this tube during rehabilitation sessions he can freely choose. Obtaining such tubes needs the constitution of large data basis 〚33–35〛 on different classes of patients (normal, elderly, asthmatic...).

Fig. 9

Information restitution on a screen (above) and on the tongue (below) for biofeedback learning.

The information restitution can also if the classical sensory ways are saturated or absent (macular or cochlear degeneracy in elderly people) take other sensory canals like the skin or the tongue (see Fig. 9 above): an application is for example the real time information about the friction zones (on the bed or rolling chair) recorded by specific sensors: skin or tongue sensation can lead to a direct ‘reflex arc’ correction by the patient (having for example partially lost its sensitivity).

6 Conclusion

The different phases of the person’s activity during several days have been assimilated as a succession of 24 hourly biological rhythms. We defined different confidence zones where the behaviour of the patient can be considered as ‘normal’ or ‘abnormal’. The unpredictable divergences taken into account for analysing in real time the circadian rhythm are therefore localised and interpreted as fatigue, agitation or stress. When a new patient moves into the HIS2, a new automatic learning period is required, because of each patient’s individual behaviour and activity. The correlation between the rigorous information produced by the system and the clinical reality is then performed by a physician. He will be able to certify the events occurring in the HIS2 and then to decide a return at home or a stay at home, avoiding not necessary hospitalisations and hence reducing the cost of the elderly people or chronic patients watching at home 〚36–38〛.

Acknowledgements

We have done this work thanks to the support of the National Network for Technology Research RNTS ‘Technologies for Health’ from the French Ministry of Research. We thank L. Schwartz for encouraging us and paying attention to our work during the congress ‘Sénescence’ at the French Academy of Sciences in October 2001.


Bibliographie

[〚1〛] N. Noury; P. Pilichowski A telematic system tool for home health care, Proc. 14th Annual Int. Conf. IEEE–EMBS, Paris, France, IEEE, Piscataway, 1992, pp. 1175-1177

[〚2〛] P. Couturier; A. Franco; J.-F. Piquard; V. Rialle; J. Demongeot Télégérontologie : de la téléassistance à la téléconsultation du malade âgé : mythe ou réalité, Revue de Gériatrie, Volume 1 (1996), pp. 23-31

[〚3〛] P. Couturier; J. Tyrrell; J. Tonetti; C. Rhul; C. Woodward; A. Franco Feasibility of orthopaedic teleconsulting in a geriatric rehabilitation service, J. Telemed. Telecare, Volume 4 (1998), pp. 85-87

[〚4〛] V. Rialle; N. Lauvernay; J.-F. Piquard; A. Franco; P. Couturier Modélisation et expérimentation d'une chambre intelligente : les premiers pas d'une expérience hospitalière (A. Franco, ed.), Télémédecine en gérontologie, SERDI Ed., Paris, France, 2000, pp. 105-127

[〚5〛] N. Noury; T. Hervé; V. Rialle; G. Virone; E. Mercier Monitoring behaviour in home using a smart fall sensor and position sensors, Proc. IEEE–EMBS Microtechnologies in Medicine & Biology, Lyons, France, IEEE, Piscataway, 2000, pp. 607-610

[〚6〛] V. Rialle; N. Noury; T. Hervé An experimental health smart home and its distributed internet-based information and communication system: first steps of a research project, Proc. MEDINFO 2001, London (2001), pp. 1479-1483

[〚7〛] L. Bajolle E-medecine : usage de l'Internet et des nouvelles technologies pour l'amélioration, l'optimisation et l'humanisation de la médecine de ville, PhD Thesis Med., University Joseph-Fourier, Grenoble, France, 2002 http://www-timc.imag.fr/AFIRM/docs/theseE-santeBajolle.zip

[〚8〛] V. Rialle, N. Noury, J. Demongeot, L’habitat médicalisé de demain : premiers pas et résultats d’une étude prospective à Grenoble, Proc. IXes Journées francophones d’informatique médicale 2002, Québec

[〚9〛] F. Duchêne, V. Rialle, N. Noury, Télésurveillance médicale à domicile : proposition d'une architecture pour un système de détection de situations critiques et de décisions sur l'état du patient, in: IXes Journées francophones d'informatique médicale 2002, Québec, Canada

[〚10〛] N. Noury, G. Virone, The Health Integrated Smart Home Information System (HIS2): rules based localization of a human, Proc. IEEE–MMB 2002, Madison, USA, IEEE, Piscataway

[〚11〛] C. Hervé; D. Thomasma; D. Weistub Visions éthiques de la personne, L'Harmattan, Paris, 2001

[〚12〛] J.-M. Fessler; F. Grémy Ethical Problems in Health Information Systems, Methods Inform. M, Volume 40 (2001), pp. 359-360

[〚13〛] S. Bjorneby; A. van Berlo Ethical Issues in Use of Technology for Dementia Care, Akontes Publ, Knegsel, The Netherlands, 1997

[〚14〛] R. McShane; T. Hope; J. Wilkinson Tracking patients who wander: ethics and technology, Lancet, Volume 343 (1994), p. 1274

[〚15〛] M.J. Fisk Telecare equipment in the home. Issues of intrusiveness and control, J. Telemed. Telecare, Volume 3 (1997), pp. 30-32

[〚16〛] D. Pare Le réseau CAN, Controller Area Network, Dunod, Paris, 1996

[〚17〛] P. Tang; T. Venables ‘Smart’ homes and telecare for independent living, J. Telemed. Telecare, Volume 6 (2000), pp. 8-14

[〚18〛] N. Maglaveras; V. Koutkias; S. Meletiadis; I. Chouvarda; E.A. Balas The role of wireless technology in home care delivery, Proc. MEDINFO 2001, London, UK, 2001, pp. 835-839

[〚19〛] É.-É. Baulieu Gérer la révolution de la longévité, Le Monde Diplomatique, Série « Manière de voir », Volume 38 (1998), p. 78

[〚20〛] B.G. Celler; W. Earnshaw; E. Ilsar Remote monitoring of the elderly at home: preliminary results of a pilot project at the University of NSW, BioMed. Eng., Applications, Basis and Communications, Volume 9 (1997), pp. 134-140

[〚21〛] G. Williams; K. Doughty; D.A. Bradley A system approach to achieving CarerNet: an integrated and intelligent telecare system, IEEE Trans. Inf. Technol. Biom, Volume 2 (1998), pp. 1-9

[〚22〛] A. Reinberg Les rythmes biologiques, Mode d'emploi, Flammarion, Paris, 1994

[〚23〛] O.C. Ikonomov; A.C. Shisheva; A.G. Stonev Circadian clocks and hypertension: genetics and interactions, Acta Physiol. Pharmacol. Bulg., Volume 24 (1999), pp. 65-70

[〚24〛] http://www.nnx.com/∼drose/sommeil/chronobiologie.html

[〚25〛] F. Halberg; K. Tamura; G. Cornélissen Chronobioengineering toward a cost-effective quality health care, Med. Biol. Eng., Volume 6 (1994), pp. 83-102

[〚26〛] J. Demongeot; M. Fleute; T. Hervé; S. Lavallée ucation & research in medical optronics in France, SPIE, Volume 3831 (2002), pp. 2-11

[〚27〛] D.L. Hall; J. Llinas Handbook on Multisensor Data Fusion, CRC Press, Boca Raton, 2001

[〚28〛] C. Wild; A. Kirshner Safety-Alarm Systems, Technical Aids and Smart Homes, Akontes Publ, Knegsel, The Netherlands, 1994

[〚29〛] J. Demongeot; M. Kaufmann; R. Thomas Positive feedback circuits and memory, C.R. Acad. Sci Paris, Ser. III, Volume 323 (2000), pp. 69-79

[〚30〛] T. Pham Dinh; J. Demongeot; P. Baconnier; G. Benchetrit Simulation of a biological oscillator: the respiratory rhythm, J. Theor. Biol., Volume 103 (1983), pp. 113-132

[〚31〛] J.-P. Aubin Mutational and morphological analysis: tools for shape regulation and optimization, Birkhauser, Boston, 1998

[〚32〛] J. Demongeot; P. Kulesa; J.D. Murray Compact set valued flows II: applications in biological modelling, C.R. Acad. Sci. Paris, Ser. IIb, Volume 324 (1997), pp. 107-115

[〚33〛] O. Cohen; C. Cans; M. Cuillel; J.-L. Gilardi; H. Roth; M.-A. Mermet; P. Jalbert; J. Demongeot Cartographic study: breakpoints in 1574 families carrying human reciprocal translocations, Hum. Genet., Volume 97 (1996), pp. 659-667

[〚34〛] O. Cohen; M.-A. Mermet; J. Demongeot HC Forum®: a website based on an international human cytogenetic data base, Nucl. Acids Res., Volume 29 (2001), pp. 305-307

[〚35〛] E. Castelli; D. Istrate Every day life sounds and speech analysis for a medical telemonitoring system, Proc. Eurospeech 2001, Alborg, 2001, pp. 2417-2420

[〚36〛] M.E. Williams Geriatric medicine on the information superhighway: opportunity or road kill, J. Am. Geriatr. Soc., Volume 43 (1995), pp. 184-186

[〚37〛] M. Tsuji; S. Miyahara; F. Taoka; M. Teshima An estimation of economic effects of tele-home-care: hospital cost-savings of the elderly, Proc. MEDINFO 2001, London (2001), pp. 858-862

[〚38〛] C. Suarez, Essai d'analyse économique d'une technologie médicale en émergence : le cas de la télé-assistance


Cité par

  • Gantong Chen; Yue Zhu; Shengxi Zhou A belt-type low-frequency piezoelectric energy harvester for human abdominal motion energy harvesting, Journal of Intelligent Material Systems and Structures, Volume 36 (2025) no. 7, p. 455 | DOI:10.1177/1045389x251321972
  • Youssef Yamout; Tashaffi Samin Yeasar; Shahrear Iqbal; Mohammad Zulkernine Beyond Smart Homes: An In-Depth Analysis of Smart Aging Care System Security, ACM Computing Surveys, Volume 56 (2024) no. 2, p. 1 | DOI:10.1145/3610225
  • Ísis de Siqueira Silva; Aguinaldo José de Araújo; Rayssa Horácio Lopes; Cícera Renata Diniz Vieira Silva; Pedro Bezerra Xavier; Renan Cabral de Figueirêdo; Ewerton William Gomes Brito; Luís Velez Lapão; Cláudia Santos Martiniano; Vilani Medeiros de Araújo Nunes; Severina Alice da Costa Uchôa Digital home care interventions and quality of primary care for older adults: a scoping review, BMC Geriatrics, Volume 24 (2024) no. 1 | DOI:10.1186/s12877-024-05120-z
  • Éric Campo; Damien Brulin; Daniel Estève; Marie Chan Apport de l’intelligence artificielle dans la surveillance des personnes fragiles à domicile, Revue Ouverte d'Intelligence Artificielle, Volume 4 (2023) no. 1, p. 107 | DOI:10.5802/roia.52
  • Zia Uddin Sensors and Features for Assisted Living Technologies, Applied Machine Learning for Assisted Living (2022), p. 15 | DOI:10.1007/978-3-031-11534-9_2
  • Márcio Renê Brandão Soussa; Valter de Senna; Valéria Loureiro da Silva; Charles Lima Soares Modeling elderly behavioral patterns in single-person households, Multimedia Tools and Applications, Volume 80 (2021) no. 14, p. 22097 | DOI:10.1007/s11042-021-10635-3
  • Petra Maresova; Ondrej Krejcar; Sabina Barakovic; Jasmina Barakovic Husic; Petre Lameski; Eftim Zdravevski; Ivan Chorbev; Vladimir Trajkovik Health–Related ICT Solutions of Smart Environments for Elderly–Systematic Review, IEEE Access, Volume 8 (2020), p. 54574 | DOI:10.1109/access.2020.2981315
  • Kholoud Maswadi; Norjihan Binti Abdul Ghani; Suraya Binti Hamid Systematic Literature Review of Smart Home Monitoring Technologies Based on IoT for the Elderly, IEEE Access, Volume 8 (2020), p. 92244 | DOI:10.1109/access.2020.2992727
  • Thanos G. Stavropoulos; Georgios Meditskos; Stelios Andreadis; Konstantinos Avgerinakis; Katerina Adam; Ioannis Kompatsiaris Semantic event fusion of computer vision and ambient sensor data for activity recognition to support dementia care, Journal of Ambient Intelligence and Humanized Computing, Volume 11 (2020) no. 8, p. 3057 | DOI:10.1007/s12652-016-0437-5
  • J. Demongeot; M. Jelassi; C. Taramasco Big Data Approach for Managing the Information from Genomics, Proteomics, and Wireless Sensing in E-health, Big Data for Remote Sensing: Visualization, Analysis and Interpretation (2019), p. 1 | DOI:10.1007/978-3-319-89923-7_1
  • Qiangfu Zhao; Chia-Ming Tsai; Rung-Ching Chen; Chung-Yi Huang Resident activity recognition based on binary infrared sensors and soft computing, International Journal of Machine Learning and Cybernetics, Volume 10 (2019) no. 2, p. 291 | DOI:10.1007/s13042-017-0714-4
  • Yifang Li; Subina Saini; Kelly Caine; Kay Connelly Checking-in with my friends, Aging, Technology and Health (2018), p. 147 | DOI:10.1016/b978-0-12-811272-4.00007-5
  • Óscar Belmonte-Fernández; Raúl Montoliu; Joaquín Torres-Sospedra; Emilio Sansano-Sansano; Daniel Chia-Aguilar A radiosity-based method to avoid calibration for indoor positioning systems, Expert Systems with Applications, Volume 105 (2018), p. 89 | DOI:10.1016/j.eswa.2018.03.054
  • Puteri Fitriaty; Zhenjiang Shen; Kenichi Sugihara How Green Is Your Smart House: Looking Back to the Original Concept of the Smart House, Green City Planning and Practices in Asian Cities (2018), p. 39 | DOI:10.1007/978-3-319-70025-0_3
  • Md. Zia Uddin; Weria Khaksar; Jim Torresen Ambient Sensors for Elderly Care and Independent Living: A Survey, Sensors, Volume 18 (2018) no. 7, p. 2027 | DOI:10.3390/s18072027
  • Pedro Cruz Caballero; Amilcar Meneses-Viveros; Erika Hernández-Rubio; Oscar Zamora Arévalo Distributed User Interfaces for Poppelreuters and Raven Visual Tests, Human Aspects of IT for the Aged Population. Applications, Services and Contexts, Volume 10298 (2017), p. 325 | DOI:10.1007/978-3-319-58536-9_26
  • Joaquín Torres-Sospedra; Óscar Belmonte-Fernández; Raúl Montoliu; Sergio Trilles; Andrea Calia; Zoe Falomir; Juan A. Ortega; Natividad Martínez; Hans Guesguen In-home monitoring system based on WiFi fingerprints for ambient assisted living, Journal of Ambient Intelligence and Smart Environments, Volume 9 (2017) no. 5, p. 543 | DOI:10.3233/ais-170450
  • Bethany Kon; Alex Lam; Jonathan Chan, Proceedings of the 26th International Conference on World Wide Web Companion - WWW '17 Companion (2017), p. 1095 | DOI:10.1145/3041021.3054928
  • Joaquin Torres; Oscar Belmonte; Raul Montoliu; Sergio Trilles; Andrea Calia, 2016 12th International Conference on Intelligent Environments (IE) (2016), p. 68 | DOI:10.1109/ie.2016.19
  • Juris Klonovs; Mohammad A. Haque; Volker Krueger; Kamal Nasrollahi; Karen Andersen-Ranberg; Thomas B. Moeslund; Erika G. Spaich Monitoring Technology, Distributed Computing and Monitoring Technologies for Older Patients (2016), p. 49 | DOI:10.1007/978-3-319-27024-1_4
  • Erika Hernández-Rubio; Amilcar Meneses-Viveros; Erick Mancera-Serralde; Javier Flores-Ortiz Combinations of Modalities for the Words Learning Memory Test Implemented on Tablets for Seniors, Human Aspects of IT for the Aged Population. Design for Aging, Volume 9754 (2016), p. 309 | DOI:10.1007/978-3-319-39943-0_30
  • Yunfei Feng; Carl K. Chang; Hanshu Chang An ADL Recognition System on Smart Phone, Inclusive Smart Cities and Digital Health, Volume 9677 (2016), p. 148 | DOI:10.1007/978-3-319-39601-9_13
  • Jacques Demongeot; Adrien Elena; Mariem Jelassi; Slimane Ben Miled; Narjès Bellamine Ben Saoud; Carla Taramasco Smart Homes and Sensors for Surveillance and Preventive Education at Home: Example of Obesity, Information, Volume 7 (2016) no. 3, p. 50 | DOI:10.3390/info7030050
  • Ioulietta Lazarou; Anastasios Karakostas; Thanos G. Stavropoulos; Theodoros Tsompanidis; Georgios Meditskos; Ioannis Kompatsiaris; Magda Tsolaki A Novel and Intelligent Home Monitoring System for Care Support of Elders with Cognitive Impairment, Journal of Alzheimer's Disease, Volume 54 (2016) no. 4, p. 1561 | DOI:10.3233/jad-160348
  • Jacques Demongeot; Adrien Elena; Carla Taramasco Social and Community Networks and Obesity, Metabolic Syndrome (2016), p. 287 | DOI:10.1007/978-3-319-11251-0_19
  • Óscar Belmonte-Fernández; Adrian Puertas-Cabedo; Joaquín Torres-Sospedra; Raúl Montoliu-Colás; Sergi Trilles-Oliver An Indoor Positioning System Based on Wearables for Ambient-Assisted Living, Sensors, Volume 17 (2016) no. 1, p. 36 | DOI:10.3390/s17010036
  • Stelios Andreadis; Thanos G. Stavropoulos; Georgios Meditskos; Ioannis Kompatsiaris Dem@Home: Ambient Intelligence for Clinical Support of People Living with Dementia, The Semantic Web, Volume 9989 (2016), p. 357 | DOI:10.1007/978-3-319-47602-5_49
  • Rung-Ching Chen; Qiangfu Zhao; Chia-Ming Tsai; Bin Dai, 2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST) (2015), p. 157 | DOI:10.1109/icawst.2015.7314039
  • Kirsten K. B. Peetoom; Monique A. S. Lexis; Manuela Joore; Carmen D. Dirksen; Luc P. De Witte Literature review on monitoring technologies and their outcomes in independently living elderly people, Disability and Rehabilitation: Assistive Technology, Volume 10 (2015) no. 4, p. 271 | DOI:10.3109/17483107.2014.961179
  • Jacques Demongeot; Adrien Elena; Carla Taramasco; Nicolas Vuillerme Serious Games and Personalization of the Therapeutic Education, Inclusive Smart Cities and e-Health, Volume 9102 (2015), p. 270 | DOI:10.1007/978-3-319-19312-0_22
  • Sam Solaimani; Wally Keijzer-Broers; Harry Bouwman What we do – and don’t – know about the Smart Home: An analysis of the Smart Home literature, Indoor and Built Environment, Volume 24 (2015) no. 3, p. 370 | DOI:10.1177/1420326x13516350
  • Tainyi (Ted) Luor; Hsi-Peng Lu; Hueiju Yu; Yinshiu Lu Exploring the critical quality attributes and models of smart homes, Maturitas, Volume 82 (2015) no. 4, p. 377 | DOI:10.1016/j.maturitas.2015.07.025
  • Jacques Demongeot; Adrien Elena; Carla Taramasco Social and Community Networks and Obesity, Metabolic Syndrome (2015), p. 1 | DOI:10.1007/978-3-319-12125-3_19-1
  • Nagender Kumar Suryadevara; Subhas Chandra Mukhopadhyay Introduction, Smart Homes, Volume 14 (2015), p. 1 | DOI:10.1007/978-3-319-13557-1_1
  • Nagender Kumar Suryadevara; Subhas Chandra Mukhopadhyay Smart Home Related Research, Smart Homes, Volume 14 (2015), p. 11 | DOI:10.1007/978-3-319-13557-1_2
  • Jacques Demongeot; Olivier Hansen; Ali Hamie; Hana Hazgui; Gilles Virone; Nicolas Vuillerme Actimetry@home: Actimetric Tele-surveillance and Tailored to the Signal Data Compression, Smart Homes and Health Telematics, Volume 8456 (2015), p. 59 | DOI:10.1007/978-3-319-14424-5_7
  • Chia-Ming Tsai; Qiangfu Zhao; Rung-Ching Chen; Masato Taya, 2014 IEEE 6th International Conference on Awareness Science and Technology (iCAST) (2014), p. 1 | DOI:10.1109/icawst.2014.6981827
  • Jacques Demongeot; Carla Taramasco Evolution of social networks: the example of obesity, Biogerontology, Volume 15 (2014) no. 6, p. 611 | DOI:10.1007/s10522-014-9542-z
  • Homin Park; Can Basaran; Taejoon Park; Sang Son Energy-Efficient Privacy Protection for Smart Home Environments Using Behavioral Semantics, Sensors, Volume 14 (2014) no. 9, p. 16235 | DOI:10.3390/s140916235
  • Jacques Demongeot; Olivier Cohen; Alexandra Henrion-Caude MicroRNAs and Robustness in Biological Regulatory Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic, and Genetic, Systems Biology of Metabolic and Signaling Networks, Volume 16 (2014), p. 63 | DOI:10.1007/978-3-642-38505-6_4
  • Antoine Piau; E. Campo; P. Rumeau; B. Vellas; F. Nourhashemi Aging society and gerontechnology: A solution for an independent living?, The Journal of nutrition, health and aging, Volume 18 (2014) no. 1, p. 97 | DOI:10.1007/s12603-013-0356-5
  • Gilles Virone; Nicolas Vuillerme; Mounir Mokhtari; Jacques Demongeot Persistent Behaviour in Healthcare Facilities: From Actimetric Tele-Surveillance to Therapy Education, Wired/Wireless Internet Communications, Volume 8458 (2014), p. 297 | DOI:10.1007/978-3-319-13174-0_23
  • Yannick Fouquet; Celine Franco; Bruno Diot; Jacques Demongeot; Nicolas Vuillerme Estimation of Task Persistence Parameters from Pervasive Medical Systems with Censored Data, IEEE Transactions on Mobile Computing, Volume 12 (2013) no. 4, p. 633 | DOI:10.1109/tmc.2012.30
  • Céline Franco; Bruno Diot; Anthony Fleury; Jacques Demongeot; Nicolas Vuillerme Ambient Assistive Healthcare and Wellness Management – Is “The Wisdom of the Body” Transposable to One’s Home?, Inclusive Society: Health and Wellbeing in the Community, and Care at Home, Volume 7910 (2013), p. 143 | DOI:10.1007/978-3-642-39470-6_18
  • S. C. Mukhopadhyay; N. K. Suryadevara; R. K. Rayudu Are Technologies Assisted Homes Safer for the Elderly?, Pervasive and Mobile Sensing and Computing for Healthcare, Volume 2 (2013), p. 51 | DOI:10.1007/978-3-642-32538-0_2
  • Philippe H. Robert; A. Konig; S. Andrieu; F. Bremond; I. Chemin; P.C. Chung; J.F. Dartigues; B. Dubois; G. Feutren; R. Guillemaud; P.A. Kenisberg; S. Nave; B. Vellas; F. Verhey; J. Yesavage; P. Mallea Recommendations for ICT use in Alzheimer's disease assessment: Monaco CTAD expert meeting, The Journal of nutrition, health and aging, Volume 17 (2013) no. 8, p. 653 | DOI:10.1007/s12603-013-0046-3
  • Liyanage C. De Silva; Chamin Morikawa; Iskandar M. Petra State of the art of smart homes, Engineering Applications of Artificial Intelligence, Volume 25 (2012) no. 7, p. 1313 | DOI:10.1016/j.engappai.2012.05.002
  • David C. Klonoff Smart Sensors for Maintaining Physiologic Homeostasis, Journal of Diabetes Science and Technology, Volume 5 (2011) no. 3, p. 470 | DOI:10.1177/193229681100500301
  • Charalampos Doukas; Vangelis Metsis; Eric Becker; Zhengyi Le; Fillia Makedon; Ilias Maglogiannis Digital cities of the future: Extending @home assistive technologies for the elderly and the disabled, Telematics and Informatics, Volume 28 (2011) no. 3, p. 176 | DOI:10.1016/j.tele.2010.08.001
  • Céline Franco; Jacques Demongeot; Christophe Villemazet; Nicolas Vuillerme, 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (2010), p. 759 | DOI:10.1109/waina.2010.81
  • C. Franco; J. Demongeot; Y. Fouquet; C. Villemazet; N. Vuillerme, 2010 International Conference on Complex, Intelligent and Software Intensive Systems (2010), p. 611 | DOI:10.1109/cisis.2010.192
  • Damien Brulin; Estelle Courtial, Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine (2010), p. 1 | DOI:10.1109/itab.2010.5687712
  • Pepijn van de Ven; Alan Bourke; John Nelson; Hugh O’Brien Design and Integration of Fall and Mobility Monitors in Health Monitoring Platforms, Wearable and Autonomous Biomedical Devices and Systems for Smart Environment, Volume 75 (2010), p. 1 | DOI:10.1007/978-3-642-15687-8_1
  • Michael P. Poland; Chris D. Nugent; Hui Wang; Liming Chen Spatial-frequency data acquisition using rotational invariant pattern matching in smart environments, annals of telecommunications - annales des télécommunications, Volume 65 (2010) no. 9-10, p. 557 | DOI:10.1007/s12243-010-0172-4
  • Yannick Fouquet; Jacques Demongeot; Nicolas Vuillerme, 2009 International Conference on Complex, Intelligent and Software Intensive Systems (2009), p. 935 | DOI:10.1109/cisis.2009.81
  • Yannick Fouquet; Nicolas Vuillerme; Jacques Demongeot Pervasive Informatics and Persistent Actimetric Information in Health Smart Homes, Ambient Assistive Health and Wellness Management in the Heart of the City, Volume 5597 (2009), p. 108 | DOI:10.1007/978-3-642-02868-7_14
  • Ilias Maglogiannis Introducing Intelligence in Electronic Healthcare Systems: State of the Art and Future Trends, Artificial Intelligence An International Perspective, Volume 5640 (2009), p. 71 | DOI:10.1007/978-3-642-03226-4_5
  • Jacques Demongeot; Hedi Ben Amor; Adrien Elena; Pierre Gillois; Mathilde Noual; Sylvain Sené Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic, International Journal of Molecular Sciences, Volume 10 (2009) no. 10, p. 4437 | DOI:10.3390/ijms10104437
  • Marie Chan; Eric Campo; Daniel Estève; Jean-Yves Fourniols Smart homes — Current features and future perspectives, Maturitas, Volume 64 (2009) no. 2, p. 90 | DOI:10.1016/j.maturitas.2009.07.014
  • Hanif Baharin; Ralf Mühlberger; Andrew Loch, Proceedings of the 10th International Conference NZ Chapter of the ACM's Special Interest Group on Human-Computer Interaction (2009), p. 5 | DOI:10.1145/1577782.1577784
  • A. Elena; H. Ben-Amor; N. Glade; J. Demongeot, 2008 8th IEEE International Conference on BioInformatics and BioEngineering (2008), p. 1 | DOI:10.1109/bibe.2008.4696699
  • Jacques Demongeot; Norbert Noury; Nicolas Vuillerme, 2008 International Conference on Complex, Intelligent and Software Intensive Systems (2008), p. 589 | DOI:10.1109/cisis.2008.30
  • Adrien Elena; Jacques Demongeot, 2008 International Conference on Complex, Intelligent and Software Intensive Systems (2008), p. 682 | DOI:10.1109/cisis.2008.31
  • Ratko Magjarevic Home Care Technologies for Ambient Assisted Living, 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, Volume 16 (2007), p. 397 | DOI:10.1007/978-3-540-73044-6_101
  • Nicolas Glade; Loic Forest; Jacques Demongeot Liénard systems and potential-Hamiltonian decomposition III – applications, Comptes Rendus. Mathématique, Volume 344 (2007) no. 4, p. 253 | DOI:10.1016/j.crma.2006.11.014
  • Chihiro Takano; Yuji Ohta Heart rate measurement based on a time-lapse image, Medical Engineering Physics, Volume 29 (2007) no. 8, p. 853 | DOI:10.1016/j.medengphy.2006.09.006
  • J. Puentes; B. Solaiman, 2006 2nd International Conference on Information Communication Technologies, Volume 1 (2006), p. 965 | DOI:10.1109/ictta.2006.1684505
  • M. Aiello, Advanced Int'l Conference on Telecommunications and Int'l Conference on Internet and Web Applications and Services (AICT-ICIW'06) (2006), p. 164 | DOI:10.1109/aict-iciw.2006.190
  • Cliodhna Ní Scanaill; Sheila Carew; Pierre Barralon; Norbert Noury; Declan Lyons; Gerard M. Lyons A Review of Approaches to Mobility Telemonitoring of the Elderly in Their Living Environment, Annals of Biomedical Engineering, Volume 34 (2006) no. 4, p. 547 | DOI:10.1007/s10439-005-9068-2
  • Y.B. Choi; J.S. Krause; Hyewon Seo; K.E. Capitan; Kyusuk Chung Telemedicine in the USA: standardization through information management and technical applications, IEEE Communications Magazine, Volume 44 (2006) no. 4, p. 41 | DOI:10.1109/mcom.2006.1632648
  • M. Alwan; S. Dalal; D. Mack; S. Kell; B. Turner; J. Leachtenauer; R. Felder Impact of Monitoring Technology in Assisted Living: Outcome Pilot, IEEE Transactions on Information Technology in Biomedicine, Volume 10 (2006) no. 1, p. 192 | DOI:10.1109/titb.2005.855552
  • Jacques Demongeot Technologie et soins gérontologiques : les implications éthiques et les réflexions pour le futur, Gérontologie et société, Volume vol. 28 / n° 113 (2005) no. 2, p. 121 | DOI:10.3917/gs.113.0121
  • Majd Alwan; Jon Leachtenauer; Siddharth Dalal; Steve Kell; Beverely Turner; David Mack; Robin Felder Validation of Rule-based Inference of Selected Independent Activities of Daily Living, Telemedicine and e-Health, Volume 11 (2005) no. 5, p. 594 | DOI:10.1089/tmj.2005.11.594
  • Belur V. Dasarathy A panoramic sampling of avant-garde applications of information fusion, Information Fusion, Volume 5 (2004) no. 4, p. 233 | DOI:10.1016/j.inffus.2004.07.003
  • Julian C Hughes; Debra Harris; Julian C Hughes The environment and dementia: shaping ourselves, Nursing and Residential Care, Volume 6 (2004) no. 8, p. 394 | DOI:10.12968/nrec.2004.6.8.14194
  • Éric Campo; Marie Chan; Daniel Estève L’apprentissage des modes de vie: une base indispensable au développement d’un habitat «intelligent», Annales Des Télécommunications, Volume 58 (2003) no. 5-6, p. 850 | DOI:10.1007/bf03001534
  • N. Noury; G. Virone; P. Barralon; J. Ye; V. Rialle; J. Demongeot, Proceedings. 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (2003), p. 118 | DOI:10.1109/health.2003.1218728

Cité par 77 documents. Sources : Crossref


Commentaires - Politique