Plan
Comptes Rendus

Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes
[Grandes lignes de la phylogénie des serpents inférées à partir de quatre gènes nucléaires et mitochondriaux.]
Comptes Rendus. Biologies, Volume 325 (2002) no. 9, pp. 977-985.

Résumés

Higher-level snake relationships are inferred from sequence analyses of one nuclear gene (C-mos) and three mitochondrial genes (12S rRNA, 16S rRNA and cytochrome b). Extant snakes belong to two lineages: the fossorial Scolecophidia, which feed on small prey on a frequent basis, and the ecologically diverse Alethinophidia (‘typical’ snakes), which feed on large prey on an infrequent basis. The vast majority of Alethinophidia, if not all of them, belong to two clades, corresponding to two distinct prey neutralization modes: unimodal constriction for the Henophidia (locomotor and feeding systems coupled) and injection of toxic saliva, in addition (or not) to diverse alternate modes of constriction, for the Caenophidia (locomotor and feeding systems uncoupled). Within Alethinophidia, non-macrostomatan (small gape) Aniliidae (genus Anilius) and macrostomatan (large gape) Tropidophiidae (genera Trachyboa and Tropidophis), both from the Neotropics, are closest relatives. Although our data are insufficient to robustly infer the ancestral mode of life of snakes, we find evidence of plasticity in the basic ecological and trophic modes of snakes. Consequently, the macrostomatan condition should not be treated a priori as a derived character state devoid of homoplasy.

Les relations phylogénétiques entre les familles actuelles de serpents sont inférées par analyses de séquences d’un gène nucléaire (C-mos) et de trois gènes mitochondriaux (12S rRNA, 16S rRNA, cytochrome b). Les serpents actuels appartiennent à deux lignées : les Scolecophidia, fouisseurs, qui se nourrissent de petites proies avec une fréquence rapprochée des repas, et les Alethinophidia (serpents « typiques »), écologiquement variés, qui se nourrissent de grosses proies avec une fréquence espacée des repas. La vaste majorité, sinon la totalité, des Alethinophidia se répartit en deux clades, correspondant à deux modes distincts de neutralisation des proies : constriction unimodale chez les Henophidia (structures de nutrition et de locomotion couplées) et injection de salive toxique, associée ou non à divers modes de constriction alternatifs, chez les Caenophidia (structures de nutrition et de locomotion découplées). Au sein des Alethinophidia, les Aniliidae (genre Anilius), non macrostomates, et les Tropidophiidae (genres Trachyboa et Tropidophis), macrostomates, forment un groupe monophylétique néotropical. Bien que nos données ne nous permettent pas d’inférer de façon robuste le mode de vie ancestral des serpents, les principaux modes écologiques et trophiques des serpents ne sont pas dénués de plasticité évolutive. Ainsi, la condition macrostomate ne devrait pas être considérée a priori comme dérivée et dépourvue d’homoplasie.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0691(02)01510-X
Keywords: Serpentes, snakes, phylogeny, macrostomatan, C-mos, 12S rRNA, 16S rRNA, cytochrome b
Mots-clés : serpentes, serpents, phylogénie, macrostomates, C-mos, 12S rRNA, 16S rRNA, cytochrome b

Nicolas Vidal 1 ; S.Blair Hedges 2

1 Service de systématique moléculaire, Institut de systématique (CNRS FR 1541), Muséum national dˈhistoire naturelle, 43, rue Cuvier, 75231 Paris cedex 05, France
2 NASA Astrobiology institute and department of biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA
@article{CRBIOL_2002__325_9_977_0,
     author = {Nicolas Vidal and S.Blair Hedges},
     title = {Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes},
     journal = {Comptes Rendus. Biologies},
     pages = {977--985},
     publisher = {Elsevier},
     volume = {325},
     number = {9},
     year = {2002},
     doi = {10.1016/S1631-0691(02)01510-X},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Vidal
AU  - S.Blair Hedges
TI  - Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes
JO  - Comptes Rendus. Biologies
PY  - 2002
SP  - 977
EP  - 985
VL  - 325
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0691(02)01510-X
LA  - en
ID  - CRBIOL_2002__325_9_977_0
ER  - 
%0 Journal Article
%A Nicolas Vidal
%A S.Blair Hedges
%T Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes
%J Comptes Rendus. Biologies
%D 2002
%P 977-985
%V 325
%N 9
%I Elsevier
%R 10.1016/S1631-0691(02)01510-X
%G en
%F CRBIOL_2002__325_9_977_0
Nicolas Vidal; S.Blair Hedges. Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes. Comptes Rendus. Biologies, Volume 325 (2002) no. 9, pp. 977-985. doi : 10.1016/S1631-0691(02)01510-X. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/S1631-0691(02)01510-X/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The suborder of snakes (Serpentes) includes about 3000 extant species 〚1〛. This richness is associated with a severely constrained bauplan that has always hampered morphological studies. At the same time, it has made available several modes of locomotion, diet and ecological niches. Nevertheless, after more than 100 years of research, several higher-level phylogenetic relationships appear to be established (Fig. 1) 〚2–6〛. Snakes are then divided into two major clades: the Scolecophidia and the Alethinophidia. The Scolecophidia (families Leptotyphlopidae, Typhlopidae, Anomalepididae) are small fossorial snakes with a limited gape size, which feed mainly on ants and termites 〚4〛. The remaining snakes are the Alethinophidia, which are the ‘typical’ snakes. They are characterised by their independent mandibles and their general ability to ingest prey of relative large size 〚7〛. The Alethinophidia include the fossorial ‘Anilioidea’ (Uropeltidae, Anilius, Anomochilus, Cylindrophis), whose monophyly is not ascertained and the Macrostomata, which include Xenopeltis, Loxocemus, Xenophidion, several lineages of ‘booids’ (Erycinae, Boinae, Pythoninae, Tropidophiinae, Ungaliophiinae, Bolyeriidae) and the Caenophidia. The most distinctive evolutionary trend within the Alethinophidia is the increase of the gape size 〚7〛.

Fig. 1

Phylogenetic relationships of snakes based on Cadle et al. 〚2〛, Cundall et al. 〚3〛, Wallach 〚4〛, Scanlon and Lee 〚5〛 and Tchernov et al. 〚6〛. Terminal taxa written in bold are fossorial (non-macrostomatan).

In spite of these advances, several multifurcations remain: interrelationships of ‘anilioid’ lineages and interrelationships of most macrostomatan lineages. The aim of this work is first to shed light on these unresolved points of snake phylogeny using DNA sequences and then to address the following evolutionary question: what was the ancestral mode of life of snakes? For this purpose, 136 sequences (85 original) were used, obtained from one nuclear and three mitochondrial genes and representing all major snake lineages but two: Anomochilidae (genus Anomochilus) and Xenophidiidae (genus Xenophidion), both being known only from a handful of specimens.

2 Materials and methods

2.1 DNA extraction, PCR and sequencing

Tissue samples (tissue homogenate, liver, blood, tail tip, or shed skin) were obtained from the tissue collections of Nicolas Vidal and S. Blair Hedges (see Appendix 1). DNA extraction followed protocols previously described 〚8〛. Amplification was performed using the following sets of primers: L2510, 5’–CGC–CTG–TTT–ATC–AAA–AAC–AT–3’ 〚9〛, L16, 5’–ACG–GCC–GCG–GTA–YCC–TAA–CCG–TG–3’ (original) and H3056, 5’–CTC–CGG–TCT–GAA–CTC–AGA–TCA–CGT–AGG–3’ 〚10〛 for the 16S rRNA gene; L12, 5’–CGC–CAA–AYA–ACT–ACG–AG–3’ (original), H1478, 5’–TGA–CTG–CAG–AGG–GTG–ACG–GGC–GGT–GTG–T–3’ 〚11〛 and H1557, 5’–GTA–CAC–TTA–CCT–TGT–TAC–GAC–TT–3’ 〚12〛 for the 12S rRNA gene; L39, 5’–CTG–SAR–YTT–TCT–YCA–TCT–GT–3’ (original), HC3, 5’–CAA–ACA–TTA–YRT–TCT–GTG–ATG–A–3’(original) and G74, 5’–TGA–GCA–TCC–AAA–GTC–TCC–AAT–3’ 〚13〛 for the C-mos gene; L14724, 5’–TGA–CTT–GAA–GAA–CCA–CCG–TTG–3’ 〚9〛, LLIO, 5’–AAC–ATC–TCA–RCM–TGA–TGA–AA–3’ (original) and HVN650, 5’–TAT–GGG–TGG–AAK–GGG–ATT–TT–3’ (original) for the cytochrome b gene. Both strands of the PCR products were sequenced using the CEQ cycle sequencing kit (Beckman) in the CEQ-2000 DNA Analysis System (Beckman). The two strands obtained for each sequence were aligned using the BioEdit Sequence Alignment Editor program 〚14〛. Sequence data obtained from Genbank or bibliography are listed in Appendix 2.

2.2 Sequence analysis

Sequence entry and alignment were performed manually with the MUST2000 software 〚15〛. After removal of the 5' end of the cytochrome b gene, alignment was straightforward as there were no indels. For the C-mos gene, amino acid properties were used, resulting in an alignment including one codon deletion defining Serpentes, one codon deletion defining Typhlopidae and one deletion defining Alethinophidia (one to three codons in length according to alethinophidian taxa). For the 16S rRNA sequences, alignment was ambiguous in three highly variable areas, corresponding to loops that we have deleted from analyses. In order to align the 12S rRNA sequences, we used the secondary structure model described by Hickson et al. 〚16〛. The alignments will be deposited in EMBL alignment database and the complete sequences will be deposited in GenBank upon publication. In all further analyses, gaps were excluded. We followed the approach outlined by Huelsenbeck and Crandall 〚17〛 to test alternative models of evolution, using PAUP* 〚18〛 and Modeltest 〚19〛. A starting tree was obtained by NJ 〚20〛. With this tree, likelihood scores were calculated for 56 models of evolution and then compared statistically using a chi-square test with degrees of freedom equal to the difference in free parameters between the models being tested. Once a model of evolution was chosen, it was used to estimate a tree using the minimum evolution optimality criteria 〚21〛. Support for nodes was then estimated using the bootstrap technique 〚22〛, with 2000 replicates. All phylogenetic analyses were performed with PAUP*. The separate analyses showed no significant topological incongruence (no conflicting nodes exhibited a bootstrap value above 70%). We performed combined analyses after having defined corresponding models of evolution using the procedure described above. Results from the latter are presented under the form of bootstrap consensus trees (2000 replicates), which are considered as reliable estimates of phylogeny 〚23〛. Bootstrap values measure internal robustness only; the accuracy of nodes was estimated using taxonomic congruence between independent datasets (such as nuclear and mitochondrial markers or molecular and morphological data).

3 Results and discussion

3.1 Models of evolution selected

The C-mos data set includes 575 bp for 76 taxa (333 variable sites, 246 of which are informative for parsimony) covering the diversity of snake lineages (including caenophidian ones). The model selected is the HKY (Hasegawa, Kishino and Yano 〚24〛) +I+G model (base frequencies: A (0.278), C (0.207), G (0.223), T (0.292); TS/TV ratio: 2.55; proportion of invariable sites (I): 0.32; gamma distribution shape parameter (G): 2.5). The 12S–16S rRNA dataset includes 679 bp for 70 taxa (379 variable sites, 327 of which are informative for parsimony) covering the diversity of snake lineages (including caenophidian ones). The model selected is the GTR (General Time Reversible 〚25〛) +I+G model (base frequencies: A (0.427), C (0.212), G (0.17), T (0.192); rate matrix: 〚AC〛: 16.21, 〚AG〛: 25.11, 〚AT〛: 8.02, 〚CG〛: 1.93, 〚CT〛: 92,25, 〚GT〛: 1; I: 0.38; G: 0.64). The cytochrome b data set includes 574 bp for 31 taxa (369 variable sites, 327 of which are informative for parsimony) covering the diversity of snake lineages. The selected model is the TVM (Transversional 〚25〛) +G model (base frequencies: A (0.396), C (0.365), G (0.059), T (0.181); rate matrix: 〚AC〛: 0.09, 〚AG〛: 4.66, 〚AT〛: 0.36, 〚CG〛: 0.35, 〚CT〛: 4.66, 〚GT〛: 1; G: 0.18). The combined C-mos/12S/16S rRNA data set includes 1257 bp for 66 taxa (710 variable sites, 566 of which are informative for parsimony) covering the diversity of snake lineages (including caenophidian ones). The model selected is the GTR+I+G model (base frequencies: A (0.349), C (0.209), G (0.199), T (0.243); rate matrix: 〚AC〛: 4.88, 〚AG〛: 7.88, 〚AT〛: 2.36, 〚CG〛: 1.31, 〚CT〛: 20.08, 〚GT〛: 1; I: 0.26; G: 0.48). The combined C-mos/12S–16S rRNA/cytochrome b dataset includes 1840 bp for 31 taxa (1027 variable sites, 773 of which are informative for parsimony) covering the diversity of snake lineages. The model selected is the GTR+I+G model (base frequencies: A (0.341), C (0.286), G (0.158), T (0.215); rate matrix: 〚AC〛: 2.81, 〚AG〛: 5.79, 〚AT〛: 2.11, 〚CG〛: 0.62, 〚CT〛: 15.11, 〚GT〛: 1; I: 0.21; G: 0.41). It should be noted that the model selected for the C-mos (protein coding nuclear gene with even base composition) analysis is simpler than the one selected for the cytochrome b (protein coding mitochondrial gene with uneven base composition) analysis, which is itself simpler than the models selected for the 12S–16S rRNA (mitochondrial genes encoding ribosomal RNA with uneven base composition and complex secondary structure) and combined gene analyses.

3.2 Phylogenetic results

For reason of space limitations, the bootstrap consensus ME tree (2000 replicates) obtained from the combined analysis including four genes is presented only (C-mos/12S–16S rRNA/cytochrome b). All results discussed below are based on this tree except otherwise mentioned.

3.2.1 Higher-level snake relationships

Scolecophidia form a monophyletic group with Leptotyphlopidae (Leptotyphlops) as sister-group to a clade formed by Anomalepididae (Liotyphlops) and Typhlopidae (Ramphotyphlops) (Fig. 2). Although not strongly supported by bootstrap values, we consider this topology to be reliable as it is identical to the one obtained by Wallach 〚4〛 from an extensive anatomical work. The monophyly of Alethinophidia 〚26〛 is strongly supported by our molecular dataset (bootstrap value: 100%). The early divergence of snakes into two lineages very distinct morphoecologically (fossorial Scolecophidia feeding on small prey on a frequent basis versus ecologically diverse Alethinophidia feeding on large prey on an infrequent basis) is then confirmed by our data. Within Alethinophidia, the most surprising result from our study is the clustering of the Tropidophiidae sensu stricto (genera Tropidophis and Trachyboa (sister-groups based on 12S–16S rRNA analysis (bootstrap value: 100%) with the Aniliidae (genus Anilius) (bootstrap value: 98%). Indeed, Tropidophis and Trachyboa are considered to belong to the Macrostomata, a clade strongly supported by morphology, which includes the representatives of Alethinophidia that are not ‘anilioids’ (Anilius, Cylindrophis, Rhinophis and Uropeltis in our dataset) 〚5, 6, 27〛. Our molecular result then disagrees with morphological evidence (see Fig. 1). Nevertheless it is biogeographically coherent (Tropidophis, Trachyboa and Anilius are all from the Neotropics) and is supported by all genes analysed separately. Moreover, it is not the result of a contamination event, as it was independently found by Campbell in his PhD study using cytochrome b sequences obtained from tissue samples different from ours 〚28〛. The consequence of this result concerning the early evolution of snakes is discussed below. In any case, ‘anilioids’ as presently defined include two lineages, an American one (Anilius, Tropidophis, Trachyboa) and an Asiatic one (Cylindrophis, Uropeltidae represented here by Rhinophis and Uropeltis, and Anomochilidae – genus Anomochilus, which is not included in our taxonomic sample but is conservatively considered to belong to this clade according to morphology (see Fig. 1) and distribution). The next higher ranked clade includes two main groups: the Caenophidia (bootstrap value: 66%) and a clade formed by various lineages of ‘booids’. Even if this last node is not strongly supported by our data (bootstrap value below 50%), the grouping of pythons, boas, and associated lineages (Bolyeriidae, Loxocemidae, Xenopeltidae) had already been favoured by some morphologists 〚27, 29–33〛. Moreover, those two clades correspond to two distinct large-size prey neutralisation modes: unimodal constriction for ‘booids’ (locomotor and feeding systems coupled) and injection of toxic saliva, in addition (or not) to diverse alternate modes of constriction, for Caenophidia (locomotor and feeding systems uncoupled; see our companion paper on caenophidian relationships) 〚34〛. We therefore use the term Henophidia (first introduced by Hoffstetter 〚29〛 to include Alethinophidia not belonging to Caenophidia) to describe the clade including ‘booids’. It should be noted that the C-mos alone analysis gives an alternative topology with the henophidian clade including not only ‘booids’, but also ‘anilioids’ as presently defined (which then appear in a basal position among Henophidia, and which use the same mode of constriction as ‘booids’ when they constrict), i.e. all non-caenophidian Alethinophidia (bootstrap value below 50%). Within the Henophidia, the Bolyeriidae (characterised by an intramaxillary joint, a unique feature among vertebrates 〚35〛 and represented here by Casarea dussumieri, the sole extant species of the family, living at the Île Ronde, off the coast of Mauritius) are in a basal position. The monophyly of pythons (genera Python, Liasis, Apodora in combined analyses, plus Morelia sequenced for 12S–16S rRNA and C-mos, but not for cytochrome b) is strongly supported (bootstrap value: 100%). The closest relative of pythons consists of a clade of Xenopeltis and Loxocemus (bootstrap values: 65%), a result that had already been proposed by some morphologists 〚32, 33〛. The position of Calabaria as closest relative of the boas, moderately supported by our data (bootstrap value: 59%), contradicts the hypothesis that Calabaria belongs to erycids (a family of boas) 〚36〛. Within boas, the boids appear to be paraphyletic (genera Boa, Acrantophis, Candoia), while the erycids are monophyletic (genera Eryx, Exiliboa, Gongylophis, Ungaliophis, Lichanura and Charina). Ungaliophis and Exiliboa (from the Neotropical area) cluster with the North American erycid genera (Charina and Lichanura, bootstrap value: 90%) while the two Old World representatives form another clade (genera Eryx and Gongylophis, bootstrap value: 99%). Although many herpetologists consider Exiliboa and Ungaliophis as representatives of the tropidophiids (with the Neotropical genera Tropidophis and Trachyboa), Zaher 〚37〛 had already shown on a morphological basis that the tropidophiids were not monophyletic, but consisted of two very distinct lineages: Trachyboa and Tropidophis, on the one hand, (tropidophiids) and Ungaliophis and Exiliboa, on the other hand (‘booids’).

Fig. 2

Phylogenetic relationships of snakes based on C-mos, 12-16S rRNA and cytochrome b sequences (bootstrap ME consensus tree, 2000 replicates, values above 50% are shown). Terminal taxa written in bold are fossorial (non macrostomatan). The C-mos alone analysis gives an alternative topology where the two ‘anilioid’ lineages are not basal alethinophidian snakes, but basal henophidian snakes.

3.2.2 Evolutionary implications: the ancestral mode of life of snakes

Three main hypotheses have been proposed concerning the ancestral mode of life of snakes: fossorial, terrestrial, or marine 〚38–41〛. This controversy, which has profound implications on our understanding of the evolution of locomotor and feeding systems in snakes, has recently been fueled by the discovery of several marine fossils with well-developed hindlimbs 〚6, 42, 43〛. The phylogenetic position of these fossils is hotly debated as they could either be the closest relative of snakes (according to Scanlon and Lee 〚5〛, Caldwell and Lee 〚42〛, Rage and Escuillié 〚43〛 and Rage 〚44〛, favouring a marine origin of snakes) or derived macrostomatan snakes (according to Tchernov et al. 〚6〛 and Zaher and Rieppel 〚45–47〛, favouring a terrestrial/fossorial origin). Although solving the position of snakes among squamates and testing the marine origin hypothesis are out of the scope of this work, mapping extant modes of life (fossorial i.e. ability to burrow into the soil versus terrestrial) on the phylogeny depicted in Fig. 1 reveals a very significant fact. All non-macrostomatan snakes (microstomatan scolecophidians and traditional ‘anilioids’) are fossorial, a mode of life associated with a compact skull limiting the choice of ingestible prey (small and/or elongated) while the phylogenetically derived macrostomatan clade is of terrestrial origin. The distribution of the fossorial/terrestrial traits then corresponds exactly to the non-macrostomatan/macrostomatan categories. The classical evolutionary trend within the Alethinophidia, the increase in gape size (which results from one fossorial to terrestrial transition) was the result of excluding fossorial alethinophidian lineages from the definition of Macrostomata. Based on our phylogeny, whether the ancestral snake was fossorial or terrestrial requires two or three evolutionary events respectively: two fossorial to terrestrial transitions (fossorial ancestor) or three terrestrial to fossorial transitions (terrestrial ancestor) (Fig. 2). A fossorial origin of snakes then appears to be the most parsimonious hypothesis. Nonetheless, this option is only one step more parsimonious than the alternative one and implies the independent acquisition of the very complex macrostomatan condition in two lineages. Therefore, the hypothesis of a non-fossorial/macrostomatan origin of snakes with three subsequent transitions to a fossorial/non-macrostomatan condition (a common event among vertebrates in general and squamates in particular 〚44, 48〛) should remain a viable alternative for future consideration. Moreover, fossorial ‘anilioids’ would not represent a kind of intermediate stage between ‘true’ microstomatan Scolecophidia and ‘true’ macrostomatan Alethinophidia but would be regressed macrostomatan snakes, a hypothesis also supported by the C-mos alone analysis (where the two ‘anilioid’ lineages are basal henophidian snakes). Although our data are insufficient to robustly infer the ancestral mode of life of snakes, we find evidence of plasticity in the basic ecological and trophic modes of snakes. Consequently, the macrostomatan condition should not be treated a priori as a derived character state devoid of homoplasy.

Acknowledgements

This work was supported for its most part by the ‘Service de systématique moléculaire’, ‘Institut de systématique’ (CNRS FR 1541), directed by Simon Tillier. N.V. thanks C. Bonillo, K. Daoues, P. David, R. Debruyne, A. Dubois, A. Halimi, G. Lecointre, O. Pauwels, F. Pleijel, J.-C. Rage, A. Tillier, S. Tillier for their help during the course of this work. S.B.H. thanks D. Rabosky for technical assistance and NSF and NASA for partial support. N.V. and S.B.H. thank the following persons for contributing most of the tissue samples used in this work: M. Boulay, R. M. Burger, B. N. Campbell, L. Chirio, K. Daoues, I. Das, P. David, S. Delahaie Thourin, J.-C. de Massary, H. G. Dowling, C. Gans, A. Halimi, S. Imbott, I. Ineich, U. Kuch, P. Lacour, S. Lavoué, O. Le Duc, D. Mebs, T. Moncuit, P. Moret, O. Pauwels, J. Reynes, C. Skliris, A. Teynié, W. Wüster, H. Zaher.

Version abrégée

Le sous-ordre des serpents (Serpentes) comprend environ 3000 espèces actuelles, occupant des niches écologiques variées. Cette richesse, associée à un plan de base très contraint, a toujours rendu l’étude morpho-anatomique des serpents délicate. Cependant, après plus de cent ans de recherche, plusieurs relations phylogénétiques de taxons de haut rang taxinomique semblent établies. Ainsi les serpents sont divisés en deux grands clades : les Scolecophidia et les Alethinophidia. Les Scolecophidia (familles des Leptotyphlopidae, Typhlopidae et Anomalepididae) sont des serpents fouisseurs de petite taille, présentant une ouverture de la bouche limitée et se nourrissant principalement de termites et de fourmis. Les Alethinophidia sont les serpents « typiques », qui sont caractérisés par l’indépendance de leurs mandibules et leur capacité à ingérer des proies plus grosses que le diamètre de leur propre corps. Les Alethinophidia comprennent les « Anilioidea » (Uropeltidae, Anilius, Anomochilus, Cylindrophis), tous fouisseurs, dont la monophylie n’est pas établie de façon fiable et le clade des Macrostomata (« serpents à grande bouche »), qui comprend Xenopeltis, Loxocemus, Xenophidion, plusieurs lignées de « Booidea » (Erycinae, Boinae, Pythoninae, Tropidophiinae, Ungaliophiinae, Bolyeriidae) et les Caenophidia (qui incluent tous les serpents venimeux). Ainsi, la tendance évolutive la plus remarquable au sein des Alethinophidia est l’augmentation progressive de l’ouverture de la bouche, depuis les « Anilioidea » jusqu’aux Caenophidia.

Malgré ces avancées dans notre connaissance, de nombreuses relations de parenté demeurent irrésolues, en particulier entre les lignées d’« Anilioidea » et entre les lignées de Macrostomata. Le but de ce travail consiste d’abord à éclairer ces points en utilisant des séquences d’ADN, puis à déterminer quel était le mode de vie ancestral des serpents. Pour cela, 136 séquences (dont 85 d’entre elles sont originales) ont été utilisées, obtenues à partir d’un gène nucléaire (C-mos) et de trois gènes mitochondriaux (ARNr 12S et 16S, cytochrome b), et représentant toutes les lignées actuelles de serpents, sauf deux d’entre elles, qui ne sont connues que par un très faible nombre de spécimens : les Anomochilidae (genre Anomochilus) et les Xenophidiidae (genre Xenophidion).

Cinquante-six modèles alternatifs d’évolution moléculaire ont d’abord été testés de façon statistique pour chacun des gènes utilisés à l’aide d’une approche de maximum de vraisemblance. Le modèle choisi a alors été utilisé pour l’estimation des phylogénies, en utilisant le critère d’optimalité du minimum d’évolution. La robustesse des nœuds a été estimée à l’aide de la technique du bootstrap, avec 2000 réplicats. Les analyses séparées ne montrant pas de non-congruence topologique significative (aucun nœud contradictoire soutenu par des valeurs de bootstrap supérieures à 70%), nous avons réalisé des analyses combinées en répétant la procédure décrite ci-dessus. La technique de bootstrap ne mesurant que la robustesse interne d’un jeu de données, la fiabilité des nœuds a été estimée en utilisant le critère de congruence taxinomique entre jeux de données indépendants.

Les Scolecophidia forment un groupe monophylétique avec les Leptotyphlopidae, groupe frère des Anomalepididae et des Typhlopidae. Les Alethinophidia sont également retrouvés monophylétiques. La divergence précoce des serpents en deux lignées très différentes sur le plan morpho-écologique (Scolecophidia fouisseurs, se nourrissant de petites proies, avec une fréquence rapprochée des repas, et Alethinophidia écologiquement variés, se nourrissant de grosses proies, avec une fréquence espacée des repas) est donc confirmée par nos données.

Au sein des Alethinophidia, le résultat le plus surprenant de notre étude est la relation de groupes frères des Tropidophiidae (genres Tropidophis et Trachyboa) et des Aniliidae (genre Anilius). En effet, selon les études morphologiques, les Tropidophiidae appartiennent au clade des Macrostomata, qui comprend les Alethinophidia non « Anilioidea » (Uropeltidae, Anilius, Anomochilus, Cylindrophis). Ce résultat est donc en désaccord avec les données morphologiques, mais est cohérent d’un point de vue biogéographique (les Tropidophiidae et les Aniliidae sont tous néotropicaux). Ainsi, les « Anilioidea » sont constitués de deux lignées distinctes : une lignée américaine (néotropicale) (genres Anilius, Trachyboa et Tropidophis) et une lignée asiatique (Uropeltidae, genres Anomochilus et Cylindrophis).

Les autres représentants des Alethinophidia se répartissent en deux grands clades : le clade des Caenophidia et un clade regroupant les différentes lignées de « Booidea », que Robert Hoffstetter avait pour la première fois reconnu sous le nom d’Henophidia. Ces deux clades correspondent à deux modes distincts de neutralisation des proies : constriction unimodale chez les Henophidia (structures de nutrition et de locomotion couplées) et injection de salive toxique, associée ou non à divers modes de constriction alternatifs, chez les Caenophidia (structures de nutrition et de locomotion découplées). Il est à noter que l’analyse du gène nucléaire C-mos aboutit à une topologie différente de celle issue de l’analyse combinée des quatre gènes, puisque, dans ce cas, le clade des Henophidia n’inclut pas seulement les lignées de « Booidea », mais aussi les lignées d’« Anilioidea » (qui apparaissent alors en position basale au sein des Henophidia et qui utilisent, lorsqu’elles constrictent, le même mode de constriction que les « Booidea »), c’est-à-dire toutes les lignées d’Alethinophidia à l’exception des Caenophidia.

Au sein des Henophidia, les Bolyeriidae (caractérisés par une articulation intra-maxillaire et représentés par Casarea dussumieri, la seule espèce actuelle de la famille, endémique de l’île Ronde au large de l’île Maurice) occupent une position basale. Les pythons forment un groupe monophylétique dont le groupe frère est constitué par le clade comprenant les genres Loxocemus et Xenopeltis. L’énigmatique genre africain Calabaria est groupe frère des boas, qui forment un groupe monophylétique. Au sein des boas, les Boidae apparaissent paraphylétiques. Les Erycidae sont monophylétiques et comprennent les genres néotropicaux Exiliboa et Ungaliophis, qui sont groupes frères des Erycidae nord-américains.

Les relations phylogénétiques au sein des Caenophidia font l’objet d’un article distinct. Ils apparaissent comme le groupe frère des Henophidia, rompant avec une conception des Henophidia groupe souche des Caenophidia.

Concernant le mode de vie ancestral des serpents, trois hypothèses principales ont été avancées : une origine fouisseuse, une origine terrestre et une origine marine. Bien qu’il nous soit impossible de tester l’hypothèse de l’origine marine (qui repose entièrement sur des serpents fossiles), nos donnés nous permettent de remarquer que la distribution des modes de vie terrestre et fouisseur correspond exactement à la distribution des conditions macrostomate (grande bouche) et non-macrostomate (petite bouche). D’après l’arbre issu de l’analyse combinée des quatre gènes, que le mode de vie ancestral soit fouisseur ou non, deux ou trois événements, respectivement, sont requis : deux transitions de la vie fouisseuse à la vie terrestre dans le premier cas et trois transitions de la vie terrestre à la vie fouisseuse dans le second. Une origine fouisseuse des serpents apparaît donc comme l’hypothèse la plus parcimonieuse. Cependant, elle requiert l’acquisition indépendante de la condition macrostomate, très complexe, dans deux lignées. C’est pourquoi l’hypothèse d’une origine non fouisseuse des serpents, suivie par trois transitions vers le mode de vie fouisseur, un événement commun chez les vertébrés en général et les squamates en particulier, est à envisager. L’absence de la condition macrostomate chez certains « Anilioidea » résulterait de pertes secondaires liées à l’acquisition du mode de vie fouisseur, une hypothèse également favorisée par l’arbre issu de l’analyse du gène nucléaire C-mos (dans lequel les « Anilioidea » occupent une position basale au sein des Henophidia). Dans tous les cas, la condition macrostomate ne devrait pas être considérée a priori comme dérivée et dépourvue d’homoplasie.

Appendix 1. Tissue samples used

Tissue samples were obtained from the tissue collection of Nicolas Vidal for the following species (sequences produced: C: C-mos, 12/16: 12/16S rRNA, CY: cytochrome b).

Acrantophis madagascariensis (Madagascar; C, 12/16), Acrochordus granulatus (〚MNHN 1997.6576〛, Ko Mai Phai Island, Muang District, Phang-Nga Province, Thailand; C, 12/16), Alsophis cantherigerus (Cuba; C, CY), Apodora papuana (Irian Jaya; C, 12/16), Atractaspis micropholis (Togo; C, 12/16), Boa constrictor (Petit Saut, French Guiana; C), Calabaria reinhardtii (Togo; C, CY), Candoia carinata (Halmahera Island, Indonesia; C, 12/16), Cerastes cerastes (captive born; C, 12/16), Charina bottae (captive born; C, 12/16), Cylindrophis ruffus (〚MNHN 1999.9021〛, Indonesia; C, 12/16, CY), Elapsoidea semiannulata (Central African Republic; C, 12/16), Eryx miliaris (unknown origin; C, 12/16), Gongylophis colubrinus (captive born; C, 12/16), Liasis savuensis (Savu Island, Indonesia; C, 12/16), Lichanura trivirgata (captive born; C, 12/16), Morelia boeleni (Wamena, Irian Jaya; C, 12/16), Python reticulatus (captive born, C), Ramphotyphlops braminus (〚NV RBR 001〛, Phang-Nga City, Muang District, Phang-Nga Province, Thailand; C, 12/16), Tiliqua scincoides (Indonesia; 16), Xenopeltis unicolor (〚CUB MZ R 1998.12.11.30〛, Ban Salakern, Ban Lat District, Phetchaburi Province, Thailand; C, 12/16, CY).

Tissue samples were obtained from the tissue collection of S. Blair Hedges for the following species:

Anilius scytale (SBH 267100, locality unknown; C, 12/16), Casarea dussumieri (SBH 267099, locality unknown; C, 12/16), Leptotyphlops columbi (SBH 192936, Little Fortune Hill, San Salvador, Bahamas; C, CY), Liotyphlops albirostris (SBH 172151, ‘Venezuela’; C, CY), Loxocemus bicolor (HGD 145976, ‘Mexico’; C, 12/16), Rhinophis drummondhayi (SBH 194102, north of Namunukula, Pindarawatta, Sri Lanka; C, CY), Trachyboa gularis (SBH 194899, locality unknown; 12/16), Tropidophis melanurus (SBH 172610, Soroa, Pinar del Rio, Cuba; C, 12/16), Typhlops jamaicensis (SBH 172445, 6.2 km west of Oracabessa, St. Mary, Jamaica; C, 12/16), Typhlops lumbricalis (SBH 191018, La Fangosa, Guantánamo, Cuba; 12/16), Ungaliophis continentalis (SBH 194642l, locality unknown; C, 12/16).

Appendix 2. Sequence data obtained from Genbank

Sequence data for the following genes and species were obtained from Genbank.

C-mos gene: Exiliboa placata (AY099973), Sceloporus grammicus (AF039478), Tiliqua scincoides (AF039462), Uropeltis phillipsi (AF471100).

12S and/or 16S rRNA gene: Alsophis cantherigerus (AF158475, AF158405), Boa constrictor (Z46470, Z46495), Calabaria reinhardtii (Z46464, Z46494), Exiliboa placata (AF512742), Leptotyphlops columbi (Z46488, Z46462), Liotyphlops albirostris (Z46487, Z46461), Python reticulatus (Z46448, Z46478), Rhinophis drummondhayi (Z46477, Z46447), Sceloporus grammicus (AF154130, L41464), Tiliqua scincoides (AF090187), Tropidophis wrighti (Z46445, Z46476), Uropeltis melanogaster (AF512739).

Cytochrome b gene: Acrantophis madagascariensis (U69736), Acrochordus granulatus (AF217841), Anilius scytale (U69738), Apodora papuana (U69843), Atractaspis micropholis (AF039261), Boa constrictor (U69740), Candoia carinata (U69753), Casarea dussumieri (U69755), Cerastes cerastes (AF039265), Charina bottae (U69757), Elapsoidea semiannulata (AF039260), Eryx miliaris (U69824), Eumeces egregius (AB016606), Exiliboa placata (AY099989), Gongylophis colubrinus (U69812), Liasis savuensis (U69839), Lichanura trivirgata (U69844), Loxocemus bicolor (U69845), Python reticulatus (U69859), Ramphotyphlops braminus (U69865), Sceloporus jarrovii (AF194219), Tropidophis melanurus (U69869), Ungaliophis continentalis (U69870), Uropeltis phillipsi (AF471034).


Bibliographie

[〚1〛] P. Uetz, The EMBL reptile database: www.embl-heidelberg.de/uetz/LivingReptiles.html, 2002

[〚2〛] J.E. Cadle; H.C. Dessauer; C. Gans; D.F. Gartside Phylogenetic relationships and molecular evolution in uropeltid snakes (Serpentes: Uropeltidae): allozymes and albumin immunology, Biol. J. Linn. Soc., Volume 40 (1990), pp. 293-320

[〚3〛] D. Cundall; V. Wallach; D.A. Rossman The systematic relationships of the snake genus Anomochilus, Zool. J. Linn. Soc., Volume 109 (1993), pp. 275-299

[〚4〛] V. Wallach The visceral anatomy of blinsnakes and wormsnakes and its systematic implications (Serpentes: Anomalepididae, Typhlopidae, Leptotyphlopidae), PhD dissertation, Northeastern University, Boston, 1998

[〚5〛] J.D. Scanlon; M.S.Y. Lee The Pleistocene serpent Wonambi and the early evolution of snakes, Nature, Volume 403 (2000), pp. 416-420

[〚6〛] E. Tchernov; O. Rieppel; H. Zaher; M.J. Polcyn; L.L. Jacobs A fossil snake with limbs, Science, Volume 287 (2000), pp. 2010-2012

[〚7〛] D. Cundall; H.W. Greene Feeding in snakes (K. Schwenk, ed.), Feeding, form, function, and evolution in tetrapod vertebrates, Academic Press, San Diego, 2000, pp. 293-333

[〚8〛] N. Vidal; G. Lecointre; J.-C. Vié; J.-P. Gasc Molecular systematics of pitvipers: paraphyly of the Bothrops complex, C. R. Acad. Sci. Paris, Ser. III, Volume 320 (1997), pp. 95-101

[〚9〛] S.R. Palumbi; A. Martin; S. Romano; W.O. Mcmillan; L. Stice; G. Grabowski The simple fool's guide to P.C.R., University of Hawaii Press, Honolulu, 1991

[〚10〛] S.B. Hedges Molecular evidence for the origin of birds, Proc. Natl Acad. Sci. USA, Volume 91 (1994), pp. 2621-2624

[〚11〛] T.D. Kocher; W.K. Thomas; A. Meyer; S.V. Edwards; S. Pääbo; F.X. Villablanca; A.C. Wilson Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers, Proc. Natl Acad. Sci. USA, Volume 86 (1989), pp. 6196-6200

[〚12〛] A. Knight; D.P. Mindell On the phylogenetic relationships of Colubrinae, Elapidae and Viperidae and the evolution of front fanged venom systems in snakes, 1994, Copeia (1994), pp. 1-9

[〚13〛] K.M. Saint; C.C. Austin; S.C. Donnellan; M.N. Hutchinson C-mos, a nuclear marker useful for squamate phylogenetic analysis, Mol. Phylogenet. Evol., Volume 10 (1998), pp. 259-263

[〚14〛] T.A. Hall BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Ser., Volume 41 (1999), pp. 95-98

[〚15〛] H. Philippe MUST 2000: a computer package of management utilities for sequences and trees, Nucleic Acids Res., Volume 21 (1993), pp. 5264-5272

[〚16〛] R.E. Hickson; C. Simon; A. Cooper; G.S. Spicer; J. Sullivan; D. Penny Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA, Mol. Biol. Evol., Volume 13 (1996), pp. 150-169

[〚17〛] J.P. Huelsenbeck; K.A. Crandall Phylogeny estimation and hypothesis testing using maximum likelihood, Ann. Rev. Ecol. Syst., Volume 28 (1997), pp. 437-466

[〚18〛] D.L. Swofford PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4.0b8, Sinauer Associates, Sunderland, MA, 1998

[〚19〛] D. Posada; K.A. Crandall Modeltest: testing the model of DNA substitution, Bioinformatics, Volume 14 (1998), pp. 817-818

[〚20〛] N. Saitou; M. Nei The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., Volume 4 (1987), pp. 406-425

[〚21〛] A. Rzhetsky; M. Nei A simple method for estimating minimum evolution trees, Mol. Biol. Evol., Volume 9 (1992), pp. 945-967

[〚22〛] J. Felsenstein Confidence limits on phylogenies: an approach using bootstrap, Evolution, Volume 39 (1985), pp. 783-791

[〚23〛] M. Nei; S. Kumar Molecular evolution and phylogenetics, Oxford University Press, Oxford, 2000

[〚24〛] M. Hasegawa; H. Kishino; T. Yano Dating of the human-ape splitting by a molecular clock of mitochondrial DNA, J. Mol. Evol., Volume 22 (1985), pp. 160-174

[〚25〛] F. Rodriguez; J.L. Oliver; A. Marin; J.R. Medina The general stochastic model of nucleotide substitution, J. Theor. Biol., Volume 142 (1990), pp. 485-501

[〚26〛] P.J. Heise; L.R. Maxson; H.G. Dowling; S.B. Hedges Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes, Mol. Biol. Evol., Volume 12 (1995), pp. 259-265

[〚27〛] O. Rieppel A review of the origin of snakes, Evol. Biol., Volume 22 (1988), pp. 37-130

[〚28〛] B.N. Campbell Hic sunt serpentes: Molecular phylogenetics and the Boidae (Serpentes: Booidea), PhD dissertation, Queen's University, Kingston, 1997

[〚29〛] R. Hoffstetter Contribution à l'étude des Elapidae actuels et fossiles, et de l'ostéologie des ophidiens, Arch. Mus. Hist. Nat. Lyon, Volume 15 (1939), pp. 1-78

[〚30〛] R. Hoffstetter Revue des récentes acquisitions concernant l'histoire et la systématique des squamates, Colloq. Int. CNRS, Volume 104 (1962), pp. 243-279

[〚31〛] J.-C. Rage Fossil history (R.A. Seigel; J.T. Collins; S.S. Novak, eds.), Snakes: ecology and evolutionary biology, Macmillan Publ, New York, 1987, pp. 51-76

[〚32〛] G. Underwood A systematic analysis of boid snakes, Morphology and biology of reptiles, Linn. Soc. Symp. Ser., Volume 3 (1976), pp. 151-175

[〚33〛] O. Rieppel A cladistic classification of primitive snakes based on skull structure, Z. zool. Syst. Evolforsch., Volume 17 (1979), pp. 140-150

[〚34〛] H.W. Greene; G.M. Burghardt Behavior and phylogeny: constriction in ancient and modern snakes, Science, Volume 200 (1978), pp. 74-77

[〚35〛] D. Cundall; F.J. Irish The function of the intramaxillary joint in the Round Island boa, Casarea dussumieri, J. Zool. Lond., Volume 217 (1989), pp. 569-598

[〚36〛] A.G. Kluge Calabaria and the phylogeny of erycine snakes, Zool. J. Linn. Soc., Volume 107 (1993), pp. 293-351

[〚37〛] H. Zaher Les Tropidopheoidea (Serpentes; Alethinophidia) sont-ils réellement monophylétiques ? Arguments en faveur de leur polyphylétisme, C. R. Acad. Sci. Paris, Ser. III, Volume 317 (1994), pp. 471-478

[〚38〛] B. Mahendra Some remarks on the phylogeny of the Ophidia, Anat. Anz., Volume 86 (1938), pp. 347-356

[〚39〛] G.L. Walls Ophthalmological implications for the early history of snakes, Copeia 1940 (1940), pp. 1-8

[〚40〛] C.L. Camp Classification of lizards, Bull. Am. Mus. Nat. Hist., Volume 48 (1923), pp. 289-481

[〚41〛] F. Nopcsa Eidolosaurus und Pachyophis. Zwei neue Neucom-Reptilien, Palaeontographica, Volume 65 (1923), pp. 99-154

[〚42〛] M.W. Caldwell; M.S.Y. Lee A snake with legs from the marine Cretaceous of the Middle East, Nature, Volume 386 (1997), pp. 705-709

[〚43〛] J.-C. Rage; F. Escuillié Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques, C. R. Acad. Sci. Paris, Ser. IIa, Volume 330 (2000), pp. 513-520

[〚44〛] J.-C. Rage Phylogénie et origine des serpents, Bull. Soc. Herpétol. Fr., Volume 96 (2000), pp. 57-69

[〚45〛] H. Zaher; O. Rieppel The phylogenetic relationships of Pachyrhachis problematicus, and the evolution of limblessness in snakes (Lepidosauria, Squamata), C. R. Acad. Sci. Paris, Ser. IIa, Volume 329 (1999), pp. 831-837

[〚46〛] H. Zaher; O. Rieppel A brief history of snakes, Herpetol. Rev., Volume 31 (2000), pp. 73-76

[〚47〛] H. Zaher; O. Rieppel On the phylogenetic relationships of the Cretaceous snakes with legs, with special reference to Pachyrhachis problematicus (Squamata, Serpentes), J. Vertebr. Paleontol., Volume 22 (2002), pp. 104-109

[〚48〛] M.S.Y. Lee Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships, Biol. J. Linn. Soc., Volume 65 (1998), pp. 369-453


Cité par

  • Yuhao Xu; Shun Ma; Bo Cai; Diancheng Yang; Tianyou Zhang; Tianxuan Gu; Fengcheng Zhu; Song Huang; Lifang Peng Taxonomic Revision of Ningshan Odd-Scaled Snake, Achalinus ningshanensis (Serpentes, Xenodermidae), with Description of a New Subspecies from Western China, Animals, Volume 14 (2024) no. 23, p. 3425 | DOI:10.3390/ani14233425
  • L. Tavares-Bastos; L.D. Cunha; F.G.R. França; L.M. Diele-Viegas; G.H.C. Vieira; M.G. Santos; A.C. Vaqueiro; D.J. Gower; G.R. Colli; S.N. Báo Comparative electron microscopy study of spermatozoa in snakes (Lepidosauria, Squamata), Micron, Volume 182 (2024), p. 103637 | DOI:10.1016/j.micron.2024.103637
  • Hussam Zaher; Carlos Trusz; Claudia Koch; Omar M. Entiauspe-Neto; Jaqueline Battilana; Felipe G. Grazziotin Molecular phylogeny and biogeography of the dwarf boas of the family Tropidophiidae (Serpentes: Alethinophidia), Systematics and Biodiversity, Volume 22 (2024) no. 1 | DOI:10.1080/14772000.2024.2319289
  • Ricardo Arturo Guerra‐Fuentes; Romário Gemaque de Sousa; Ana Lúcia da Costa Prudente Embryonic development of the pelvic girdle and hindlimb skeletal elements in Anilius scytale (Linnaeus, 1758) (Serpentes: Aniliidae), The Anatomical Record, Volume 307 (2024) no. 1, p. 66 | DOI:10.1002/ar.25279
  • Fanai Malsawmdawngliana; Lal Muansanga; Ro Malsawma; Mathipi Vabeiryureilai; Hmar Tlawmte Lalremsanga; Lal Biakzuala Systematics and Ecological Data Enrichment for the Recently Described Lushai Hills Dragon Snake, Stoliczkia vanhnuailianai Lalronunga, Lalhmangaiha, Zosangliana, Lalhmingliani, Gower, Das Deepak, 2021 (Squamata: Xenodermidae) from Northeast India, Current Herpetology, Volume 41 (2022) no. 2 | DOI:10.5358/hsj.41.163
  • Catherine R. C. Strong; Mark D. Scherz; Michael W. Caldwell Convergence, divergence, and macroevolutionary constraint as revealed by anatomical network analysis of the squamate skull, with an emphasis on snakes, Scientific Reports, Volume 12 (2022) no. 1 | DOI:10.1038/s41598-022-18649-z
  • Bibliography, Venomous Bites from Non-Venomous Snakes (2022), p. 633 | DOI:10.1016/b978-0-12-822786-2.00018-2
  • Angele Martins; Claudia Koch; Mitali Joshi; Roberta Pinto; Paulo Passos Picking up the threads: Comparative osteology and associated cartilaginous elements for members of the genusTrilepidaHedges, 2011 (Serpentes, Leptotyphlopidae) with new insights on the Epictinae systematics, The Anatomical Record, Volume 304 (2021) no. 10, p. 2149 | DOI:10.1002/ar.24747
  • Vitoria Deolindo; Claudia Koch; Mitali Joshi; Angele Martins To move or not to move? Skull and lower jaw morphology of the blindsnake Afrotyphlops punctatus (Leach, 1819) (Serpentes, Typhlopoidea, Typhlopidae) with comments on its previously advocated cranial kinesis, The Anatomical Record, Volume 304 (2021) no. 10, p. 2279 | DOI:10.1002/ar.24598
  • Johann Chretien; Cynthia Y. Wang‐Claypool; Frank Glaw; Mark D. Scherz The bizarre skull of Xenotyphlops sheds light on synapomorphies of Typhlopoidea, Journal of Anatomy, Volume 234 (2019) no. 5, p. 637 | DOI:10.1111/joa.12952
  • Chad Keates; Werner Conradie; Eli Greenbaum; Shelley Edwards A snake in the grass: Genetic structuring of the widespread African grass snake (PsammophylaxFitzinger 1843), with the description of a new genus and a new species, Journal of Zoological Systematics and Evolutionary Research, Volume 57 (2019) no. 4, p. 1039 | DOI:10.1111/jzs.12337
  • Eva Landová; Natavan Bakhshaliyeva; Markéta Janovcová; Šárka Peléšková; Mesma Suleymanova; Jakub Polák; Akif Guliev; Daniel Frynta Association Between Fear and Beauty Evaluation of Snakes: Cross-Cultural Findings, Frontiers in Psychology, Volume 9 (2018) | DOI:10.3389/fpsyg.2018.00333
  • Aurélien Miralles; Julie Marin; Damien Markus; Anthony Herrel; S. Blair Hedges; Nicolas Vidal Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications, Journal of Evolutionary Biology, Volume 31 (2018) no. 12, p. 1782 | DOI:10.1111/jeb.13373
  • Sean M. Harrington; Tod W. Reeder Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction, Biological Journal of the Linnean Society, Volume 121 (2017) no. 2, p. 379 | DOI:10.1093/biolinnean/blw039
  • Vivek Philip Cyriac; Ullasa Kodandaramaiah Paleoclimate determines diversification patterns in the fossorial snake family Uropeltidae Cuvier, 1829, Molecular Phylogenetics and Evolution, Volume 116 (2017), p. 97 | DOI:10.1016/j.ympev.2017.08.017
  • Jacob A. Mccartney; Erik R. Seiffert A late Eocene snake fauna from the Fayum Depression, Egypt, Journal of Vertebrate Paleontology, Volume 36 (2016) no. 1, p. e1029580 | DOI:10.1080/02724634.2015.1029580
  • Alex Figueroa; Alexander D. McKelvy; L. Lee Grismer; Charles D. Bell; Simon P. Lailvaux; Aristeidis Parmakelis A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus, PLOS ONE, Volume 11 (2016) no. 9, p. e0161070 | DOI:10.1371/journal.pone.0161070
  • Agustín Scanferla; Krister T. Smith; Stephan F. K. Schaal Revision of the cranial anatomy and phylogenetic relationships of the Eocene minute boasMesselophis variatusandMesselophis ermannorum(Serpentes, Booidea), Zoological Journal of the Linnean Society, Volume 176 (2016) no. 1, p. 182 | DOI:10.1111/zoj.12300
  • Benjamin J. van Soldt; Brian D. Metscher; Robert E. Poelmann; Bart Vervust; Freek J. Vonk; Gerd B. Müller; Michael K. Richardson; Wan-Xi Yang Heterochrony and Early Left-Right Asymmetry in the Development of the Cardiorespiratory System of Snakes, PLoS ONE, Volume 10 (2015) no. 1, p. e116416 | DOI:10.1371/journal.pone.0116416
  • Roberta R. Pinto; Angele R. Martins; Felipe Curcio; Luciana de O. Ramos Osteology and Cartilaginous Elements ofTrilepida salgueiroi(Amaral, 1954) (Scolecophidia: Leptotyphlopidae), The Anatomical Record, Volume 298 (2015) no. 10, p. 1722 | DOI:10.1002/ar.23191
  • Bibliography, Herpetology (2014), p. 629 | DOI:10.1016/b978-0-12-386919-7.16001-0
  • R. Graham Reynolds; Matthew L. Niemiller; Liam J. Revell Toward a Tree-of-Life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling, Molecular Phylogenetics and Evolution, Volume 71 (2014), p. 201 | DOI:10.1016/j.ympev.2013.11.011
  • Jacob A. McCartney; Nancy J. Stevens; Patrick M. O’Connor; Richard J. Butler The Earliest Colubroid-Dominated Snake Fauna from Africa: Perspectives from the Late Oligocene Nsungwe Formation of Southwestern Tanzania, PLoS ONE, Volume 9 (2014) no. 3, p. e90415 | DOI:10.1371/journal.pone.0090415
  • Eskandar Rastegar-Pouyani; Naeimeh Eskandarzadeh; Jamshid Darvish Re-evaluation of the taxonomic status of sand boas of the genusEryx(Daudin, 1803) (Serpentes: Boidae) in north-eastern Iran using sequences of the mitochondrial genome, Zoology in the Middle East, Volume 60 (2014) no. 4, p. 320 | DOI:10.1080/09397140.2014.970379
  • Baolin ZHANG; Song HUANG Relationship of Old World Pseudoxenodon and New World Dipsadinae, with Comments on Underestimation of Species Diversity of ChinesePseudoxenodon, Asian Herpetological Research, Volume 4 (2013) no. 3, p. 155 | DOI:10.3724/sp.j.1245.2013.000155
  • Zheng WANG; Hongliang LU; Li MA; Xiang JI Differences in Thermal Preference and Tolerance among Three Phrynocephalus Lizards (Agamidae) with Different Body Sizes and Habitat Use, Asian Herpetological Research, Volume 4 (2013) no. 3, p. 214 | DOI:10.3724/sp.j.1245.2013.000214
  • R. Alexander Pyron; H.K. Dushantha Kandambi; Catriona R. Hendry; Vishan Pushpamal; Frank T. Burbrink; Ruchira Somaweera Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka, Molecular Phylogenetics and Evolution, Volume 66 (2013) no. 3, p. 969 | DOI:10.1016/j.ympev.2012.12.004
  • Agustín Scanferla; Hussam Zaher; Fernando E. Novas; Christian de Muizon; Ricardo Céspedes; Richard J. Butler A New Snake Skull from the Paleocene of Bolivia Sheds Light on the Evolution of Macrostomatans, PLoS ONE, Volume 8 (2013) no. 3, p. e57583 | DOI:10.1371/journal.pone.0057583
  • H. Lisle Gibbs; Libia Sanz; Michael G. Sovic; Juan J. Calvete; William J. Etges Phylogeny-Based Comparative Analysis of Venom Proteome Variation in a Clade of Rattlesnakes (Sistrurus sp.), PLoS ONE, Volume 8 (2013) no. 6, p. e67220 | DOI:10.1371/journal.pone.0067220
  • Krister T. Smith New constraints on the evolution of the snake clades Ungaliophiinae, Loxocemidae and Colubridae (Serpentes), with comments on the fossil history of erycine boids in North America, Zoologischer Anzeiger - A Journal of Comparative Zoology, Volume 252 (2013) no. 2, p. 157 | DOI:10.1016/j.jcz.2012.05.006
  • Jacques A. Gauthier; Maureen Kearney; Jessica Anderson Maisano; Olivier Rieppel; Adam D.B. Behlke Assembling the Squamate Tree of Life: Perspectives from the Phenotype and the Fossil Record, Bulletin of the Peabody Museum of Natural History, Volume 53 (2012) no. 1, p. 3 | DOI:10.3374/014.053.0101
  • R. Alexander Pyron; Frank T. Burbrink EXTINCTION, ECOLOGICAL OPPORTUNITY, AND THE ORIGINS OF GLOBAL SNAKE DIVERSITY, Evolution, Volume 66 (2012) no. 1, p. 163 | DOI:10.1111/j.1558-5646.2011.01437.x
  • Olivier Rieppel “Regressed” Macrostomatan Snakes, Fieldiana Life and Earth Sciences, Volume 5 (2012), p. 99 | DOI:10.3158/2158-5520-5.1.99
  • Jennifer C. Olori; Christopher J. Bell; Andrew A. Farke Comparative Skull Morphology of Uropeltid Snakes (Alethinophidia: Uropeltidae) with Special Reference to Disarticulated Elements and Variation, PLoS ONE, Volume 7 (2012) no. 3, p. e32450 | DOI:10.1371/journal.pone.0032450
  • Jack W. Sites; Tod W. Reeder; John J. Wiens Phylogenetic Insights on Evolutionary Novelties in Lizards and Snakes: Sex, Birth, Bodies, Niches, and Venom, Annual Review of Ecology, Evolution, and Systematics, Volume 42 (2011) no. 1, p. 227 | DOI:10.1146/annurev-ecolsys-102710-145051
  • Dustin S. Siegel; Aurélien Miralles; Robert D. Aldridge Controversial snake relationships supported by reproductive anatomy, Journal of Anatomy, Volume 218 (2011) no. 3, p. 342 | DOI:10.1111/j.1469-7580.2010.01334.x
  • Frank Burbrink; Brian Crother Evolution and Taxonomy of Snakes, Reproductive Biology and Phylogeny of Snakes (2011), p. 19 | DOI:10.1201/b10879-3
  • Dustin Siegel; Aurélien Miralles; Ryan Chabarria; Robert Aldridge Female Reproductive Anatomy, Reproductive Biology and Phylogeny of Snakes (2011), p. 347 | DOI:10.1201/b10879-10
  • Jennifer C. Olori Digital Endocasts of the Cranial Cavity and Osseous Labyrinth of the Burrowing Snake Uropeltis woodmasoni (Alethinophidia: Uropeltidae), Copeia, Volume 2010 (2010) no. 1, p. 14 | DOI:10.1643/ch-09-082
  • Vincent J. Lynch; Günter P. Wagner DID EGG-LAYING BOAS BREAK DOLLO'S LAW? PHYLOGENETIC EVIDENCE FOR REVERSAL TO OVIPARITY IN SAND BOAS (ERYX: BOIDAE), Evolution, Volume 64 (2010) no. 1, p. 207 | DOI:10.1111/j.1558-5646.2009.00790.x
  • Jean-Claude Rage; Marc Augé Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe, Geobios, Volume 43 (2010) no. 2, p. 253 | DOI:10.1016/j.geobios.2009.08.002
  • Alessandro Palci; Michael W. Caldwell Redescription ofActeosaurus tommasiniivon Meyer, 1860, and a discussion of evolutionary trends within the clade Ophidiomorpha, Journal of Vertebrate Paleontology, Volume 30 (2010) no. 1, p. 94 | DOI:10.1080/02724630903409139
  • Juan J. Calvete Brief History and Molecular Determinants of Snake Venom Disintegrin Evolution, Toxins and Hemostasis (2010), p. 285 | DOI:10.1007/978-90-481-9295-3_18
  • REBECCA S. COMEAUX; JENNIFER C. OLORI; CHRISTOPHER J. BELL Cranial osteology and preliminary phylogenetic assessment of Plectrurus aureus Beddome, 1880 (Squamata: Serpentes: Uropeltidae), Zoological Journal of the Linnean Society (2010), p. no | DOI:10.1111/j.1096-3642.2009.00595.x
  • Maximiliano Tourmente; Montserrat Gomendio; Eduardo R. S. Roldan; Laura C. Giojalas; Margarita Chiaraviglio SPERM COMPETITION AND REPRODUCTIVE MODE INFLUENCE SPERM DIMENSIONS AND STRUCTURE AMONG SNAKES, Evolution, Volume 63 (2009) no. 10, p. 2513 | DOI:10.1111/j.1558-5646.2009.00739.x
  • Juan J. Calvete; Libia Sanz; Yamileth Angulo; Bruno Lomonte; José María Gutiérrez Venoms, venomics, antivenomics, FEBS Letters, Volume 583 (2009) no. 11, p. 1736 | DOI:10.1016/j.febslet.2009.03.029
  • Wolfgang Wüster; Adrian Quijada-Mascareñas Recent Advances in Venomous Snake Systematics, Handbook of Venoms and Toxins of Reptiles (2009), p. 25 | DOI:10.1201/9781420008661.ch2
  • Juan Calvete; Libia Sanz; Paula Juárez Snake Venomics and Disintegrins, Handbook of Venoms and Toxins of Reptiles (2009), p. 337 | DOI:10.1201/9781420008661.ch17
  • Bibliography, Herpetology (2009), p. 581 | DOI:10.1016/b978-0-12-374346-6.00027-4
  • Olivier Rieppel; Nathan J. Kley; Jessica Anderson Maisano Morphology of the skull of the white‐nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae), Journal of Morphology, Volume 270 (2009) no. 5, p. 536 | DOI:10.1002/jmor.10703
  • Nian Chen; Shujin Zhao New progress in snake mitochondrial gene rearrangement, Mitochondrial DNA, Volume 20 (2009) no. 4, p. 69 | DOI:10.1080/19401730902964433
  • Jason J. Head; Jonathan I. Bloch; Alexander K. Hastings; Jason R. Bourque; Edwin A. Cadena; Fabiany A. Herrera; P. David Polly; Carlos A. Jaramillo Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures, Nature, Volume 457 (2009) no. 7230, p. 715 | DOI:10.1038/nature07671
  • Jie Yan; Hongdan Li; Kaiya Zhou Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships, BMC Genomics, Volume 9 (2008) no. 1 | DOI:10.1186/1471-2164-9-569
  • Raúl O. Gómez; Ana M. Báez; Guillermo W. Rougier An anilioid snake from the Upper Cretaceous of northern Patagonia, Cretaceous Research, Volume 29 (2008) no. 3, p. 481 | DOI:10.1016/j.cretres.2008.01.002
  • Marcela Buchtová; Gregory R. Handrigan; Abigail S. Tucker; Scott Lozanoff; Liam Town; Katherine Fu; Virginia M. Diewert; Carol Wicking; Joy M. Richman Initiation and patterning of the snake dentition are dependent on Sonic Hedgehog signaling, Developmental Biology, Volume 319 (2008) no. 1, p. 132 | DOI:10.1016/j.ydbio.2008.03.004
  • Silvia Rodrigues Geurgas; Miguel Trefaut Rodrigues; Craig Moritz The genus Coleodactylus (Sphaerodactylinae, Gekkota) revisited: A molecular phylogenetic perspective, Molecular Phylogenetics and Evolution, Volume 49 (2008) no. 1, p. 92 | DOI:10.1016/j.ympev.2008.05.043
  • Jean-Claude Rage Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil Part III. Ungaliophiinae, Booids incertae sedis, and Caenophidia. Summary, update and discussion of the snake fauna from the locality, Palaeovertebrata, Volume 36 (2008) no. 1-4 | DOI:10.18563/pv.36.1-4.37-73
  • ZBIGNIEW SZYNDLAR; RICHARD SMITH; JEAN-CLAUDE RAGE A new dwarf boa (Serpentes, Booidea, ‘Tropidophiidae’) from the Early Oligocene of Belgium: a case of the isolation of Western European snake faunas, Zoological Journal of the Linnean Society, Volume 152 (2008) no. 2, p. 393 | DOI:10.1111/j.1096-3642.2007.00357.x
  • L. Tavares‐Bastos; L. D. Cunha; G. R. Colli; S. N. Báo Ultrastructure of spermatozoa of scolecophidian snakes (Lepidosauria, Squamata), Acta Zoologica, Volume 88 (2007) no. 3, p. 189 | DOI:10.1111/j.1463-6395.2007.00265.x
  • Lígia Pizzatto; Otavio A. V. Marques REPRODUCTIVE ECOLOGY OF BOINE SNAKES WITH EMPHASIS ON BRAZILIAN SPECIES AND A COMPARISON TO PYTHONS, South American Journal of Herpetology, Volume 2 (2007) no. 2, p. 107 | DOI:10.2994/1808-9798(2007)2[107:reobsw]2.0.co;2
  • Michael S. Y. Lee; Andrew F. Hugall; Robin Lawson; John D. Scanlon Phylogeny of snakes (Serpentes): Combining morphological and molecular data in likelihood, Bayesian and parsimony analyses, Systematics and Biodiversity, Volume 5 (2007) no. 4, p. 371 | DOI:10.1017/s1477200007002290
  • Olivier Rieppel The naso-frontal joint in snakes as revealed by high-resolution X-ray computed tomography of intact and complete skulls, Zoologischer Anzeiger - A Journal of Comparative Zoology, Volume 246 (2007) no. 3, p. 177 | DOI:10.1016/j.jcz.2007.04.001
  • S. E. Vincent; P. D. Dang; A. Herrel; N. J. Kley Morphological integration and adaptation in the snake feeding system: a comparative phylogenetic study, Journal of Evolutionary Biology, Volume 19 (2006) no. 5, p. 1545 | DOI:10.1111/j.1420-9101.2006.01126.x
  • Nathan J. Kley Morphology of the lower jaw and suspensorium in the Texas blindsnake, Leptotyphlops dulcis (Scolecophidia: Leptotyphlopidae), Journal of Morphology, Volume 267 (2006) no. 4, p. 494 | DOI:10.1002/jmor.10414
  • Brice P. Noonan; Paul T. Chippindale Dispersal and vicariance: The complex evolutionary history of boid snakes, Molecular Phylogenetics and Evolution, Volume 40 (2006) no. 2, p. 347 | DOI:10.1016/j.ympev.2006.03.010
  • Alan de Queiroz; Javier A. Rodríguez‐Robles Historical Contingency and Animal Diets: The Origins of Egg Eating in Snakes, The American Naturalist, Volume 167 (2006) no. 5, p. 684 | DOI:10.1086/503118
  • Zoltán Tamás Nagy; Nicolas Vidal; Miguel Vences; William R. Branch; Olivier S. G. Pauwels; Michael Wink; Ulrich Joger Molecular Systematics of African Colubroidea (Squamata: Serpentes), African Biodiversity (2005), p. 221 | DOI:10.1007/0-387-24320-8_20
  • Songyu Dong; Yoshinori Kumazawa Complete Mitochondrial DNA Sequences of Six Snakes: Phylogenetic Relationships and Molecular Evolution of Genomic Features, Journal of Molecular Evolution, Volume 61 (2005) no. 1, p. 12 | DOI:10.1007/s00239-004-0190-9
  • D. J. Gower; N. Vidal; J. N. Spinks; C. J. McCarthy The phylogenetic position of Anomochilidae (Reptilia: Serpentes): first evidence from DNA sequences, Journal of Zoological Systematics and Evolutionary Research, Volume 43 (2005) no. 4, p. 315 | DOI:10.1111/j.1439-0469.2005.00315.x
  • Min Li; Bryan G. Fry; R. Manjunatha Kini Putting the Brakes on Snake Venom Evolution: The Unique Molecular Evolutionary Patterns of Aipysurus eydouxii (Marbled Sea Snake) Phospholipase A2 Toxins, Molecular Biology and Evolution, Volume 22 (2005) no. 4, p. 934 | DOI:10.1093/molbev/msi077
  • DEMIN HAN; KAIYA ZHOU; AARON M. BAUER Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota, Biological Journal of the Linnean Society, Volume 83 (2004) no. 3, p. 353 | DOI:10.1111/j.1095-8312.2004.00393.x
  • Theodora Pinou; Saverio Vicario; Monique Marschner; Adalgisa Caccone Relict snakes of North America and their relationships within Caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences, Molecular Phylogenetics and Evolution, Volume 32 (2004) no. 2, p. 563 | DOI:10.1016/j.ympev.2004.02.005
  • Ronald A. Jenner; Mike Steel Accepting Partnership by Submission? Morphological Phylogenetics in a Molecular Millennium, Systematic Biology, Volume 53 (2004) no. 2, p. 333 | DOI:10.1080/10635150490423962

Cité par 73 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: