Plan
Comptes Rendus

Spectroscopic studies and crystal structure of tetrabutylammonium trichlorodimethylstannate(IV): Bu4NSnMe2Cl3
Comptes Rendus. Chimie, Volume 10 (2007) no. 6, pp. 469-472.

Résumés

The structure of Bu4NSnMe2Cl3 is found to be monomer, containing a 5-coordinated bipyramidal trigonal tin(IV) center. Crystals belong to the monoclinic space group C2/c, with unit-cell dimensions a = 26.633(4) Å; b = 9.880(2) Å; c = 21.510(2) Å; β = 114.82(2)°; Z = 8; D = 1.287 Mg/m3; R is refined to 0.0537 and Rw = 0.0642 for 3330 reflections (F > 2σ(F)).

La structure de Bu4NSnMe2Cl3 est discrète et contient un atome d'étain pentacoordiné dans un environnement bipyramidal trigonal. Bu4NSnMe2Cl3 cristallise dans le système monoclinique, groupe d'espace C2/c, les dimensions de la maille élémentaire étant a = 26,633(4) Å, b = 9,880(2) Å, c = 21,510(2) Å ; β = 114,82(2)° ; Z = 8 ; D = 1.287 Mg/m3 ; R mesuré 0.0537 et Rw = 0.0642 pour 3330 réflexions (F > 2σ(F)).

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2006.12.007
Keywords: Trichlorodimethylstannate(IV), Crystal structure, Infrared, Mössbauer spectroscopy, NMR spectroscopy
Mots clés : Trichlorodimethylstannate(IV), Structure cristallographique, Spectroscopies infrarouge, Spectroscopic mössbauer, Spectroscopic RMN

Aminata Diasse-Sarr 1 ; Aliou Hamady Barry 1 ; Libasse Diop 1 ; Ruben Alfredo Toscano 2 ; Bernard Mahieu 3

1 Laboratoire de chimie minérale et analytique (LACHIMIA), département de chimie, faculté des sciences et techniques, université Cheikh-Anta-Diop de Dakar, Dakar, Sénégal
2 Instituto de Chimica, Universidad National Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico D.F. 04510, Mexico
3 Département de chimie, CPMC, place Louis-Pasteur, B-1348 Louvain-la-Neuve, Belgique
@article{CRCHIM_2007__10_6_469_0,
     author = {Aminata Diasse-Sarr and Aliou Hamady Barry and Libasse Diop and Ruben Alfredo Toscano and Bernard Mahieu},
     title = {Spectroscopic studies and crystal structure of tetrabutylammonium {trichlorodimethylstannate(IV):} {Bu\protect\textsubscript{4}NSnMe\protect\textsubscript{2}Cl\protect\textsubscript{3}}},
     journal = {Comptes Rendus. Chimie},
     pages = {469--472},
     publisher = {Elsevier},
     volume = {10},
     number = {6},
     year = {2007},
     doi = {10.1016/j.crci.2006.12.007},
     language = {en},
}
TY  - JOUR
AU  - Aminata Diasse-Sarr
AU  - Aliou Hamady Barry
AU  - Libasse Diop
AU  - Ruben Alfredo Toscano
AU  - Bernard Mahieu
TI  - Spectroscopic studies and crystal structure of tetrabutylammonium trichlorodimethylstannate(IV): Bu4NSnMe2Cl3
JO  - Comptes Rendus. Chimie
PY  - 2007
SP  - 469
EP  - 472
VL  - 10
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crci.2006.12.007
LA  - en
ID  - CRCHIM_2007__10_6_469_0
ER  - 
%0 Journal Article
%A Aminata Diasse-Sarr
%A Aliou Hamady Barry
%A Libasse Diop
%A Ruben Alfredo Toscano
%A Bernard Mahieu
%T Spectroscopic studies and crystal structure of tetrabutylammonium trichlorodimethylstannate(IV): Bu4NSnMe2Cl3
%J Comptes Rendus. Chimie
%D 2007
%P 469-472
%V 10
%N 6
%I Elsevier
%R 10.1016/j.crci.2006.12.007
%G en
%F CRCHIM_2007__10_6_469_0
Aminata Diasse-Sarr; Aliou Hamady Barry; Libasse Diop; Ruben Alfredo Toscano; Bernard Mahieu. Spectroscopic studies and crystal structure of tetrabutylammonium trichlorodimethylstannate(IV): Bu4NSnMe2Cl3. Comptes Rendus. Chimie, Volume 10 (2007) no. 6, pp. 469-472. doi : 10.1016/j.crci.2006.12.007. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2006.12.007/

Version originale du texte intégral

1 Introduction

Organotin halogeno-species have already been extensively studied by both vibrational spectroscopy and X-ray diffraction [1–4]. The crystal structure of (Me2SnCl, terpyridyl)+(Me2SnCl3) has also been reported by Einstein and Penfold [5], while the dimethyltin trichloride anion with tetraethylammonium as counter cation has been reported by Debye et al. [6]. While studying the interactions between the tetrabutylammonium hydrogenosulphate and dimethyltin dichloride, Bu4NSnMe2Cl3 has been isolated. We report here the X-ray structure of Bu4NSnMe2Cl3 to examine the influence of the cation.

2 Experimental

2.1 Synthesis

Ethanolic solutions containing Bu4NHSO4 (1.54 g; 9 mmol) and SnMe2Cl2 (0.99 g; 9 mmol) have been mixed and stirred at room temperature for more than 1 h.

After removing the precipitate, the filtrate was allowed to evaporate to give colourless crystals of the title compound. Analytical data: % found (% calculated): %C: 43.40 (43.50); %H: 8.37 (8.35); %N: 2.81 (2.79); %Cl: 21.40 (21.60); %Sn: 23.85 (23.90) [171° dec., yield 80%].

The reaction is:

Bu4NHSO4 + 2 SnMe2Cl2 → SnMe2ClHSO4 + Bu4NSnMe2Cl3.

The elemental analyses were performed by the ‘Service central d'analyses’, CNRS, Vernaison, France.

2.2 Infrared and Raman data (cm−1)

The IR and Raman spectra were obtained as described in [7a] and [7b], respectively.

569s (526w) νas SnC2; 515m (516vs) νs SnC2; 316m (320m) νs SnCl3; 240m (262w) νas SnCl3 (the values in parentheses are related to the Raman spectrum).

2.3 Mössbauer data (mm s−1)

The Mössbauer data are obtained as described in [8].

I.S. = 1.39; Q.S. = 3.56; Γ = 0.94.

2.4 NMR data [CDCl3; δ (ppm); J (Hz)]

The NMR spectra were recorded in chloroform at the ‘Centre régional des mesures physiques de l'Ouest’, Rennes, France.

  • 1H: 1.02(t) (12H) –CH2CH3; 1.36(q) (6H) SnMe2; 1.44(m) (8H) N–CH2; 1.65(m) (8H) CH2CH2–CH2; 3.24(m) (8H) CH2CH2–CH3; 2JSn–H = 84.5; 88.5
  • 13C: 13.72(s) –CH2CH3; 18.21(q) SnMe2; 19.79(s) N–CH2; 24.09(s) CH2CH2–CH2; 59.06(s) CH2CH2–CH3; 1JSnC: 712.10; 681.33
  • 119Sn: −100.94.

2.5 Crystallography

X-ray-quality crystals were grown by slow evaporation of a methanol solution. A single crystal of approximate dimensions 0.68 × 0.60 × 0.36 mm was used for data collection. Experimental details relating to the crystal class, method of data collection and data manipulation are given in Table 1. Selected geometric data are given in Table 2.

Table 1

Crystal data, data collection, solution and structure refinement for the title compound

Empirical formulaC18H42Cl3NSn
Colour, habitColourless, irregular
Crystal size (mm)0.68 × 0.60 × 0.36
Crystal systemMonoclinic
Space groupC2/c
Unit cell dimensionsa = 26.633(2) Å
b = 9.880(2) Å, β = 114.82(2)°
c = 21.510(2) Å
Volume5137.0(7) Å3
Z8
Formula weight497.6
Density (calc.)1.287 Mg/m3
Absorption coefficient1.3087 mm−1
F(000)2064
Diffractometer usedSiemens P4/PC
RadiationMo Kα (λ = 0.71073 Å)
Temperature (K)293
MonochromatorHighly oriented graphite crystal
2θ Range3.0°–55.0°
Scan typeω/2θ
Scan speedVariable; 4.00°–511.00° in ω
Scan width (ω)0.78°
Background measurementStationary crystal and stationary counter at beginning and end of scan, each for 25.0% of total scan time
Standard reflections3 Measured every 97 reflections
Index ranges0 < h < 34, 0 < k < 12, −27 < l < 25
Reflections collected6026
Independent reflections5900 (Rint = 2.69%)
Observed reflections3330 [F > 4.0σ(F)]
Absorption correctionSemi-empirical [9]
Min./max. transmission0.2324/0.2982
System usedSiemens SHELXTL PLUS (PC version) [10]
SolutionDirect methods
Refinement methodFull-matrix least-squares
Quantity minimizedw(F0 − Fc)2
Absolute structureN/A
Extinction correctionX = 0.00003(2), where F = F[1 + 0.0008F2/sin(2θ)]−1/4
Hydrogen atomsRiding model, fixed isotopic U
Weighting schemew−1 = σ2(F) + 0.0008F2
Number of parameters refined209
Final R indices (obs. data)R = 5.37%, wR = 6.42%
R Indices (all data)R = 9.62%, wR = 7.68%
Goodness-of-fit1.27
Largest difference peak0.93 eÅ−3
Largest difference hole−0.68 eÅ−3
Deposit number (CCDC)140722
Table 2

Selected bond lengths [Å] and angles [°]

Sn(1)–Cl(1)2.563(2)Sn(1)–Cl(2)2.560(2)
Sn(1)–Cl(3)2.387(3)Sn(1)–C(1′)2.104(10)
Sn(1)–C(2′)2.110(11)N(1)–C(1)1.520(10)
N(1)–C(5)1.523(9)N(1)–C(9)1.528(9)
N(1)–C(13)1.506(7)C(1)–C(2)1.514(9)
C(2)–C(3)1.509(12)C(3)–C(4)1.496(12)
C(5)–C(6)1.498(9)C(6)–C(7)1.521(14)
C(7)–C(8)1.479(13)C(9)–C(10)1.508(11)
C(10)–C(11)1.540(14)C(11)–C(12)1.496(16)
C(14)–C(13)1.507(11)C(14)–C(15)1.518(11)
C(15)–C(16)1.515(13)
Cl(1)–Sn(1)–Cl(2)178.0(1)Cl(1)–Sn(1)–Cl(3)88.9(1)
Cl(2)–Sn(1)–Cl(3)92.1(1)Cl(1)–Sn(1)–C(1′)91.5(3)
Cl(2)–Sn(1)–C(1′)89.9(3)Cl(3)–Sn(1)–C(1′)106.1(4)
Cl(1)–Sn(1)–C(2′)89.3(2)Cl(2)–Sn(1)–C(2′)88.7(2)
Cl(3)–Sn(1)–C(2′)110.2(3)C(1′)–Sn(1)–C(2′)143.7(5)
C(1)–N(1)–C(5)111.1(5)C(1)–N(1)–C(9)105.9(6)
C(5)–N(1)–C(9)110.3(5)C(1)–N(1)–C(13)111.0(4)
C(5)–N(1)–C(13)107.1(6)C(9)–N(1)–C(13)111.5(5)

The asymmetric unit used in text and tables is shown in Fig. 1.

Fig. 1

ORTEP drawing of the title compound with the atomic numbering scheme.

3 Results and discussion

The presence of a band at 515 cm−1 due to νs SnC2 is indicative of a non-linear SnC2 group [11]. The Q.S. value [Q.S. = 3.56 mm s−1] is in the range of pentacoordinated tin centers [12].

The 119Sn NMR exhibits one resonance at −100.94 ppm (in SnMe2Cl2 δ 119Sn = 141 ppm [13], the values of the coupling constants are 1JSnC = 712.1; 681.3 Hz and 2JSnH = 84.5; 88.5 Hz). The 2J value larger than 83 Hz is indicative of an SnC2 angle above 135° [14].

Fig. 1 shows an ORTEP drawing of the asymmetric unit with the labelling scheme of the structure; Fig. 2 shows the packing arrangement in the crystal. It consists of an assemblage of Bu4N+ and SnMe2Cl3 entities, in which the tin atom adopts a trigonal bipyramidal environment with Cl(1) and Cl(2) in the axial positions and Cl(3), C(1′) and C(2′) in the equatorial positions. The axial SnCl bonds are almost collinear [Cl(1)–Sn–Cl(2) = 178.0°]. The only important angular distortions from a regular trigonal bipyramidal configuration are within the equatorial plane. The angle between the methyl groups is 143.7°, while the two Me–Sn–Cl angles are 106.1° and 110.2° (the sum of the angles around the tin atom in the equatorial plane is 360°).

Fig. 2

The packing arrangement in the crystal.

These results are in good agreement with those obtained in (Me2SnCl, terpyridyl)+(Me2SnCl3) [5]. In the latter case, the three equatorial planar angles are 140°, 107° and 113°, while the two axial Sn–Cl bonds are perfectly colinear [Cl–Sn–Cl = 180°].

As it has been observed in Me2SnCl3-containing compounds, the axial Sn–Cl bonds [2.53(2) Å] are significantly greater than the equatorial one [2.38(3) Å]; in (Me2SnCl, terpyridyl)+(Me2SnCl3) the distances are 2.54 and 2.32 Å, respectively. The Sn–C distances in the two compounds are also very similar: 2.10 Å in the present case and 2.11 Å in (Me2SnCl, terpyridyl)+(Me2SnCl3).

In the cation, the N–C and C–C distances are in the expected ranges [N–C: 1.506(7)–1.528(9) Å; C–C: 1.479(13)–1.540(14) Å], while the C–N–C angles deviate slightly from those in a regular tetrahedron [range: 105.9(6)°–111.1(5)°].

4 Conclusion

The structure of the title compound is discrete; the tin center adopts a trigonal bipyramidal environment, as in the previously published compounds containing SnMe2Cl3 units: it appears that there is no cation effect on the environment of SnMe2Cl3, the interactions being essentially electrostatic.

Acknowledgements

The Dakar group thanks the Third World Academy of Sciences (TWAS) (Trieste – Italy) for financial support (Grant Number 93318 RG/AF/AC).


Bibliographie

[1] J.P. Clark; C.J. Wilkins J. Chem. Soc., A (1966), p. 871

[2] I.R. Beattie; F.C. Stones; L.E. Alexander J. Chem. Soc., Dalton Trans. (1973), p. 465

[3] G. Matsubayashi; K. Ueyama; T. Tanaka J. Chem. Soc., Dalton Trans. (1985), p. 465

[4] J.S. Casas; A. Castineiras; M.D. Couce; G. Martinez; J. Sordo; J.M. Varela J. Organomet. Chem. (1996), p. 165

[5] F.W. Einstein; B.R. Penfold J. Chem. Soc., A (1968), p. 3019

[6] N.W.G. Debye; E. Rosenberg; J.J. Zuckerman J. Am. Chem. Soc., 90 (1968), p. 3234

[7] A.S. Sall; A. Diassé; O. Sarr; L. Diop; M. Sidibé; M. Lahlou; L. Diop; B. Mahieu Main Group Met. Chem., 15 (1992) no. 10, p. 265

[8] M. Gielen; A. Bouhdid; F. Kayser; M. Biesemans; D. de Vos; B. Mahieu; R. Willem J. Organomet. Chem., 9 (1995), p. 251

[9] N. Walker; D. Stuart Acta Crystallogr., A39 (1938), p. 158

[10] G.M. Sheldrick Siemens SHELXTL PLUS: Release 4.0 for Siemens R3 Crystallographic Research System, Siemens Analytical X-ray Instruments Inc., Madison, WI, USA, 1989

[11] K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, 1986

[12] A.G. Davies; P.J. Smith (G. Wilkinson; F.G.A. Stone; E.W. Abel, eds.), Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press, Oxford, UK, 1982 (Chapter 11)

[13] R.K. Harris; J.D. Kennedy; W. Mc Farlane; P.J. Smith; A.P. Tupciauskas Annu. Rev. NMR Spectrosc., 8 (1978), p. 342

[14] T.P. Lockhart; F. Manders Inorg. Chem., 25 (1986), p. 89


Commentaires - Politique