Plan
Comptes Rendus

Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols
[Les oxydes de Mn : une source majeure de Co et Ni facilement mobilisables en conditions réductrices dans les Ferralsols de Nouvelle-Calédonie]
Comptes Rendus. Géoscience, Volume 334 (2002) no. 4, pp. 273-278.

Résumés

Chemical and bacterial reduction and dissolution of Fe and Mn-oxide and the concomitant solubilisation of Co and Ni were studied in a surface horizon of a New-Caledonia Ferralsol. Chemical extractions showed that Mn and Co were in a large part associated in Mn-oxides. The main part of Ni was associated with goethite, but a very small fraction was also associated with Mn-oxides. Anaerobic reducing bacterial activity was responsible for Fe solubilisation at a smaller extent than for Mn solubilisation and consequently for associated metal release. Submicroscopic investigations revealed the presence of a Mn-oxide containing Co, Ni and Al, close to a lithiophorite–asbolane mixed-layers Mn-oxide, which can be considered as a main source of easily available metals in this soil.

La réduction et la dissolution chimique et bactérienne des oxydes de Fe et Mn et la solubilisation de Co et Ni ont été étudiées dans l'horizon de surface d'un Ferralsol de Nouvelle-Calédonie. Les extractions chimiques montrent que Mn et Co sont associés en grande partie aux oxydes de Mn. Ni se trouve principalement dans les gœ thites et, pour une très faible fraction, dans les oxydes de Mn. La réduction bactérienne de Fe et Mn est responsable de la solubilisation d'une faible fraction de Fe et d'importantes quantités de Mn et de métaux associés. Des observations submicroscopiques révèlent la présence d'un oxyde de Mn, contenant Co, Ni et Al, proche d'un oxyde mixte de lithiophorite–asbolane, qui peut être considéré comme une source majeure de métaux facilement disponibles dans ce sol.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0713(02)01753-4
Keywords: chemical and bacterial reduction, Mn-oxide, Fe-oxide, Ferralsol, TEM, Surface Geosciences
Mots-clés : réduction chimique et bactérienne, oxyde de Mn, oxyde de Fe, Ferralsol, MET, Géosciences de surface

Cécile Quantin 1 ; Thierry Becquer 2 ; Jacques Berthelin 1

1 Laboratoire des interactions micro-organismes–minéraux–matières organiques dans les sols (LiMos), FRE 2440 du CNRS, associée à l'université Henri-Poincaré, Nancy-1, 17, rue Notre-Dame-des-Pauvres, BP 5, 54501 Vandoeuvre-lès-Nancy cedex, France
2 IRD, c/o Laboratoire des interactions micro-organismes–minéraux–matières organiques dans les sols (LiMos), FRE 2440 du CNRS, associée à l'université Henri-Poincaré, Nancy-1, 17, rue Notre-Dame-des-Pauvres, BP 5, 54501 Vandoeuvre-lès-Nancy cedex, France
@article{CRGEOS_2002__334_4_273_0,
     author = {C\'ecile Quantin and Thierry Becquer and Jacques Berthelin},
     title = {Mn-oxide: a major source of easily mobilisable {Co} and {Ni} under reducing conditions in {New} {Caledonia} {Ferralsols}},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {273--278},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-0713(02)01753-4},
     language = {en},
}
TY  - JOUR
AU  - Cécile Quantin
AU  - Thierry Becquer
AU  - Jacques Berthelin
TI  - Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols
JO  - Comptes Rendus. Géoscience
PY  - 2002
SP  - 273
EP  - 278
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-0713(02)01753-4
LA  - en
ID  - CRGEOS_2002__334_4_273_0
ER  - 
%0 Journal Article
%A Cécile Quantin
%A Thierry Becquer
%A Jacques Berthelin
%T Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols
%J Comptes Rendus. Géoscience
%D 2002
%P 273-278
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-0713(02)01753-4
%G en
%F CRGEOS_2002__334_4_273_0
Cécile Quantin; Thierry Becquer; Jacques Berthelin. Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. Comptes Rendus. Géoscience, Volume 334 (2002) no. 4, pp. 273-278. doi : 10.1016/S1631-0713(02)01753-4. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/S1631-0713(02)01753-4/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

Version abrégée

1 Introduction

En Nouvelle-Calédonie, les sols développés sur roches ultrabasiques sont exceptionnellement riches en Fe et en métaux de transition tels que Mn, Ni, Cr et Co [9,11]. Les oxydes de Fe et de Mn sont à la fois des réservoirs et des puits de métaux [8,12], qui jouent un rôle important en contrôlant leur disponibilité [5]. Becquer et al. [1] ont observé une plus grande disponibilité de Ni dans les sols de plaine soumis à un engorgement. La réduction des oxydes de Fe et Mn par l'intervention de bactéries ferri- et mangani-réductrices [3] peut augmenter la solubilisation des métaux. Même si la gœthite est le principal minéral dans ces sols, des phases mineures comme les oxydes de Mn, plus réductibles que les oxydes de Fe, peuvent contrôler la disponibilité et la mobilité des éléments en traces.

Les objectifs de cette note sont (i) d'étudier, en conditions réductrices, la dissolution chimique et bactérienne des oxydes de Mn naturels et la solubilisation des éléments associés et (ii) d'identifier l'oxyde de Mn impliqué.

2 Matériel et méthodes

2.1 Caractérisation du sol

Un échantillon de sub-surface (4–10 cm) a été prélevé dans un Ferralsol de plaine décrit par Becquer et al. [1]. Après tamisage à 2 mm, une partie est séchée pour les analyses et une autre conservée humide (à l'obscurité et à 4 °C) jusqu'au début des expériences.

C et N total du sol sont dosés au CHN 1108 Carlo Erba. Les teneurs totales en Fe et en Mn sont déterminées par ICP–AES, après fusion de l'échantillon dans un mélange métaborate–tétraborate de lithium à 1000 °C. Les teneurs totales en Ni, Co et Cr sont mesurées après digestion diacide en four à micro-onde.

2.2 Dissolution chimique

La dissolution des oxydes de Mn a été réalisée selon la méthode de Chao [4] (1 g de sol, 25 ml NH2OH·HCl 0,1 M, pH 2, 30 min à 20 °C) et celle des oxydes de Fe a été réalisée selon Holmgren [6] (125 mg de sol, 35 ml de citrate–bicarbonate, 350 mg de dithionite, 20 °C, 5 j). Fe, Al, Mn, Ni et Co sont dosés dans les surnageants en ICP–AES.

2.3 Dissolution bactérienne

Des incubations ont été réalisées avec 50 g de sol (ou 25 g pour les témoins) et 750 ml (ou 375 ml) de solution de glucose à 1 g l−1 dans des flacons de 1000 ml (ou 500 ml) fermés hermétiquement. Le sol est incubé en présence ou absence (ajout de thimerosal à 1 g l−1) de micro-organismes autochtones pour distinguer les processus d'origine, soit microbiologique, soit physico-chimique. Les incubations sont conduites en anaérobiose, à l'obscurité à 28 °C pendant 11 semaines. Différents prélèvements sont réalisés au cours du temps ; après filtration, les métaux en solution sont dosés en ICP–AES et la spéciation de Fe et Mn est réalisée par colorimétrie [10].

2.4 Observations en MET et microanalyses

Les échantillons séchés sont mis en suspension dans de l'éthanol sous ultra-sons. Une goutte de suspension est évaporée sur une grille de cuivre et la préparation est observée en microscopie électronique à transmission (MET). L'analyse élémentaire des particules est effectuée en spectrométrie de dispersion d'énergie des rayons X.

3 Résultats et discussion

3.1 Caractéristiques du sol

Le sol est très riche en Fe, Mn, Ni, et Co (Tableau 1). Les oxydes de Fe sont dominés par la gœthite, mais des traces d'hématite ont été observées [2]. Des revêtements ferro-manganiques, visibles dans le profil de sol [1], suggèrent l'existence de processus d'oxydo-réduction. Le pH du sol est acide, la teneur en MO est voisine de 5 %.

Table 1

Total amounts and percentages (% in parenthesis) of metals solubilised in the liquid medium at the maximum rate of chemical and bacterial reduction vs total metal content of the soil sample.

Quantités maximales et proportions (% de la teneur totale) de métaux solubilisés dans le milieu au cours de la réduction chimique et bactérienne.

Fe Mn Co Ni Al
mg kg−1 (%)
Total content 394 000 5650 630 9430 33 000
Solubilised amounts
 DCB 390 300 4960 710 8620 28 390
(99.1) (87.8) (113) (91.4) (86.0)
 Hydroxylamine hydrochloride 1535 2715 335 86 216
(0.39) (48.1) (53.2) (0.91) (0.65)
 Bacterial reduction 2959 1614 49 37 0.1
(0.75) (28.6) (7.78) (0.39) (0.00)

3.2 Réduction chimique

Plus de 85 % de Fe, Mn, Co et Ni sont dissous par le CBD (Tableau 1). L'hydroxylamine solubilise 50 % de Mn et Co et moins de 1 % de Fe et Ni. L'hydroxylamine solubilise plus spécifiquement les oxydes de Mn, mais une dissolution très limitée des oxydes de Fe et des minéraux acido-solubles peut se manifester [4]. Ces résultats soulignent que Mn et Co sont donc présents essentiellement dans les oxydes de Mn, alors que Fe et Ni le sont dans les oxydes de Fe. On peut considérer que, dans les oxydes de fer substitués, Ni et Fe sont solubilisés de façon congruente [13]. En considérant que la plus grande part de Ni est associée aux oxydes de Fe avec un rapport Ni/Fe de 0,02, la quantité de Ni associé aux oxydes de Fe dissous par l'hydroxylamine devrait être de 37 mg kg−1, si ce réactif solubilisait les oxydes de fer. Or, cette quantité estimée est très inférieure à la quantité extraite (86 mg kg−1, Tableau 1). On peut donc considérer que 40 % du Ni extrait par l'hydroxylamine est associé aux oxydes de Fe et 60 % aux oxydes de Mn.

3.3 Réduction bactérienne

Quantin et al. [10] ont montré une forte corrélation entre la biodégradation des matières organiques du sol et la réduction des oxydes en conditions anaérobies, en soulignant que l'addition de glucose exerce un effet stimulant sur la dissolution des métaux [10]. En conditions biotiques, la solubilisation de Mn augmente pendant 24 j (97±2 mg l−1), puis se stabilise, alors qu'elle reste très réduite en conditions abiotiques (Fig. 1a). La proportion de Mn dissous atteint 28 % du Mn total. Seulement 20 % du Mn est sous forme ionique libre (Mn2+), quantité estimée par formation d'un complexe coloré [10]. Une grande part du Mn est complexée en solution par les composés issus de la fermentation du glucose (acides acétique, propionique, butyrique) et de la biodégradation des matières organiques du sol [10]. La solubilisation de Fe augmente de façon continue jusqu'à 40 j environ, pour atteindre moins de 0,8 % du fer total. La solubilisation de Co, sous influence microbienne, montre une évolution en deux étapes : une solubilisation rapide pendant 24 j, qui atteint 7 % du Co total, puis une diminution lente (Fig. 1b). Le même comportement est observé pour Ni, avec un maximum de solubilisation à 14 j. L'insolubilisation de Co et Ni correspond sans doute à des phénomènes de précipitation et coprécipitation, incluant des phénomènes de sorption et la réorganisation des phases solides.

Figure 1

Solubilisation rates of Mn and Fe (a) and Co and Ni (b) during biotic (filled symbols) and abiotic (opened symbols) incubations. Non-visible bars of standard deviations are included in spots on the curves.

Taux de solubilisation de Mn et Fe (a) et Co et Ni (b) au cours des incubations en conditions biotiques (symboles pleins) et abiotiques (symboles ouverts). Les barres d'erreur non visibles sont inclues dans les figurés.

Ces expériences montrent que la communauté bactérienne anaérobie de ce sol est fortement impliquée dans la dissolution réductive de minéraux contenant Mn, Co, Ni et Fe. Ces résultats soulignent bien qu'un oxyde de Fe est fortement altéré par l'activité des bactéries ferri-réductrices [10], alors qu'il n'est pas dissous par l'hydroxylamine. Les bactéries ne solubilisent que 60 % du Mn dissous par l'hydroxylamine. La totalité du Co et Ni des oxydes de Mn n'est pas dissoute par les bactéries dans les conditions expérimentales adoptées, sans doute par suite de l'insuffisance de quantités d'énergie disponible sous forme de matières organiques métabolisables.

3.4 Caractérisation de la source de métaux

Des revêtements d'oxydes de Mn sont observés sur le profil de sol, mais ne sont pas détectables par DRX sur la terre fine. Néanmoins, les observations en MET confirment la présence d'un oxyde de Mn dans les échantillons de sol (Fig. 2), qui présente un aspect de papier froissé et une structure aciculaire. L'analyse élémentaire en EDXS montre que ce minéral est constitué principalement de Mn, Co et Al, avec 4,3 % de Ni (Tableau 2). Cette observation peut être rapprochée de celles de Manceau et al. [7], qui ont décrit des oxydes de Mn interstratifiés avec des feuillets de Mn(IV), Co(III) et Ni(II), Al(III) dans les horizons saprolitiques développés sur roches ultrabasiques de Nouvelle-Calédonie. Ce composé, caractérisé comme un oxyde mixte de lithiophorite–asbolane, a une composition très variable [7].

Figure 2

TEM micrograph of Mn-oxide particles.

Photographie MET des particules d'oxydes de Mn.

Table 2

EDXS elemental analysis of Mn-oxide particles.

Analyse élémentaire en EDXS des particules d'oxydes de Mn.

Element Atomic %
Al 11.9 ± 3.3
Si 12.2 ± 9.9
Mn 47.1 ± 1.4
Fe 7.28 ± 2.75
Co 15.3 ± 8.4
Ni 4.30 ± 2.25

4 Conclusion

Les Geric Ferralsols de Nouvelle-Calédonie dérivés de péridotites présentent des teneurs exceptionnelles en métaux tels que Ni, Cr et Co. Les expériences de dissolution chimique montrent que Co est principalement associé aux oxydes de Mn et Ni aux oxydes de Fe. Au cours d'incubations en conditions anaérobies, l'activité bactérienne solubilise respectivement et au maximum 28,6, 7,8 et 0,4 % du Mn, Co et Ni total en 25 jours. Des observations en MET montrent la présence d'un oxyde de Mn porteur de Co, Ni et Al. Bien que la majeure partie de Ni soit associée aux oxydes de Fe, une phase minérale mineure d'oxyde mixte de Mn à feuillets de lithiophorite–asbolane apparaı̂t comme une source majeure de métaux biodisponibles. Dans les sols de plaine soumis à engorgement temporaire, ces oxydes de Mn, très sensibles aux variations des conditions d'oxydo-réduction, en raison du potentiel élevé du couple Mn4+/Mn2+, peuvent être réduits, à la fois par des processus chimiques et bactériens, plus rapidement et efficacement que les oxydes de Fe. Cette phase minéralogique mineure peut donc être la source principale de métaux facilement biodisponibles en conditions naturelles.

1 Introduction

In New Caledonia, soils originating from ultramafic rocks are exceptionally rich in Fe and in other transition metals, especially Mn, Ni, Cr and Co [9,11]. Fe- and Mn-oxides are major reservoirs and sinks for metals [8,12] and play an important role in controlling their availability [5]. Previous results reported a higher Ni availability in plain soils subjected to waterlogging [1]. Therefore, the reduction processes of Fe- and Mn-oxides may increase the metal release, with the possible involvement of Fe- and Mn-reducing bacteria [3]. Even though goethite is the main constituent of these soils, minor phases as Mn-oxides, that are more reducible than Fe-oxides, could control the trace element availability and their mobility in the environment.

The aims of the present paper are (i) to study the chemical and bacterial dissolution of Mn-oxide and the release of associated trace metals under reductive conditions and (ii) to identify the Mn-oxide mineral involved.

2 Material and methods

2.1 Soil characterisation

A subsurface soil sample (4–10 cm) was collected in a plain Ferralsol described elsewhere [1]. It was sieved at 2 mm, a part was air-dried for analysis and the other was kept moist (in the dark at 4 °C) until experiments were initiated.

Total C and N in the solid phase were quantified using a CHN 1108 Carlo Erba analyser. Total mineral elements of the sample were measured by ICP–AES (Jobin-Yvon 238) after dissolution in a lithium metaborate–tetraborate mixture at 1000 °C for Fe and Mn and a diacid digestion (2:1 concentrated HNO3:HCl ratio) in a microwave oven for Ni, Cr and Co.

2.2 Chemical dissolution experiments

The hydroxylamine hydrochloride procedure of Chao [4] was used for Mn oxide extractions. One gram of soil was stirred with 25 ml of 0.1 M NH2OH·HCl (pH = 2) for 30 min at 20 °C. Dissolution of iron oxides was carried out using a modification of the dithionite–citrate–bicarbonate (DCB) deferrification method of Holmgren [6]. 125 mg of soil sample were placed in centrifuge tubes with (or without) 350 mg of dithionite and 35 ml of citrate–bicarbonate solution (CB) and mixed gently in an end-over-end shaker at 20 °C for five days. Then, the samples were centrifuged and the supernatant analysed for Fe, Al, Mn, Ni and Co by ICP–AES.

2.3 Bacterial dissolution experiments

Batch incubations were performed with 50 g (or 25 g for controls) soil in hermetically sealed 1000-ml (or 500-ml) plasma bottles, supplemented with 750 ml (or 375 ml) of glucose solution (1 g l−1). Flasks with soil were incubated in the presence or absence of indigenous microorganisms to distinguish microbial from physicochemical processes. Abiotic conditions were obtained by addition of 1 g l−1 of Na-thimerosal. Incubations were carried out anaerobically, with four replicates per treatment. The batch cultures were incubated in the dark at 28 °C for 11 weeks, without shaking except just before sampling.

Metal contents in solution were monitored at various times by collecting 15 ml (or 10 ml for controls) of suspension under sterile conditions. Aliquots of supernatants were filtered (0.2 μm membranes, cellulose acetate, Sartorius) and analysed by ICP–AES for total metal content. Fe and Mn speciation in solution was studied colorimetrically as described elsewhere [10]. pH and Eh of the medium were also measured.

2.4 TEM observations and EDXS analysis

Air-dried samples were suspended in ethanol under ultrasonication. A drop of suspension was then evaporated on a carbon-coated copper grid, and the preparation was observed with a Transmission Electron Microscope (Philips CM 20) at an accelerating voltage of 200 kV. The microscope was equipped with an EDAX energy dispersive X-ray spectrometer and provided elemental analysis of particles.

3 Results and discussion

3.1 Soil characterisation

The soil was very rich in iron and relatively rich in Mn, Ni and Co (Table 1). The Fe-oxides were dominated by goethite, but hematite traces were observed [2]. The ferro-manganese coatings observed in the soil profile [1] suggested the existence of oxidation-reduction processes. However, as noticed elsewhere [2], the gleyic colour pattern of the soil is weak, indicating that reduction processes are probably slight. Soil pH was acidic. The organic matter content reached 5% and the C:N ratio was 22. Further details of the chemical and mineralogical characteristics of the soil are presented by Becquer et al. [2].

3.2 Chemical reduction of Fe- and Mn-oxides

More than 85% of total Fe, Mn, Co and Ni were dissolved by DCB reagent (Table 1). Hydroxylamine hydrochloride solubilised 50% of total Mn and Co and less than 1% of total Fe and Ni. These results suggested that Mn and Co were mainly associated in Mn-oxides and Fe and Ni in Fe-oxides, because hydroxylamine hydrochloride dissolves specifically manganese oxides and only very low and limited amount of both iron oxides [4] and acido-soluble minerals. It can be considered that Ni included in substituted ferric oxides is dissolved congruently with Fe [13]. If we considered that all the solubilised Ni was originated from Fe-oxides having a Ni:Fe ratio of 0.02 (w/w), the amount of Ni extracted with hydroxylamine hydrochloride should amount to 37 mg kg−1 according to the amount of Fe extracted by this reagent. Such a theoretically calculated amount is markedly lower than the amount of 86 mg kg−1 really extracted with hydroxylamine hydrochloride (Table 1). Therefore, it can be proposed that nearly 40% of Ni extracted with hydroxylamine hydrochloride is associated with Fe oxide and 60% with Mn oxide.

3.3 Bacterial reduction of Fe- and Mn-oxides

A previous study has shown a correlation between organic matter biodegradation and oxide reduction processes under anaerobic conditions [10] and that the addition of an easily biodegradable compound like glucose increased the dissolution of the metals [10]. In abiotic treatment, Mn solubilisation was very low (Fig. 1a) and corresponded to the Mn exchanged with Na from thimerosal. In biotic conditions, Mn solubilisation increased continuously during the first 24 days, reaching 97±2 mg l−1, then a stationary phase occurred (Fig. 1a). The proportion of total dissolved Mn reached then 28% of total Mn. Free ionic Mn2+, determined by the formation of soluble coloured complex, represented less than 20% of dissolved Mn, suggesting that a large part was complexed in solution by organic compounds (acetic, propionic, butyric acids...) originated from glucose fermentation and soil organic matter biodegradation [10]. Organic acids (acetic, propionic and butyric acids) were produced by bacteria in complement of other organic dissolved matter as fulvic-like compounds [10]. Iron reduction increased over time to reach less than 0.7% of total iron (i.e., 268±27 mg l−1) in biotic treatment, whereas no detectable reduction appeared in abiotic controls (Fig. 1a).

Co and Ni solubilisation was very low in controls (1% and 0.9‰ of Co and Ni, respectively) and attributed to metal exchange with Na of the thimerosal (Fig. 1b). In biotic conditions, Co solubilisation showed a two-step process: first an increase until day 24, when solubilisation reached 7% of the total Co, and then a slow decrease. For Ni, the same trend was observed with a maximum solubilisation occurring at day 14. The non-solubilisation of Co and Ni may correspond to an adsorption–precipitation and coprecipitation phenomenon, including sorption and reorganisation of the solid compartments.

These experiments showed that bacteria growing in these anaerobic conditions [10] are significantly involved in the dissolution by reduction of Fe and Mn-oxides containing Co and Ni. Comparison with chemical dissolution showed that more Fe is solubilised by bacterial activity than by hydroxylamine. This suggests that crystallised Fe-oxide can be weathered by Fe-reducing bacteria [10], whereas it is not reduced by hydroxylamine. However, Fe-oxide solubilisation increased relatively slower and longer than Mn solubilisation (Fig. 1a), when the Eh of the solution was very low, whereas Mn-oxide solubilisation increased rapidly, from the beginning of the incubation, during Eh decrease (results not shown). The different trends of Mn- and Fe-oxides are more obvious when the soil organic matter is the only source of carbon and energy [10]. The lack of morphological evidence in the soil profile of severe reducing conditions lead us to consider that under natural conditions, Mn-oxides are more subjected to reduction process than Fe-ones. Only 60% of Mn solubilised by hydroxylamine was solubilised by bacterial reducing activity. Therefore all the Co and Ni associated to Mn-oxide was not microbiologically solubilised under these experimental conditions. Limitation can be due to the lack in energy source available as metabolisable organic matter to microorganisms.

3.4 Characterisation of the Mn-oxide involved in Co and Ni release

Mn-oxide coatings that were observed in the soil profile were not detectable by powder X-ray diffraction on the bulk soil. Nevertheless, TEM observation revealed the presence of Mn-oxide in the sample (Fig. 2). This Mn-oxide is organised as screwed paper and acicular elementary particles. EDXS spectra showed that this mineral is composed mainly by Mn, Co and Al with 15.3% of Co and 4.3% of Ni (Table 2). Such observation can be related to the results of Manceau et al. [7], who observed Mn-oxides with large variation of their Ni, Co and Al contents in the saprolitic horizons on the ultramafic rocks from New Caledonia. They described these compounds as an irregular intergrowth of Mn(IV), Co(III) and Ni(II), Al(III) sheets, which they called lithiophorite–asbolane mixed layers Mn-oxide.

4 Conclusion

The Geric Ferralsols derived from New Caledonian peridotites are all anomalously rich in trace metals such as Ni, Cr and Co. Chemical dissolution experiments show that Co is mainly associated to Mn-oxides and Ni to Fe-oxides. During biotic incubations under anaerobic conditions promoting bacterial growth and activity, 28.6, 7.8 and 0.4% of total Mn, Co and Ni of the soil, respectively, are solubilised after 25 days. TEM observations show the presence of a CoNiAl-bearing Mn-oxide. Although the largest part of Ni is associated with iron oxides, this minor mineralogical phase called lithiophorite–asbolane mixed layers Mn-oxide appears to be the main source of bioavailable metals in the lowlands subjected to temporarily waterlogging. Mn-oxides are very sensitive to redox conditions, as expected from the high reduction potential of Mn4+/Mn2+. During waterlogging, Mn-oxides could be reduced by chemical and bacterial processes, more easily than Fe-oxides. Bacterial reduction process appears to be very prominent when energetic sources are available as biodegradable organic matter.

Acknowledgments

The authors are grateful to Dr J. Ghanbaja (‘Service commun de microscopie électronique à transmission’, University Henri-Poincaré, Nancy-1, France) for TEM observations and EDXS analysis.


Bibliographie

[1] T. Becquer; E. Bourdon; J. Pétard Disponibilité du nickel le long d'une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie, C. R. Acad. Sci. Paris, série IIa, Volume 321 (1995), pp. 585-592

[2] T. Becquer; J. Pétard; C. Duwig; E. Bourdon; R. Moreau; A.J. Herbillon Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia, Geoderma, Volume 103 (2001) no. 3–4, pp. 291-306

[3] N. Bousserrhine; U.G. Gasser; E. Jeanroy; J. Berthelin Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites, Geomicrobiol. J., Volume 16 (1999), pp. 245-258

[4] T.T. Chao Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride, Soil Sci. Soc. Amer. Proc., Volume 36 (1972), pp. 764-768

[5] A.J. Francis; C.J. Dodge Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide, Environ. Sci. Technol., Volume 24 (1990) no. 3, pp. 373-378

[6] G.G.S. Holmgren A rapid citrate–dithionite extractable iron procedure, Soil Sci. Soc. Amer. Proc., Volume 31 (1967), pp. 210-211

[7] A. Manceau; S. Llorca; G. Calas Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia, Geochim. Cosmochim. Acta, Volume 51 (1987), pp. 105-113

[8] R.M. McKenzie Manganese oxides and hydroxides (J.B. Dixon; S.B. Weed, eds.), Minerals in soil environments, SSSA, Madison, 1989, pp. 439-465

[9] L. Nalovic; P. Quantin Évolution géochimique de quelques éléments majeurs et traces dans un sol ferrallitique ferritique de Nouvelle-Calédonie issu de péridotites. Interprétation d'observations à l'aide de la microsonde de Castaing, Cahiers ORSTOM, sér. Pédol., Volume X (1972) no. 4, pp. 389-410

[10] C. Quantin; T. Becquer; J.H. Rouiller; J. Berthelin Oxide weathering and trace metal release by bacterial reduction in a New Caledonia Ferralsol, Biogeochem., Volume 53 (2001), pp. 323-340

[11] U. Schwertmann; M. Latham Properties of iron oxides in some New Caledonian oxisols, Geoderma, Volume 39 (1986), pp. 105-123

[12] B. Singh; R.J. Gilkes Properties and distribution of iron oxides and their association with minor elements in the soils of southwestern Australia, J. Soil Sci., Volume 43 (1992), pp. 77-98

[13] F. Trolard; G. Bourrié; E. Jeanroy; A.J. Herbillon; H. Martin Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction, Geochim. Cosmochim. Acta, Volume 59 (1995) no. 7, pp. 1285-1297


Cité par

  • Suphathida Aumtong; Chakrit Chotamonsak; Paweenuch Pongwongkam; Kanchana Cantiya Chemical Fertilization Alters Soil Carbon in Paddy Soil through the Interaction of Labile Organic Carbon and Phosphorus Fractions, Agronomy, Volume 13 (2023) no. 6, p. 1588 | DOI:10.3390/agronomy13061588
  • Fabrice Jouffray; Jean-Marc Lardeaux; Anne-Sophie Tabaud; Michel Corsini; Julie Schneider Deciphering the nature and age of the protoliths and peakP−Tconditions in retrogressed mafic eclogites from the Maures-Tannneron Massif (SE France) and implications for the southern European Variscides, BSGF - Earth Sciences Bulletin, Volume 194 (2023), p. 10 | DOI:10.1051/bsgf/2023006
  • A.L. Machado; J. Garnier; G. Ratié; E. Guimaraes; G. Monvoisin; C. Cloquet; C. Quantin Nickel mass balance and isotopic records in a serpentinic weathering profile: Implications on the continental Ni budget, Chemical Geology, Volume 634 (2023), p. 121586 | DOI:10.1016/j.chemgeo.2023.121586
  • Shamali De Silva; Peter Carson; Demidu V. Indrapala; Barry Warwick; Suzie M. Reichman Land application of industrial wastes: impacts on soil quality, biota, and human health, Environmental Science and Pollution Research, Volume 30 (2023) no. 26, p. 67974 | DOI:10.1007/s11356-023-26893-7
  • Pauline Merrot; Farid Juillot; Léonore Flipo; Mickaël Tharaud; Eric Viollier; Vincent Noël; Pierre Le Pape; Jean-Michel Fernandez; Benjamin Moreton; Guillaume Morin Bioavailability of chromium, nickel, iron and manganese in relation to their speciation in coastal sediments downstream of ultramafic catchments: A case study in New Caledonia, Chemosphere, Volume 302 (2022), p. 134643 | DOI:10.1016/j.chemosphere.2022.134643
  • Aurélie Boula; Christine Laporte-Magoni; Peggy Gunkel-Grillon; Olivier Bour; Nazha Selmaoui-Folcher Potential contamination of stream waters by ultramafic mining sediments: Identification of geochemical makers (New Caledonia), Journal of Geochemical Exploration, Volume 232 (2022), p. 106879 | DOI:10.1016/j.gexplo.2021.106879
  • Cristina Domènech; Cristina Villanova-de-Benavent; Joaquín A. Proenza; Esperança Tauler; Laura Lara; Salvador Galí; Josep M. Soler; Marc Campeny; Jordi Ibañez-Insa Co–Mn Mineralisations in the Ni Laterite Deposits of Loma Caribe (Dominican Republic) and Loma de Hierro (Venezuela), Minerals, Volume 12 (2022) no. 8, p. 927 | DOI:10.3390/min12080927
  • Bayan Rashid Rahim; Hemin Abubakir Neima Determination of Some Heavy Metals in Serpentinitic Soils and Rocks from Sulaymaniyah / Kurdistan Region of Iraq, Tikrit Journal for Agricultural Sciences, Volume 22 (2022) no. 2, p. 120 | DOI:10.25130/tjas.22.2.14
  • Jeremie Garnier; Cecile Quantin; Sophie Raous; Edi Guimarães; Thierry Becquer Field availability and mobility of metals in Ferralsols developed on ultramafic rock of Niquelândia, Brazil, Brazilian Journal of Geology, Volume 51 (2021) no. 1 | DOI:10.1590/2317-4889202120200092
  • Pauline Merrot; Farid Juillot; Pierre Le Pape; Pierre Lefebvre; Jessica Brest; Isabelle Kieffer; Nicolas Menguy; Eric Viollier; Jean-Michel Fernandez; Benjamin Moreton; Olivier Radakovitch; Guillaume Morin Comparative Cr and Mn speciation across a shore-to-reef gradient in lagoon sediments downstream of Cr-rich Ferralsols upon ultramafic rocks in New Caledonia, Journal of Geochemical Exploration, Volume 229 (2021), p. 106845 | DOI:10.1016/j.gexplo.2021.106845
  • Jakub Kierczak; Anna Pietranik; Artur Pędziwiatr Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review, Science of The Total Environment, Volume 755 (2021), p. 142620 | DOI:10.1016/j.scitotenv.2020.142620
  • Christos Kanellopoulos Influence of ultramafic rocks and hot springs with travertine depositions on geochemical composition and baseline of soils. Application to eastern central Greece, Geoderma, Volume 380 (2020), p. 114649 | DOI:10.1016/j.geoderma.2020.114649
  • Fabrice Jouffray; Maria Iole Spalla; Jean Marc Lardeaux; Marco Filippi; Gisella Rebay; Michel Corsini; Davide Zanoni; Michele Zucali; Guido Gosso Variscan eclogites from the Argentera–Mercantour Massif (External Crystalline Massifs, SW Alps): a dismembered cryptic suture zone, International Journal of Earth Sciences, Volume 109 (2020) no. 4, p. 1273 | DOI:10.1007/s00531-020-01848-2
  • Sinaly OUATTARA; A.Lydie MANGOU-ALLALI; A.B. AMA-CAUPHYS; Lacina COULIBALY ARSENIC, NICKEL AND LEADREMOVAL FROM UNDERGROUND WELLS BY ADSORPTION ON LATERITE SOIL, International Journal of Engineering Technologies and Management Research, Volume 5 (2020) no. 2, p. 229 | DOI:10.29121/ijetmr.v5.i2.2018.167
  • Daniela Zuzolo; Domenico Cicchella; Annamaria Lima; Ilaria Guagliardi; Pellegrino Cerino; Antonio Pizzolante; Matar Thiombane; Benedetto De Vivo; Stefano Albanese Potentially toxic elements in soils of Campania region (Southern Italy): Combining raw and compositional data, Journal of Geochemical Exploration, Volume 213 (2020), p. 106524 | DOI:10.1016/j.gexplo.2020.106524
  • Meththika Vithanage; Prasanna Kumarathilaka; Christopher Oze; Suniti Karunatilake; Mihiri Seneviratne; Zeng-Yei Hseu; Viraj Gunarathne; Maheshi Dassanayake; Yong Sik Ok; Jörg Rinklebe Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review, Environment International, Volume 131 (2019), p. 104974 | DOI:10.1016/j.envint.2019.104974
  • Marc Ulrich; Michel Cathelineau; Manuel Muñoz; Marie-Christine Boiron; Yoram Teitler; Anne Marie Karpoff The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia, Journal of Geochemical Exploration, Volume 197 (2019), p. 93 | DOI:10.1016/j.gexplo.2018.11.017
  • Lev J. Spivak-Birndorf; Shui-Jiong Wang; David L. Bish; Laura E. Wasylenki Nickel isotope fractionation during continental weathering, Chemical Geology, Volume 476 (2018), p. 316 | DOI:10.1016/j.chemgeo.2017.11.028
  • Mahsa Tashakor; Bernhard Hochwimmer; Francis Q. Brearley Geochemical assessment of metal transfer from rock and soil to water in serpentine areas of Sabah (Malaysia), Environmental Earth Sciences, Volume 76 (2017) no. 7 | DOI:10.1007/s12665-017-6585-x
  • Daniela Zuzolo; Domenico Cicchella; Vittorio Catani; Lucia Giaccio; Ilaria Guagliardi; Libera Esposito; Benedetto De Vivo Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy), Environmental Geochemistry and Health, Volume 39 (2017) no. 3, p. 531 | DOI:10.1007/s10653-016-9832-2
  • Gabrielle Dublet; Farid Juillot; Jessica Brest; Vincent Noël; Emmanuel Fritsch; Olivier Proux; Luca Olivi; Florian Ploquin; Guillaume Morin Vertical changes of the Co and Mn speciation along a lateritic regolith developed on peridotites (New Caledonia), Geochimica et Cosmochimica Acta, Volume 217 (2017), p. 1 | DOI:10.1016/j.gca.2017.07.010
  • Camille Pasquet; Peggy Gunkel-Grillon; Christine Laporte-Magoni; Arnaud Serres; Thomas Quiniou; François Rocca; Fabrice Monna; Remi Losno; Folkert van Oort; Carmela Chateau Alternative dry separation of PM10 from soils for characterization by kinetic extraction: example of new Caledonian mining soils, Environmental Science and Pollution Research, Volume 23 (2016) no. 24, p. 25105 | DOI:10.1007/s11356-016-7617-x
  • Mélanie Davranche; Gérard Gruau; Aline Dia; Rémi Marsac; Mathieu Pédrot; Olivier Pourret Biogeochemical Factors Affecting Rare Earth Element Distribution in Shallow Wetland Groundwater, Aquatic Geochemistry, Volume 21 (2015) no. 2-4, p. 197 | DOI:10.1007/s10498-014-9247-6
  • Vojtěch Ettler; Vladislav Knytl; Michael Komárek; Loïc Della Puppa; François Bordas; Martin Mihaljevič; Mariana Klementová; Ondřej Šebek Stability of a novel synthetic amorphous manganese oxide in contrasting soils, Geoderma, Volume 214-215 (2014), p. 2 | DOI:10.1016/j.geoderma.2013.10.011
  • Denis Baize; Folkert van Oort Potentially Harmful Elements in Forest Soils, PHEs, Environment and Human Health (2014), p. 151 | DOI:10.1007/978-94-017-8965-3_4
  • Michael Komárek; Aleš Vaněk; Vojtěch Ettler Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review, Environmental Pollution, Volume 172 (2013), p. 9 | DOI:10.1016/j.envpol.2012.07.045
  • J. Li; K. Bunney; H.R. Watling; D.J. Robinson Thermal pre-treatment of refractory limonite ores to enhance the extraction of nickel and cobalt under heap leaching conditions, Minerals Engineering, Volume 41 (2013), p. 71 | DOI:10.1016/j.mineng.2012.11.002
  • Gabrielle Dublet; Farid Juillot; Guillaume Morin; Emmanuel Fritsch; Dik Fandeur; Georges Ona-Nguema; Gordon E. Brown Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation, Geochimica et Cosmochimica Acta, Volume 95 (2012), p. 119 | DOI:10.1016/j.gca.2012.07.030
  • Anushka Upamali Rajapaksha; Meththika Vithanage; Christopher Oze; W.M.A.T. Bandara; R. Weerasooriya Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka, Geoderma, Volume 189-190 (2012), p. 1 | DOI:10.1016/j.geoderma.2012.04.019
  • M. Landers; M. Gräfe; R. J. Gilkes; M Saunders; M. A. Wells Nickel distribution and speciation in rapidly dehydroxylated goethite in oxide-type lateritic nickel ores: XAS and TEM spectroscopic (EELS and EFTEM) investigation, Australian Journal of Earth Sciences, Volume 58 (2011) no. 7, p. 745 | DOI:10.1080/08120099.2011.602985
  • Christophe Migon; Chiaki Motegi; Xavier Mari; Aurélie Dufour; Markus Weinbauer A Preliminary Study on Metal and Nutrient Concentrations in Running Water Systems in Southern New Caledonia, Bulletin of Environmental Contamination and Toxicology, Volume 87 (2011) no. 4, p. 361 | DOI:10.1007/s00128-011-0367-z
  • Sheila Alves; Maria Ascensão Trancoso; Maria de Lurdes Simões Gonçalves; Margarida M. Correia dos Santos A nickel availability study in serpentinised areas of Portugal, Geoderma, Volume 164 (2011) no. 3-4, p. 155 | DOI:10.1016/j.geoderma.2011.05.019
  • Hiba Noureddine; Mohamad Fakih; Yolla Makhour; Dana Zeineddine; Noureddine Bousserrhine Co and Mn decrease chemical and biological reduction rate of iron oxyhydroxides, Physics Procedia, Volume 21 (2011), p. 211 | DOI:10.1016/j.phpro.2011.10.032
  • T. Becquer; C. Quantin; J. P. Boudot Toxic levels of metals in Ferralsols under natural vegetation and crops in New Caledonia, European Journal of Soil Science, Volume 61 (2010) no. 6, p. 994 | DOI:10.1111/j.1365-2389.2010.01294.x
  • Moshood N. Tijani; Matthew E. Nton Hydraulic, textural and geochemical characteristics of the Ajali Formation, Anambra Basin, Nigeria: implication for groundwater quality, Environmental Geology, Volume 56 (2009) no. 5, p. 935 | DOI:10.1007/s00254-008-1196-1
  • Petra Kidd; Juan Barceló; M. Pilar Bernal; Flavia Navari-Izzo; Charlotte Poschenrieder; Stefan Shilev; Rafael Clemente; Carmela Monterroso Trace element behaviour at the root–soil interface: Implications in phytoremediation, Environmental and Experimental Botany, Volume 67 (2009) no. 1, p. 243 | DOI:10.1016/j.envexpbot.2009.06.013
  • J. Caillaud; D. Proust; S. Philippe; C. Fontaine; M. Fialin Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals, Geoderma, Volume 149 (2009) no. 3-4, p. 199 | DOI:10.1016/j.geoderma.2008.11.031
  • S. Cornu; J. A. Cattle; A. Samouëlian; C. Laveuf; L. R. G. Guilherme; P. Albéric Impact of Redox Cycles on Manganese, Iron, Cobalt, and Lead in Nodules, Soil Science Society of America Journal, Volume 73 (2009) no. 4, p. 1231 | DOI:10.2136/sssaj2008.0024
  • Priscilla Pareuil; Sonia Pénilla; Nursen Ozkan; François Bordas; Jean-Claude Bollinger Influence of Reducing Conditions on Metallic Elements Released from Various Contaminated Soil Samples, Environmental Science Technology, Volume 42 (2008) no. 20, p. 7615 | DOI:10.1021/es800953d
  • Chunye Lin; Ido Negev; Gil Eshel; Amos Banin In Situ Accumulation of Copper, Chromium, Nickel, and Zinc in Soils Used for Long‐term Waste Water Reclamation, Journal of Environmental Quality, Volume 37 (2008) no. 4, p. 1477 | DOI:10.2134/jeq2007.0388
  • Christophe Migon; Sylvain Ouillon; Xavier Mari; Emmanuel Nicolas Geochemical and hydrodynamic constraints on the distribution of trace metal concentrations in the lagoon of Nouméa, New Caledonia, Estuarine, Coastal and Shelf Science, Volume 74 (2007) no. 4, p. 756 | DOI:10.1016/j.ecss.2007.05.048
  • S. A. CROWE; J. A. ROBERTS; C. G. WEISENER; D. A. FOWLE Alteration of iron‐rich lacustrine sediments by dissimilatory iron‐reducing bacteria, Geobiology, Volume 5 (2007) no. 1, p. 63 | DOI:10.1111/j.1472-4669.2006.00086.x
  • Sean A. Crowe; Andrew H. O'Neill; Ezra Kulczycki; Christopher G. Weisener; Jennifer A. Roberts; David A. Fowle Reductive Dissolution of Trace Metals from Sediments, Geomicrobiology Journal, Volume 24 (2007) no. 3-4, p. 157 | DOI:10.1080/01490450701457329
  • Malgorzata Grybos; Mélanie Davranche; Gérard Gruau; Patrice Petitjean Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?, Journal of Colloid and Interface Science, Volume 314 (2007) no. 2, p. 490 | DOI:10.1016/j.jcis.2007.04.062
  • Jian-Wei Li; Paulo Vasconcelos; Wei Zhang; Xiao-Dong Deng; Nurdan Duzgoren-Aydin; Dai-Rong Yan; Jian-Qiang Zhang; Ming-An Hu Timing and duration of supergene mineralization at the Xinrong manganese deposit, western Guangdong Province, South China: cryptomelane 40Ar/39Ar dating, Mineralium Deposita, Volume 42 (2007) no. 4, p. 361 | DOI:10.1007/s00126-006-0118-y
  • Moshood N. Tijani; Olugbenga A. Okunlola; Akinlolu F. Abimbola Lithogenic concentrations of trace metals in soils and saprolites over crystalline basement rocks: A case study from SW Nigeria, Journal of African Earth Sciences, Volume 46 (2006) no. 5, p. 427 | DOI:10.1016/j.jafrearsci.2006.08.003
  • N. Perrier; J.P. Ambrosi; F. Colin; R.J. Gilkes Biogeochemistry of a regolith: The New Caledonian Koniambo ultramafic massif, Journal of Geochemical Exploration, Volume 88 (2006) no. 1-3, p. 54 | DOI:10.1016/j.gexplo.2005.08.015
  • Jean-Michel Fernandez; Sylvain Ouillon; Christophe Chevillon; Pascal Douillet; Renaud Fichez; Romain Le Gendre A combined modelling and geochemical study of the fate of terrigenous inputs from mixed natural and mining sources in a coral reef lagoon (New Caledonia), Marine Pollution Bulletin, Volume 52 (2006) no. 3, p. 320 | DOI:10.1016/j.marpolbul.2005.09.010
  • Nicolas Perrier; Hamid Amir; Fabrice Colin Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia, Mycorrhiza, Volume 16 (2006) no. 7, p. 449 | DOI:10.1007/s00572-006-0057-6
  • Rohana Chandrajith; Chandra B. Dissanayake; Heinz J. Tobschall Geochemistry of trace elements in paddy (rice) soils of Sri Lanka ? implications for iodine deficiency disorders (IDD), Environmental Geochemistry and Health, Volume 27 (2005) no. 1, p. 55 | DOI:10.1007/s10653-004-2290-2
  • S. Denys; G. Echevarria; J. L. Morel; E. Leclerc-Cessac Mapping Transfer Parameters of Radionuclides in Terrestrial Environments, Equidosimetry — Ecological Standardization and Equidosimetry for Radioecology and Environmental Ecology (2005), p. 119 | DOI:10.1007/1-4020-3650-7_15
  • Alexander Neaman; Flore Mouélé; Fabienne Trolard; Guilhem Bourrié Improved methods for selective dissolution of Mn oxides: applications for studying trace element associations, Applied Geochemistry, Volume 19 (2004) no. 6, p. 973 | DOI:10.1016/j.apgeochem.2003.12.002
  • M. B. McBride; J. Cherney Molybdenum, Sulfur, and Other Trace Elements in Farm Soils and Forages After Sewage Sludge Application, Communications in Soil Science and Plant Analysis, Volume 35 (2004) no. 3-4, p. 517 | DOI:10.1081/css-120029729
  • Further Readings in Geomicrobiology, Geomicrobiology Journal, Volume 20 (2003) no. 3, p. 263 | DOI:10.1080/01490450303879
  • T Becquer; C Quantin; M Sicot; J.P Boudot Chromium availability in ultramafic soils from New Caledonia, Science of The Total Environment, Volume 301 (2003) no. 1-3, p. 251 | DOI:10.1016/s0048-9697(02)00298-x
  • C. Quantin; T. Becquer; J. H. Rouiller; J. Berthelin Redistribution of Metals in a New Caledonia Ferralsol After Microbial Weathering, Soil Science Society of America Journal, Volume 66 (2002) no. 6, p. 1797 | DOI:10.2136/sssaj2002.1797

Cité par 56 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: