Plan
Comptes Rendus

Geomaterials (Petrology)
Serpentinization of abyssal peridotites at mid-ocean ridges
[Serpentinisation des péridotites abysales aux dorsales océaniques]
Comptes Rendus. Géoscience, Volume 335 (2003) no. 10-11, pp. 825-852.

Résumés

Serpentinites are an important component of the oceanic crust generated in slow to ultraslow spreading settings. In this context, the MOHO likely corresponds to a hydration boundary, which could match the 500 °C isotherm beneath the ridge axis. Textures from serpentinites sampled in ridge environments demonstrate that most of the serpentinization occurs under static conditions. The typical mineralogical association consists of lizardite ± chrysotile + magnetite ± tremolite ± talc. Despite the widespread occurrence of lizardite, considered as the low temperature serpentine variety, oxygen isotope fractionation suggests that serpentinization starts at high temperature, in the range of 300–500 °C. The fluid responsible for serpentinization is seawater, possibly evolved by interaction with the crust. Compared with fresh peridotites, serpentinites are strongly hydrated (10–15% H2O) and oxidized. Serpentinization, however, does not seem to be accompanied by massive leaching of major elements, implying that it requires a volume increase. It results in an increase in chlorine, boron, fluorine, and sulfur, but its effect on other trace elements remains poorly detailed. The presence of serpentinites in the oceanic crust affects its physical properties, in particular by lowering its density and seismic velocities, and modifying its magnetic and rheological properties. Serpentinization may activate hydrothermal cells and generate methane and hydrogen anomalies which can sustain microbial communities. Two types of hydrothermal field have been identified: the Rainbow type, with high temperature (360 °C) black smokers requiring magmatic heat; the low temperature (40–75 °C) Lost City type, by contrast, can be activated by serpenintization reactions.

Les serpentinites représentent un constituant important de la croûte océanique formée aux dorsales lentes et ultralentes. Dans ce contexte, le MOHO pourrait correspondre à un front d'hydratation et éventuellement à l'isotherme 500 °C sous l'axe. L'observation des textures des serpentinites échantillonnées aux dorsales montre que l'essentiel de la serpentinisation a lieu en régime statique. L'association minérale type comprend lizardite ± chrysotile + magnetite ± tremolite ± talc. Malgré la présence de lizardite considérée comme l'espèce serpentineuse de basse température, le fractionnement isotopique de l'oxygène montre que la serpentinisation commence à température élevée, de l'ordre de 300 à 500 °C. Le fluide responsable de la serpentinisation est majoritairement l'eau de mer, qui a pu évoluer par réaction avec la croûte. Par rapport aux péridotites fraı̂ches, la serpentinisation se traduit par une hydratation massive et l'oxydation du fer. Elle ne semble pas être accompagnée d'échanges importants en éléments majeurs, ce qui implique qu'elle entraı̂ne une augmentation de volume. Elle s'accompagne d'un enrichissement en chlore, bore, fluor, soufre. Son effet sur les autres éléments en traces reste mal contraint. La présence de serpentinites dans la croûte océanique affecte ses propriétés physiques, en particulier en abaissant la densité et les vitesses de propagation des ondes sismiques, et en modifiant ses propriétés magnétiques et rhéologiques. La serpentinisation peut activer des cellules de convection hydrothermales et provoquer des anomalies de méthane et d'hydrogène, capables d'alimenter des communautés microbiennes. Deux types de champs hydrothermaux ont été mis en évidence : le type « Rainbow », à fumeurs noirs de haute temperature (360 °C), nécessite un apport de chaleur magmatique ; le type « Lost City » de basse température (40–75 °C) peut être activé par la seule réaction de serpentinisation.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2003.08.006
Keywords: serpentinization, oceanic lithosphere, hydrothermalism
Mots-clés : serpentinisation, lithosphère océanique, hydrothermalisme

Catherine Mével 1

1 Laboratoire de Géosciences marines, CNRS UMR 7097, IPGP, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRGEOS_2003__335_10-11_825_0,
     author = {Catherine M\'evel},
     title = {Serpentinization of abyssal peridotites at mid-ocean ridges},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {825--852},
     publisher = {Elsevier},
     volume = {335},
     number = {10-11},
     year = {2003},
     doi = {10.1016/j.crte.2003.08.006},
     language = {en},
}
TY  - JOUR
AU  - Catherine Mével
TI  - Serpentinization of abyssal peridotites at mid-ocean ridges
JO  - Comptes Rendus. Géoscience
PY  - 2003
SP  - 825
EP  - 852
VL  - 335
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crte.2003.08.006
LA  - en
ID  - CRGEOS_2003__335_10-11_825_0
ER  - 
%0 Journal Article
%A Catherine Mével
%T Serpentinization of abyssal peridotites at mid-ocean ridges
%J Comptes Rendus. Géoscience
%D 2003
%P 825-852
%V 335
%N 10-11
%I Elsevier
%R 10.1016/j.crte.2003.08.006
%G en
%F CRGEOS_2003__335_10-11_825_0
Catherine Mével. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus. Géoscience, Volume 335 (2003) no. 10-11, pp. 825-852. doi : 10.1016/j.crte.2003.08.006. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2003.08.006/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

Version française abrégée

La présence de péridotites serpentinisées sur le plancher océanique est connue depuis longtemps mais ce n'est que récemment, grâce à une meilleure connaissance de la géologie des fonds océaniques, que l'on a commencé à comprendre les mécanismes responsables de leur mise à l'affleurement. Les serpentinites sont un constituant majeur de la croûte océanique formée aux dorsales lentes et ultralentes. Elles affleurent également à la transition continent-océan, où leur présence est le résultat de la déchirure océanique dans un contexte de faible production magmatique (par exemple la marge Ibérique). Enfin, on les rencontre au niveau des zones de subduction comme la fosse des Mariannes. Elles résultent alors de la remontée diapirique de manteau hydraté provenant soit de la plaque plongeante, soit du coin mantellique sus-jacent. Dans cette revue ne seront prises en compte que les serpentines des dorsales océaniques, dont la formation est liée aux processus de l'accrétion.

Aux dorsales lentes et ultralentes, la présence d'une lithosphère épaisse rend plus difficile la remontée vers la surface du magma produit par la fusion partielle. De nombreuses études, tant dans la dorsale médio-Atlantique que la dorsale sud-ouest-Indienne et plus récemment la ride de Gakkel dans l'Arctique, ont montré que, dans ce contexte, le magma tend à se focaliser au centre des segments, et les serpentinites affleurent fréquemment dans la vallée axiale aux extrémités des segments. La croûte océanique formée dans cet environnement ne répond pas au modèle PENROSE de lithosphère litée, caractérisé par une superposition de couches (Couche 2 = basaltes, Couche 3 = gabbro et, sous le MOHO, Couche 4 = péridotites mantelliques). Son architecture est hétérogène et varie le long de l'axe (Fig. 1). Aux extrémités des segments, elle est constituée de péridotites plus ou moins serpentinisées recoupées par des intrusions gabbroı̈ques (Fig. 2). Dans ce contexte, le MOHO, discontinuité sismique qui sépare la croûte du manteau, pourrait correspondre à un front de serpentinisation. Dans un contexte de lithosphère épaisse, les péridotites serpentinisées peuvent être également mises à l'affleurement par le jeu de grandes failles à faible pendage. Cette nouvelle perspective sur le fonctionnement des dorsales lentes montre que les serpentinites n'y sont pas cantonnées aux grandes failles transformantes, mais représentent un constituant majeur de la croûte. Au contraire, aux dorsales rapides, le modèle PENROSE semble s'appliquer. Les péridotites serpentinisées n'affleurent que dans des contextes tectoniques particuliers.

Fig. 1

Seismic velocity profiles and geological interpretation of a Penrose-type ‘layered crust’ [110] and a heterogeneous crust [34]. Note that the layered crust consists of magmatic rocks (basalts and gabbros) only, while the heterogeneous crust contains residual rocks (serpentinized peridotites).

Profils de vitesses sismiques et interprétation géologique d'une croûte litée de type Penrose [110] et d'une croûte hétérogène [34]. La croûte litée est constituée uniquement de roches magmatiques (basaltes et gabbros), alors que la croûte hétérogène comprend des roches résiduelles (péridotites serpentinisées).

Fig. 2

Hypothetical along axis cross section of a slow-spreading ridge, from [36]. Based on geological observations at the Mid-Atlantic Ridge, this sketch suggests a different magma supply between the centre and the ends of the segments. At the centre, the crust is supposed to be layered and magmatic while its ends are heterogeneous, with small magma pockets enclosed in residual mantle-derived serpentinized peridotites.

Coupe hypothétique le long de l'axe d'une dorsale lente, d'après [36]. Basé sur des observations géologiques à la dorsale médio-Atlantique, ce schéma suggère un apport magmatique différent entre le centre et les extrémités des segments. Au centre, la croûte est supposée litée et magmatique, alors qu'aux extrémités elle est hétérogène, constituée d'intrusions gabbroı̈ques dans des péridotites résiduelles serpentinisées.

Les nombreux travaux effectués sur les péridotites serpentinisées collectées aux dorsales, et en particulier dans le cadre du programme de forages océaniques ODP, montrent des caractères constants dans les textures et la minéralogie. Le taux de serpentinisation est généralement élevé (80–100 %). La serpentinisation a eu lieu en régime statique (Fig. 3A), même si les veines sont nombreuses (Fig. 3B et 3G). Les textures originelles des péridotites sont préservées : les olivines sont remplacées par de la serpentine maillée (Fig. 3C et 3D) et les pyroxènes par de la serpentine en bastites (Fig. 3E). Amphibole et talc sont parfois associés aux bastites (Fig. 3F). Les serpentines schisteuses (Fig. 3H) sont rares.

Fig. 3

Examples of serpentinite textures in hand specimen and photomicrographs. (A) Hand specimen of serpentinized peridotite. Serpentinization occurred under static conditions and preserved the primary textures. Areas of mesh texture (m) pseudomorphing olivine crystals are juxtaposed to bastites (b) pseudomorphing orthopyroxene crystals. Sample SDM DR34-1-1, M.A.R [36]. (B) Hand specimen of serpentinized peridotite. The sample is cross-cut by a dense network of parallel serpentine-filled veins. Sample EDUL DR23, SWIR [97]. (C) Photomicrograph of a mesh texture replacing olivine in a serpentinized peridotite. Parallel nicols. Fresh olivine kernels (olv) are preserved in serpentine cells (ser) surrounded by magnetite layers (mt). Sample HS13-1, M.A.R [124]. (D) Photomicrograph of a mesh texture completely replacing olivine. Crossed nicols. Each cell of the mesh texture consists of concentric layers of serpentine. Sample ODP Leg 153, 920D 5R2 #12, M.A.R. [35]. (E) Photomicrograph showing a bastite replacing orthopyroxene isolated in serpentine in a mesh texture (pseudomorphs after olivine). Crossed nicols. Late veins cross-cut both the bastite and the mesh. Sample ODP Leg 153, 920D 3R2 #7, M.A.R. [35]. (F) Photomicrograph showing a bastite consisting of serpentine and minor tremolite fibers (trem). Crossed nicols. Sample HS13-7, M.A.R [124]. (G) Photomicrograph showing a serpentinite with a mesh texture cross-cut by two perpendicular sets of serpentine veins. Crossed nicols. Sample ODP Leg 153, 920D 7R2 #4, M.A.R. [35]. (H) Photomicrograph of a talc-serpentine schist. The primary texture is completely obliterated by recrystallization under deformation conditions. Crossed nicols. Sample BR28, pc3. M.A.R. [58]Masquer

Examples of serpentinite textures in hand specimen and photomicrographs. (A) Hand specimen of serpentinized peridotite. Serpentinization occurred under static conditions and preserved the primary textures. Areas of mesh texture (m) pseudomorphing olivine crystals are juxtaposed to bastites (b) pseudomorphing orthopyroxene ... Lire la suite

Exemples de textures de serpentinites en macro-échantillons et au microscope. (A) Echantillon de péridotite serpentinisée. La serpentinisation a eu lieu en régime statique et a préservé les textures primaires. Des zones à texture maillée (m) remplaçant les cristaux d'olivine sont juxtaposées à des bastites (b) remplaçant les orthopyroxènes. Echantillon SDM DR34-1-1, M.A.R [36]. (B) Echantillon de péridotite serpentinisée, recoupé par un dense réseau de veines parallèles remplies de serpentine. Echantillon EDUL DR23, SWIR [97]. (C) Photographie au microscope d'une texture maillée remplaçant l'olivine dans une péridotite serpentinisée. Nicols parallèles. Des coeurs d'olivine fraı̂che (olv) sont préservés dans des cellules de serpentine (ser) entourées de magnétite (mt). Echantillon HS13-1, M.A.R [124]. (D) Photographie au microscope d'une texture maillée remplaçant complètement l'olivine. Nicols croisés. Chaque cellule consiste en couches concentriques de serpentine. Echantillon ODP Leg 153, 920D 5R2 #12, M.A.R. [35]. (E) Photographie au microscope d'une bastite remplaçant un orthopyroxène isolé dans la serpentine maillée remplaçant l'olivine. Nicols croisés. Des veines tardives recoupent à la fois la serpentine maillée et la bastite. Echantillon ODP Leg 153, 920D 3R2 #7, M.A.R. [35]. (F) Photographie au microscope d'une bastite formée de serpentine et de fibres de trémolite (trem). Nicols croisés. Echantillon HS13-7, M.A.R [124]. (G) Photographie au microscope d'une serpentine à texture maillée, recoupée par deux générations de veines orientées perpendiculairement. Nicols croisés. Echantillon ODP Leg 153, 920D 7R2 #4, M.A.R. [35]. (H) Photographie au microscope d'un schiste à talc et serpentine. Nicols croisés. La texture originelle est complètement oblitérée par les recristallisations en régime de déformation. Echantillon BR28, pc3. M.A.R. [58]Masquer

Exemples de textures de serpentinites en macro-échantillons et au microscope. (A) Echantillon de péridotite serpentinisée. La serpentinisation a eu lieu en régime statique et a préservé les textures primaires. Des zones à texture maillée (m) remplaçant les cristaux d'olivine sont ... Lire la suite

La serpentine, phyllosilicate de silice et magnésium hydraté, est le minéral le plus abondant. Sa formation résulte de l'altération de l'olivine et des pyroxènes par un fluide hydraté, réaction qui produit également de la magnétite et de l'hydrogène. Brucite, divers types d'amphiboles, talc, chlorites, carbonates peuvent également être présents. Des trois variétés de serpentine (Fig. 4), la lizardite est la plus fréquente. Le chrysotile lui est parfois associé, mais est surtout présent en veines. L'antigorite est rare. L'abondance de la lizardite semble résulter de sa capacité à accepter les substitutions.

Fig. 4

Serpentine species crystallographic structures: A = lizardite; B = chrysotile; C = antigorite. Triangles represent 4-coordinated Si and more or less deformed squares represent 6-coordinated Mg (from B. Devouard, pers. comm.).

Structures cristallographiques des espèces serpentineuses : A = lizardite ; B = chrysotile ; C = antigorite. Les triangles représentent des tétrahèdres de Si et les carrés plus ou moins déformés des octahèdres de Mg (B. Devouard, comm. pers.).

Les conditions de la serpentinisation aux dorsales océaniques sont difficiles à déterminer en l'absence d'indicateurs précis, et parce que les roches montrent la superposition de différents stades. La pression est nécessairement faible puisque la profondeur du MOHO, au-delà duquel les serpentinites ne doivent plus exister, ne dépasse guère les 6 km. Des données expérimentales et thermodynamiques suggèrent des températures décroissantes pour les limites de stabilité respectives de l'antigorite, du chrysotile et de la lizardite (Fig. 5). Cependant, l'abondance de la lizardite est en désaccord avec les températures élevées déduites d'autres indicateurs. Les autres minéraux associés aux serpentines suggèrent généralement des conditions compatibles avec le faciès schiste vert (300–500 °C). Des données plus précises peuvent être obtenues avec le fractionnement des isotopes de l'oxygène (Fig. 6). Mais les courbes de calibration sont encore mal contraintes. Le Tableau 1 résume les résultats obtenus. Ils montrent un grand éventail de températures (de 500 °C à moins de 100 °C), qui suggère une grande diversité dans les conditions de serpentinisation, mais souligne que la serpentinisation commence à haute température (350–500 °C). Les serpentinites contiennent 10–15 % d'eau et la phase fluide responsable de la serpentinisation est constituée principalement d'eau de mer. Mais les compositions isotopiques de l'oxygène, de l'hydrogène et du strontium (Fig. 7) suggèrent qu'il s'agit d'eau de mer qui a évolué par réaction avec la croûte.

Fig. 5

Phase relationships of serpentine species and related minerals in a temperature–pressure diagram. Simplified from [104]. Continuous lines represent stable reaction curves, dashed lines, metastable reaction curves. Atg = antigorite; Brc = brucite; Ctl = chrysotile; Fo = forsterite; Lz = lizardite; Tc = talc.

Relations de phase des espèces serpentineuses et minéraux associés dans un diagramme pression–température. Simplifié de [104]. Les lignes continues représentent les courbes de réaction stables, les lignes tiretées les courbes de réaction métastables. Atg = antigorite ; Brc = brucite ; Ctl = chrysotile ; Fo = forstérite ; Lz = lizardite ; Tc = talc.

Fig. 6

Compilation of δ18O measurements in serpentinites and serpentine minerals from mid-ocean ridge environments. The values span a wide range, with a peak at +3 to +5‰. Data from: [1,2,30,47,65,87,129,130].

Compilation des données de δ18O dans les serpentinites et minéraux serpentineux des environnements de dorsales océaniques. Données de [1,2,30,47,65,87,129,130].

Table 1

Temperature estimates for serpentine formation from oxygen isotopes

Estimations de température des conditions de serpentinisation à partir des compositions isotopiques de l'oxygène

Location Reference Temperatures Indicator
MAR [130] 118° (lizardite)
1°N and 43°N 180° (chrysotile) δ18O fractionation between serpentine and magnetite
235° (antigorite)
Vema and [30] 30–177 °C (1) δ18O fractionation between serpentine and fluid
Romanche FZ, MAR 45–233 °C (2) reacting fluid = (1) seawater, δ18O = 0; (2) hydrothermal fluid, δ18O = 1.6‰
ODP Site 670 [87] 113–246° (1) δ18O fractionation between serpentine and fluid
MARK 160–385 °C (2) reacting fluid = (1) seawater, δ18O = 0; (2) hydrothermal fluid, δ18O = 2.4‰
ODP site 920, [2] 430–590 δ18O fractionation between serpentine and magnetite
MARK ±120°C
EPR 325±50 °C δ18O fractionation between serpentine and magnetite
Hess Deep [1] 55–135 (1) δ18O fractionation between serpentine and fluid
80–190 reacting fluid = (1) seawater, δ18O = 0; (2) hydrothermal fluid, δ18O = 2‰
115–285 (3) (3) hydrothermal fluid, δ18O = 4‰
ODP Site 895 [65] 297–386±50 °C δ18O fractionation between serpentine and magnetite
Hess Deep 410–533±50 °C
SWIR [47] 116–275 ° (1) δ18O fractionation between serpentine and fluid
52–69°E 160–427° (2) reacting fluid = (1) seawater, δ18O = 0; (2) hydrothermal fluid, δ18O = 2.4‰
Fig. 7

Compilation of 87Sr/86Sr ratios in serpentinites and serpentine minerals from mid-ocean ridge environments. Data from [25,47,85,120]. The data from [118] are not shown because they correspond to magnetic fraction separates.

Compilation des rapports 87Sr/86Sr dans les serpentinites et minéraux serpentineux des environnements de dorsales océaniques. Données de [25,47,85,120]. Les données de [118] ne sont pas figurées, car elles correspondent à la fraction magnétique.

La serpentinisation, qui s'accompagne d'une forte hydratation, provoque une baisse de la densité qui chute de 3,3 à 2,5. Cette constatation a engendré de nombreux débats concernant les conséquences de la serpentinisation sur les flux d'éléments chimiques : si la baisse de densité a lieu à volume constant, elle est nécessairement accompagnée d'un lessivage massif d'une partie des éléments chimiques ; si elle est accompagnée d'une augmentation de volume, la composition chimique originelle peut être préservée. Les travaux récents effectués sur les serpentinites océaniques suggèrent que les éléments majeurs sont peu affectés – en dehors de l'hydratation et de l'oxydation du fer, ainsi que de métasomatisme local (formation de talc, rodingitisation), et militent donc plutôt en faveur de la seconde hypothèse. En revanche, certains éléments traces sont très affectés. En particulier, les serpentinites sont enrichies en Cl, B, S, F. Le comportement des terres rares est encore mal contraint, de même que celui de la plupart des isotopes radiogéniques. Ces éléments sont surtout concentrés dans les pyroxènes et en conséquence, les résultats sont certainement fonction de leur comportement au cours de la serpentinisation. Une étude systématique reste à faire pour bien caractériser les flux de matière entre péridotites et eau de mer au cours de la serpentinisation.

La serpentinisation a des conséquences majeures sur les propriétés physiques. Par rapport à une péridotite fraı̂che, la chute de densité provoque une baisse des vitesses sismiques. Il existe une relation inverse entre le taux de serpentinisation et la densité ainsi que la vitesse de propagation des ondes sismiques (Fig. 8). Ceci explique l'existence du MOHO, même dans le cas où des roches d'origine mantellique (péridotites serpentinisées) affleurent sur le plancher océanique. Dans ce cas, le MOHO doit correspondre à un front d'hydratation voire, dans la mesure où la température maximum de stabilité de la serpentine est de 500 °C, à l'isotherme 500 °C. Les propriétés magnétiques des péridotites sont également affectées. Étant donné que la serpentinisation produit de la magnétite secondaire, les serpentinites acquièrent une magnétisation rémanente naturelle (RMN) et donc peuvent contribuer aux anomalies magnétiques du plancher océanique. Une étude de détail des propriétés magnétiques des serpentinites a cependant montré que l'intensité de la susceptibilité magnétique n'augmentait pas linéairement avec le taux de serpentinisation. En effet, elle dépend de capacité des minéraux serpentineux à incorporer du fer, qui contrôle la quantité de magnétite produite. Enfin, la présence de serpentine modifie les propriétés rhéologiques et donc a une influence sur l'activité tectonique.

Fig. 8

Compilation of densities (A) and seismic velocities (B) measured on ocean floor serpentinites. Adapted from [99].

Compilation des densités (A) et vitesses sismiques (B) mesurées dans les serpentinites océaniques. Adapté de [99].

Aux dorsales océaniques, la serpentinisation peut activer une circulation hydrothermale. Les premières manifestations de cette activité ont été découvertes sous forme d'anomalies de méthane dans la colonne d'eau, systématiquement associées à des affleurements de serpentinites. La production de méthane est liée à des réactions de type Fisher-Trops :

CO2+4H2=CH4+2H2O
qui font intervenir l'hydrogène produit pendant la serpentinisation.

Plus récemment, de véritables champs hydrothermaux ont été découverts sur les péridotites serpentinisées. Les champs de Logatchev et de Rainbow, respectivement localisés à 14°45N et 36°14N sur la dorsale médio-Atlantique, sont assez semblables à ceux installés sur les basaltes : des fumeurs noirs émettent des fluides chargés en particules à des températures de l'ordre de 360 °C. Ils construisent des cheminées de sulfures et abritent des colonies biologiques. Les fluides ont un faible pH et sont chargés en H2S et en métaux. Cependant, par rapport aux fluides émis en contexte basaltique, ils ont des teneurs élevées en H+, résultat des réactions de serpentinisation (Tableau 2). Ils contiennent également des molécules d'hydrocarbures complexes, considérées comme des molécules prébiotiques, qui font de ces sites hydrothermaux des endroits potentiels pour l'apparition de la vie sur Terre. Mais un nouveau type d'activité hydrothermale vient d'être découvert au site de Lost City, à 30°N hors axe de la dorsale médio-Atlantique. Les fluides sont émis à des températures beaucoup plus faibles (40–75 °C), ont un fort pH et de faibles concentrations en H2S et sont chargés en MgO (Tableau 2). Ils construisent d'énormes cheminées constituées de brucite et de carbonates.

Table 2

Comparison of fluid chemistry between hydrothermal vent fields from various ridge environments and seawater

Comparaison de la chimie des fluides émis des endroits différents

Logachev Rainbow Lost City TAG Seawater
1996 1997 2001 1993
Host rock serpentinites serpentinites serpentinites basalts
Temperature 353 365 °C 40–75 °C 363 °C 2 °C
pH 2.8 3.3 8.0 3.1 7.8
H2S mM 0.8 1.0 0.064 3–4 0
Mg mM 0 0 9–19 0 53
Na mM 438 553 479–485 550 464
Fe mM 2500 2400 5170 0.0045
Mn mM 330 2250 710 0.0013
Cl mM 515 750 546–549 650 546
Co mM <2 13 <2 <2
Ni mM <2 3.0 <2 <2
SO4 mM 5.9–12.9 28.6
CH4 mM 2.2 0.13–0.28 0.15–0.16 ×4×10−7
H2 mM 13 0.25–0.43 0.18–0.23 ×4×10−4
[51] [51] [82] [51] except
CH4 and H2 [41]

Différents auteurs ont tenté d'estimer si la chaleur produite par la réaction de serpentinisation qui est exothermique peut suffire à activer une circulation hydrothermale. Il ressort des calculs que la seule chaleur dégagée par la serpentinisation ne peut suffire à réchauffer des fluides à des températures de plus de 300 °C et qu'en conséquence, de la chaleur dégagée par des intrusions magmatiques est certainement impliquée à Rainbow comme à Logatchev. En revanche, dans le cas de Lost City, la seule chaleur de serpentinisation pourrait suffire. Les champs hydrothermaux de ce type devraient être fréquents dans la vallée axiale ou hors axe, à condition que l'eau de mer puisse pénétrer dans des péridotites fraı̂ches.

En conclusion, il est maintenant démontré que les serpentinites, résultat de l'interaction des péridotites océaniques avec l'eau de mer, sont un constituant important de la lithosphère océanique formée aux dorsales lentes et ultralentes. La présence de ces serpentinites a des conséquences importantes sur la composition chimique de la lithosphère, mais les flux chimiques globaux résultant de la serpentinisation sont encore mal contraints. Elle modifie également ses propriétés physiques et peut contribuer aux anomalies magnétiques du plancher océanique. Elle implique de réévaluer les budgets magmatiques aux dorsales, dans la mesure où la croûte océanique peut comprendre une certaine proportion de roches d'origine mantellique et donc résiduelles. Des cellules de convection hydrothermale peuvent être activées par la serpentinisation, soit avec la contribution de chaleur dégagée par des intrusions magmatiques, soit sous le simple effet de la réaction exothermique de serpentinisation. Enfin, sur le plan global, la présence de serpentinites riches en eau et en halogènes dans la lithosphère subductée doit avoir des conséquences dans les processus de déshydratation de la plaque plongeante et dans les mécanismes de fusion des magmas d'arcs insulaires.

1 Introduction

The presence of serpentinites on the seafloor has been documented for a very long time. On the basis of this occurrence and of the seismic structure, Hess proposed [73] that oceanic layer 3 consists of a hydrated mantle, i.e. serpentinites, and that the uniform thickness of the ocean crust corresponded to the depth of the 500 °C isotherm at mid-ocean ridges. The increasing knowledge of the oceanic lithosphere has demonstrated that this picture of the ocean crust was certainly extreme, but that serpentinites do represent a significant portion of the crust.

All the abyssal peridotites that crop out on the seafloor are more or less serpentinized. They commonly occur in slow to ultraslow spreading ridge environments. In the early days, when the topography of ridges was not well known, peridotites were dredged mostly from major scarps, which were essentially transform fault walls [22,23,27,28,100], although some also came from the axial valley [7]. It was also recognized that these ultramafic occurred in the Atlantic and Indian oceans, i.e. at slow spreading ridges, but this could be attributed to the higher density of fracture zones in this environment. It was argued that hydration of the underlying mantle peridotites was made possible by the presence of large faults, driving seawater at depth and the outcropping of serpentinites was commonly ascribed to diapiric emplacement, due to the low density of serpentine (2.5 g/cm3) with respect to the average density of the ocean crust (2.8 g/cm3) [7,27,28]. It is only during the last 15 years, when the knowledge of the mid-ocean ridge structure improved, that a general understanding for the location of peridotites outcrops has emerged, and it has been recognized that at slow to ultraslow spreading ridges, serpentinized peridotites are an important component of the crust.

Serpentinites also occur in other tectonic settings at the seafloor. They have been recorded at passive margins. Serpentinized peridotites were first documented at the Galicia margin where they form a few km wide and a hundred km long ridge, at the continent-ocean boundary [18]. Further work showed that this ridge is a major feature, which continues south to the Iberian margin [12]. This serpentinite ridge is interpreted as resulting from mantle exhumation due to crustal thinning during the initial stage of rifting. At the continent-ocean transition, the tectonic activity is inferred to favour seawater penetration and serpentinization [20,21]. The serpentinites exposed at the Galicia and Iberia margins have been drilled by the Ocean Drilling Program during Leg 103 [19] and 149 [134] respectively. A similar mechanism has been invoked to explain the occurrence of serpentinized peridotites at the Tyrrhenian margin, drilled during ODP leg 107 [31]. A similar occurrence of serpentinized peridotites [102] at the southwest Australian margin is interpreted as resulting from the rifting between Australia and Antarctica [13]. However, serpentinites also occur at active margins. They have been dredged at the Tonga trench [61] and the Mariana trench [60]. Subsequent work at the Mariana trench showed that sheared serpentinites crop out all along the trench in a chain of seamounts. The exposure of these serpentinites is clearly associated with subduction processes and is thought to result from diapiric emplacement, either from material from the subducting plate [16] or from the mantle wedge [67]. One of these seamounts was drilling during ODP leg 125 [68].

This review paper concentrates on serpentinites collected at, and in the vicinity of mid-ocean ridges, i.e. where their formation is related to accretionary processes. The mechanisms responsible for the exposure of serpentinites at the ocean floor in this context are discussed. A general description of typical ocean floor serpentinites is presented. The conditions of serpentinization (temperature, composition of the fluid phase) are evaluated. Our present knowledge of the consequences of serpentinization on the chemical composition of the crust, and on the physical properties of the ocean lithosphere is presented. Finally, the two major types of serpentinized peridotite hosted hydrothermal fields are described and their relation with serpentinization processes are discussed.

2 Occurrence of serpentinites at mid-ocean ridges

It is now well established that, in the global ridge system, serpentinites crop out essentially in slow to ultraslow spreading ridges [34]. In this environment, not only the amount of melting is low, but the lithosphere tends to be thicker. Melt delivery to the surface is episodic and tends to be focused at segment centres [49]. Moreover, the thick lithosphere allows tectonic activity and the development of deep rooted faults. Serpentinized peridotites are clearly not restricted to transform fault scarps, but also occur along the axial valley walls and even at the axial valley floor. A number of field studies suggests that, at least at segment ends, oceanic layer 3 may consist of more or less serpentinized peridotites intruded by gabbro pockets and directly overlain by basalts. This has been documented at the slow spreading Mid-Atlantic Ridge (MAR) [36,71,81,88], at the ultraslow spreading South West Indian Ridge (SWIR) [8,49,97] and more recently at the slowest ridge of the global system, the Gakkel ridge in the Arctic [98]. A thick gabbro layer as well as a dike complex are often missing. At a Penrose conference in 1972 [110], combining seismic studies, results from seafloor dredging and observations in ophiolite complexes, a layered structure was proposed for the ocean lithosphere (Fig. 1). According to the Penrose model, beneath a sediment cover, the oceanic crust is composed of magmatic rocks. Layer 2 consists of basaltic rocks, either extruded on the seafloor as pillow-lavas or intruded as dikes. Layer 3 consists of gabbroic rocks crystallized at depth. The seismically defined MOHO, located at about 6 km beneath the seafloor, separates the crust from the underlying mantle (Layer 4) consisting in peridotites, residues of partial melting. The crust formed at a slow and ultraslow spreading ridge clearly does not fit the Penrose model. It does not have a layered structure but is heterogeneous and its architecture varies along its axis [36] (Fig. 2). The outcropping of residual peridotites at segment ends is likely to result from the melt focusing at segment centres. In the absence or paucity of basaltic melt, plate divergence is accommodated by advection of asthenospheric mantle to the lithosphere and by tectonic processes that result in the exposure of rocks from the mantle. The tectonic activity also favours seawater penetration and alteration of the mantle peridotites. The layered and homogeneous seismic structure that is observed everywhere can be explained by the fact that gabbros and partially serpentinized peridotites have the same seismic velocities [34] (Fig. 1, see Section 6). This suggests that when serpentinized peridotites crop out at the surface, the MOHO does not correspond to the magmatic crust/residual peridotite boundary, but could be a hydration boundary, i.e. the boundary between serpentinized peridotites and fresh peridotites [73].

More recently, very low angle faults, i.e. megamullions or detachment faults, that accommodate spreading for long periods of time (i.e. over a million years), have been discovered at slow spreading ridges [33,91,123,127]. These long lived faults expose large portions of the oceanic lithosphere, and serpentinites as well as talcschists commonly crop out on their surfaces.

This new perspective on accretionary processes at slow spreading ridges suggests that serpentinized peridotites make up a significant portion of the so-called oceanic ‘crust’ at slow to ultraslow spreading ridges, although at this stage, it is still difficult to quantify. On the basis of geological observations, Cannat et al. [36] tentatively suggest that exposure of serpentinites could represent 20% of the seafloor, but in volume they would not exceed 5–15% of the crust. On the basis of seismic data, Carlson [37] comes to the estimate of 5% maximum. Further work is undoubtedly needed for a better understanding.

By contrast, in fast spreading ridges, most evidence suggests that the crust is layered and consists of extrusive basalts, a dike complex and a massive gabbro layer overlying mantle peridotites (Fig. 1). In this case, the MOHO is interpreted as the transition between a magmatic crust and the residual mantle peridotites [117]. Peridotites occur only below the MOHO, i.e. at depths >6 km. Given this general structure, major tectonic movements are necessary to expose them at the seafloor. Outcrops of serpentinized peridotites have been documented only in very particular areas: major transform faults (Garrett [14]), trenches opening at the boundary of rotating microplates, such as Easter and Juan Fernandez [46], and the tip of propagators such as Hess Deep [63]. In this case, as opposed to slow spreading environments, serpentinized peridotites do not represent a significant portion of the crust. The presence of serpentinized ultramafics beneath the gabbro layer cannot be completely ruled out, but serpentinization must then occur off axis, when the temperature has dropped below 500 °C.

Sample suites of serpentinized peridotites from all these environments have led to various types of studies (mineralogy, petrology, geochemistry, physical properties). The most comprehensive data sets come from sites drilled by the Ocean Drilling Program (ODP). Two adjacent sites (670 and 920) are located at the Mid-Atlantic Ridge, in the western wall of the axial valley of the MARK area (23°N) and represent serpentinites from a slow spreading environment [35,48]. Site 895 is located on the intrarift ridge of Hess Deep, which exposes rocks generated at the fast spreading East Pacific Rise [70]. The other samples which are referred to in this paper have been either dredged or collected with submersibles.

3 Mid-ocean ridge serpentinite textures and mineral assemblages

Abyssal peridotites collected from the seafloor consist primarily of harzbugites, with minor dunites and lherzolites. They are always between partly and completely altered. Altered peridotites display various appearances in colour: black, dark or light green, red, yellow. Serpentinites are generally black or green, while yellowish to reddish rock contain abundant clay minerals. This section concentrates on serpentinites sensu stricto, and synthesizes observations made on different sample sets [7,14,47,50,65,74,84,87,96,100,101,111].

3.1 Textures

Serpentinization is always extensive. The extent of serpentinization, i.e. the percentage of secondary minerals, generally varies between 80 and 100%, but peridotites with as little as 50% serpentinization are occasionally found. Dunites are generally more heavily serpentinized than harzburgites. Most of the described serpentinites are undeformed, i.e. have been altered under static conditions: in hand specimen and under the microscope, primary textures are still identifiable (Fig. 3A). However, the samples are typically cross-cut by vein networks, recording a complex history of fracturing, crack opening and fluid circulation [50,65]. The abundance and orientation of veins is very variable. A dense network of parallel veins may generate an apparent schistosity, even though the vein filling minerals have grown perpendicularly to the vein walls, clearly under static conditions (Fig. 3B). Scarce sheared veins have also been reported [111] and dredged blocks often display slickensides on their outer surfaces.

Although not as common, deformed serpentinites have also been described [7,28,100]. In general, dredge collections typically contain a few percent of serpentine schist fragments, even if those are generally not studied. Recently discovered detachment surfaces may also yield tremolite-talc-serpentine schists. Drill cores of one of these surfaces at 15°45N, off axis the MAR show that these schists make up the fault zone [91].

Serpentinite breccias have also been reported. A first type consists of serpentinite clasts cemented by a carbonate matrix (generally calcite or aragonite). These rocks are similar to what is called ophicalcite in ophiolites, and may have, at least partly, a hydrothermal origin [26,28]. A second type consists of indurated serpentinite fragments of sedimentary origin, often displaying graded bedding. These sedimentary serpentinites are likely emplaced by gravity sliding or slumping [28].

In undeformed oceanic serpentinites, microscopic textures are quite similar to those described in continental serpentinites (see review in [104]). A first detailed description of ophiolite and ocean floor serpentinite textures [111] has been confirmed by subsequent studies. The primary mineralogy of abyssal peridotites consists of olivine ± orthopyroxene (opx) ± clinopyroxene (cpx) ± spinel. Thin section observations display a different sensitivity to alteration for the primary phases. Resistance typically increases from olivine through orthopyroxene to clinopyroxene. High temperature of serpentinization (see Section 4) may however modify this general rule. Olivine is replaced by serpentine in mesh textures, while ortho- and clinopyroxenes are replaced by bastite. In the mesh texture, broken olivine fragments are replaced by concentric layers of serpentine aggregates associated with magnetite grains. A fresh olivine kernel might be preserved at the center (Fig. 3C and 3D). Alternatively, the centre may consist of brucite or carbonate. Bastite is made up of serpentine fibers which mimic the orthopyroxene shape (Fig. 3E). Because clinopyroxene is more resistant to alteration, clinopyroxene exsolution lamellae are often preserved in bastites replacing orthopyroxene [7]. Talc and/or amphibole may be associated with the alteration of orthopyroxene (Fig. 3F). In these statically altered rocks, it is generally easy to reconstruct the primary assemblages because the secondary minerals perfectly pseudomorph the original phases, even if cross-cutting veins are normally abundant (Fig. 3G) Some rocks, however, show evidence of recrystallization which may obliterate the primary textures [121].

In serpentine schists, the original texture has been completely modified by deformation and recrystallization (Fig. 3H). In talcschists, the ultramafic precursor can be inferred from the mineral assemblage (i.e. the presence of spinel grains), or from the bulk chemistry [58].

The fabrics of mid-ocean ridge serpentinites clearly demonstrate that most of the serpentinization occurs under static conditions, by reaction of the peridotite with a fluid phase driven through fractures and cracks. These undeformed textures are in agreement with a non-diapiric emplacement.

3.2 Mineralogy

Because the primary mineral assemblage of abyssal peridotites is relatively constant, the secondary assemblage resulting from peridotite hydration is simple. A typical mid-ocean ridge serpentinite is made up of serpentine minerals + magnetite ± talc ± brucite ± tremolite. The most common accessory minerals consist of ferrit-chromite, chlorite, native metals and sulfides, clay minerals, diopside, secondary olivine, hornblende. Textural relationships, however, suggest that not all these phases are in equilibrium: they record phases that pre- or postdate the serpentinization event.

3.2.1 Serpentine minerals

A number of general reactions are often used to describe the formation of serpentine. In a purely magnesian system, the most commonly referred to are the following:

2Mg2SiO4+3H2O=Mg3Si2O5(OH)4+Mg(OH)2olivine+water=serpentine+brucite(1)
Mg2SiO4+MgSiO3+2H2O=Mg3Si2O5(OH)4olivine+orthopyroxene+water=serpentine(2)
The serpentine species, however, may vary. Serpentine minerals are trioctahedral 1:1 layer silicates. They consist of alternating infinite sheets of 4-coordinated Si and 6-coordinated Mg. The three dominant species are lizardite, chrysotile and antigorite, which differ by their crystal structure. Lizardite consists of planar layers (Fig. 4A). Chrysotile consists of scrolled layers, which tend to form cylinders (Fig. 4B). In antigorite, the 1:1 layer periodically reverses, resulting in the loss of a octahedral coordinated sites (Fig. 4C). The three species can be distinguished by their XRD patterns; however, the crystal structures are best illustrated by TEM images (see review in [104,105]).

The general formula of serpentines is Mg5{Si2O4}(OH)4. Substitution of Al and Fe3+ for Si may occur in tetrahedral sites, and that of Fe2+, Fe3+, Cr, Al, Ni and Mn for Mg in octahedral sites. It has been shown that lizardite tends to accept more substitution than chrysotile, and is typically more enriched in Al, although their compositions overlap [101,133]. Antigorite, however, because it lacks octahedral sites, is not strictly a polymorph. This results in the loss of Mg and (OH)4 with respect to Si, and antigorite is therefore systematically enriched in silica [9,128,132].

All the serpentinites collected from the seafloor display lizardite as a dominant phase ([100,101,111] and references therein). It is found in the mesh texture as well as in the bastites. Chrysotile may be associated with lizardite. Chrysotile is the major phase occurring in veins. Antigorite has also been reported, but is definitely more scarce, associated with veins as well shear zones [100]. Recrystallizations generally result in the replacement of lizardite by chrysotile [121].

It is difficult to assess a specific composition to the different serpentine species in ocean floor serpentinites, as the serpentine variety is generally not determined when the chemical analyses are available. Moreover, the coexistence of lizardite and chrysotile in undetermined proportions is common in specific sites such as mesh after olivine or bastites. However, the microtextural site where the serpentine has crystallized clearly influences its chemistry [74,96]. Serpentine replacing olivine is typically devoid of aluminium and chromium but contains some nickel, matching the composition of olivine. By contrast, serpentine from bastites contains aluminium and chromium. The Mg# is not as consistent, because it may be controlled by external factors such as the oxygen fugacity which influences the Fe3+/Fe2+ ratio; the amount of iron in serpentines varies with the abundance of associated magnetite, and therefore reflects oxidixing conditions [108]. When recrystallization occurs, the secondary serpentine is often chrysotile, replacing primary lizardite [121]. Its composition shows less substitution, as if recrystallisation resulted in serpentine minerals closer to the ideal formula. Serpentine in veins also tends to have less substitutions, which is consistent with the fact that Al, Cr, Ni are relatively immobile during alteration and therefore remain in their original microstructural site, and with the predominance of chrysotile.

3.2.2 Magnetite

Magnetite is ubiquitous in serpentinites and is the product of the serpentinization reaction of the iron end member. Incorporating iron, reaction (1) can be modified in the following way:

6(Mg,Fe)2SiO4+7H2O=3(Mg,Fe)3Si2O5(OH)4+Fe3O4+H2(3)
It is important to note that the oxidation of iron to form magnetite generates hydrogen (see Section 7). Magnetite often underlines the concentric layers of serpentine in the mesh texture. Its grain size is generally very small (in the order of a few microns or below), although occasionally euhedral crystals may reach over 10 μ (Fig. 3C).

3.2.3 Talc

Talc is commonly associated with the alteration of orthopyroxene. It generally occurs along cracks, progressively pseudomorphing the large crystals. It results from the following reaction:

6MgSiO3+3H2O=Mg3Si2O5(OH)4+Mg3Si4O10(OH)2orthopyroxene+water=serpentine+talc(4)
Talc is also present in deformed rocks, as a major constituent of serpentine-talc schists.

3.2.4 Amphiboles

Amphiboles often occur in serpentinites, although they are generally not very abundant.

The most common variety is tremolite. Texturally, it forms needles, generally associated with the alteration of pyroxenes (Fig. 3F). It may result from the following reaction (in a purely magnesian system):

6MgSiO3+2CaMgSi2O6+3H2O=CaMg5Si8O22(OH)2+Mg3Si2O5(OH)4opx+cpx+water=tremolite+serpentine(5)

Tremolite may contain some iron, as well as some aluminium and chromium.

Other types of amphiboles have also been described, although less frequently. In particular, magnesio-hornblende, edenitic hornblende, cummingtonite have been identified in serpentinites. However textural relationships suggest that they predate the serpentinization event [14,84].

3.2.5 Brucite

Brucite is an Mg-hydroxide which is only occasionally found in oceanic serpentinites. At Hess Deep, however, it occurs as a major phase [65,96]. Its ideal formula is Mg(OH)2, but an Mg is often substituted by Fe2+. It occurs either in the core of mesh texture, or more often in veins. Its formation is generally described by reaction (1).

3.2.6 Other minerals

Ferrit-chromite results from the alteration of aluminous spinel. This reaction provides aluminium, and a rim of chlorite is generally present around the altered spinel grains [74]. Secondary sulfides (pentlandite, marcasite, haezlewoodite, etc.) and native metals and/or alloys (native Cu, arawuite, taenite) have also been described [4]. They are inferred to result from the recrystallization of primary sulfides during serpentinization. Carbonates occur essentially in veins and as breccia matrix, and are generally aragonite and calcite. They correspond to very late stages and are not in equilibrium with the serpentine minerals.

3.2.7 Conclusions

This review of the mineral assemblages in serpentinites from mid-ocean ridges points out the predominance of lizardite and minor chrysotile, associated with magnetite. Other phases are much less abundant and are associated with particular mineral domains. It also suggests that the chemistry of serpentine species is largely controlled by the microstructural site. It should be pointed out that the presence of primary mineral relics, the juxtaposition of primary mineral pseudmorphs and the occurrence of cross-cutting vein networks are not in favour of equilibrium at the sample scale.

4 Conditions of serpentinization

The serpentinization of abyssal peridotites results from their interaction with large volumes of a hydrous fluid, at temperatures below 500 °C, maximum stability of serpentine minerals [32], although a number of studies suggests that seawater penetration in the peridotites may start at a higher temperature [14,84].

Although the serpentinites are presently exposed on the seafloor, a number of factors indicate that at least part of the serpentinization occurred at depth, when the peridotites were cooling down. In this section, the conditions of serpentinization, i.e. the pressure, temperature, oxygen fugacity as well as the nature and composition of the fluid phase will be discussed. It is important to keep in mind that serpentinites are polyphased rocks that record successive stages of crystallization. This section will essentially consider processes associated with the peak of crystallization, i.e. the replacement of olivine by the mesh textured serpentine and replacement of pyroxenes by bastite. Determining the temperature and pressure of serpentinization is not an easy task, because serpentine minerals are stable over a wide range of temperatures (between 500 °C and room temperature) and because reaction producing serpentines are relatively insensitive to pressure.

4.1 Pressure of serpentinization

The maximum pressure at which serpentinisation occurs is reasonably well constrained by the geodynamic setting. The depth of MOHO generally does not exceed 6 km. It may attain a maximum of 10 km and can be shallower at slow spreading ridges (<3 km occasionally). High seismic velocities beneath the MOHO indicate that the mantle is composed of fresh peridotites. Therefore, serpentinites form at a maximum depth of 10 km but more generally at 6 km and even less when the MOHO is shallower. This translates into a maximum pressure in the order of 3 kb, and more generally <2 kb, quite low compared to orogenic belts. Precise indicators, unfortunately, are lacking, to better constrain the pressure, and therefore the actual depth of serpentinization within the lithosphere.

4.2 Temperature of serpentinization

To estimate the temperature, a number of indicators can be used, but their precision remains poor, as will be discussed. Not only the stability field of serpentine minerals is not well constrained, but also the attainment of equilibrium is not really demonstrated. Finally, as evidenced by the numerous generations of veins, serpentinization does not occur in a single event.

4.2.1 Stability of serpentine species

Based on experimental work, the general consensus is that chrysotile and lizardite are stable at temperatures lower than antigorite [59,101]. The first phase diagram of serpentine species was constructed by Evans [59], based on experimental work. It showed that forsterite can be stable down to 400 °C, and that antigorite is the serpentine species stable at high temperatures (up to 500 °C). This phase diagram is consistent with his field observation in the central Alps. An independent calculation of the temperature for the serpentine species was made using δ18O (see below). The formation temperature for antigorite, chrysotile and lizardite were estimated at 235, 180 and 125 °C, respectively [129]. More recently, a more precise phase diagram was constructed on the basis of thermodynamic data [104] and shows the sequence antigorite>chrysotile>lizardite with decreasing temperature (Fig. 5). It also shows that forsterite is stable down to 350 °C.

In ocean floor serpentinites, reactions are retrograde (progressive hydration of a cooling peridotite), as opposed to the western Alps serpentinite section [59]. The peak of serpentinization is characterized by a predominance of lizardite ± minor chrysotile. Antigorite is extremely scarce. This would suggest relatively low temperatures (⪡200 °C). Other indicators, such as associated minerals and 18O fractionation, disagree with this estimate and suggest high temperatures (>300 °C) (see below). Moreover, the experimental reaction between peridotite and seawater at 300 °C and 500 bars produced lizardite as a major phase [114]. This discrepancy again raises the question of equilibrium attainment in oceanic serpentinites. Another possible explanation for the widespread occurrence of lizardite is its ability to depart from the ideal formula by incorporating Fe2+, Fe3+ and Al. Some authors have shown that these substitutions enlarge the stability field towards higher temperatures [38,94,106]. Crystallization of lizardite in olivine and pyroxene could also be structurally controlled by the preexisting phases. In any case, it is obvious that the nature of the serpentine species remains a poor indicator of the temperature for oceanic serpentinites.

4.2.2 Mineral assemblages of serpentinites

Besides serpentine minerals, other phases occur in serpentinites or associated cross-cutting dikelets and provide some constraints on the temperature.

The significance of talc in serpentinites has been largely debated because talc is stable over a wide range of temperatures. It does not seem to be a good temperature indicator because its formation is controlled by other factors, particularly by silica activity in the fluid phase [74]. This is confirmed by the experimental reaction between peridotites and seawater at 300 °C which shows that talc formation is favoured by high activities of SiO2, MgO and H+ [78]. Further experiments at 400 °C [3] suggest that at high temperatures, the preferential alteration of pyroxenes (with respect to olivine) results in fluids enriched in dissolved Ca, SiO2, Fe and H+ which favour the formation of Si-rich silicates (talc and tremolite). These results are in agreement with the observed association of talc with pyroxenes. The presence of talc would therefore indicate higher temperatures of serpentinization, as well as high silica activity.

The common presence of chlorite and tremolite suggest temperatures consistent with greenschist facies conditions, i.e. in the range of 300–500 °C. For example, in serpentinites at Hess Deep [65,96] as well as Garrett Fracture zone [14], the association with altered gabbros dikes or impregnations containing chlorite, albite, actinolite as secondary phases suggest temperature conditions between 300 and 500 °C. Minor phases may also be informative. In Hess Deep serpentinites, the presence of a FeNi-alloy, taenite even suggests temperatures as high as 450 °C [72]. Another indication of temperature is given by the respective dissolution rates of olivine and orthopyroxene. Experimental reactions have shown that olivine is preferentially dissolved at temperatures around 250–300 °C, while orthopyroxene is rapidly dissolved at temperatures above 400 °C [93]. If all the orthopyroxene has been serpentinized in a given sample, while olivine relicts are still present, this indicates reactions at high temperature (>400 °C). This case has been reported in samples from Hess Deep [121].

4.2.3 Oxygen isotopes

18O fractionation also allows us to estimate serpentine crystallization temperatures. The starting material is a peridotite with a well defined mantle value (δ18O = 5–6‰). The reacting fluid phase is inferred to be seawater (δ18O = 0). Empirical fractionation curves between serpentine and water as well as serpentine and magnetite have been proposed [129,130] and recently refined [65]. However, because these curves have not been experimentally constrained, the uncertainty on temperature estimates remain very high, up to 50–120 °C [2,65]. A first result is to show that the fractionation between serpentine and water depends on the temperature: the δ18O of the serpentine is heavier than the starting material at low temperatures, lighter at high temperatures, the critical change appears around 100–200 °C. Fig. 6 shows a compilation of δ18O measured in mid-ocean ridge serpentinites. It shows a large dispersion in the values, between 0 and +12‰, enclosing the mantle value. This suggests that serpentinization reactions occur over a wide range of temperature. The δ18O is also influenced by the water/rock ratio (W/R). The minimum W/R required to convert fresh peridotites to serpentinites stoichiometrically is 0.13 [113]. As a rule, at higher W/R, isotopic compositions are more strongly modified [113]. For the MARK area serpentinites, a W/R in the range of 0.55 to 1 has been calculated at 400 °C [2], depending on the fluid composition.

More precise temperatures can be tentatively evaluated. The serpentine/water fractionation curve [129] allows the calculation of the temperature if the δ18O of the fluid phase is constrained. It is reasonable to assume that seawater is the major component of the reacting fluid phase. However, as it penetrates into the crust, it reacts to form secondary minerals and its δ18O is consequently modified. An obvious example of this compositional evolution of the reacting fluid phase is the δ18O of fluids venting at black smokers. These fluids, which are the end product of seawater convecting cells in the crust, yield systematic positive δ18O values, intermediate between seawater (δ18O = 0) and the magmatic rocks (δ18O = 5–6) with which it has reacted – see the review in [115]. For instance, at the Snake Pit vents on the Mid-Atlantic Ridge, hydrothermal fluids yield a δ18O of 2.30 [80]. The composition of fluids involved in serpentinization reactions remains unknown, but is likely to have evolved with respect to seawater. In the absence of a precise composition for the fluid phase, a number of authors have used different δ18O values varying between 0 (pure seawater) and 4 (evolved seawater), and calculated a temperature range. Table 1 summarizes the temperatures obtained and shows a wide spectrum, ranging from 30 °C to over 400 °C.

Calculations based on empirical oxygen isotope fractionation curve between serpentine and magnetite [65,129] help avoid assumptions on the composition of the fluid phase. Equilibrium temperatures have been calculated for only a few examples, because separating magnetite from serpentine is not often possible due to the very small grain size of magnetite. The results are again very variable (Table 1) and reach up to 500 °C.

In conclusion, despite the uncertainties in the temperature estimates due to the lack of experimental calibration as well as the fact that equilibrium attainment may not be reached, this review clearly demonstrates that serpentinization starts at a high temperature, in the range of 300–500 °C, but temperatures in the range of 100 °C are also reported (see Table 1 and references therein). It is interesting to point out that samples yielding the highest temperature come from drill holes (MARK, Hess Deep). The other samples, collected from the seafloor, and often off axis in fracture zone, may have been subjected to later re-equilibration at or near the seafloor.

4.3 Nature and composition of the altering fluid phase

An ocean floor serpentinite typically contains 10–15% of water or even higher, depending on the extent of serpentinization. The formation of serpentinites from an essentially anhydrous peridotite certainly heavily involves seawater. However, as already pointed out, some tracers suggest that the fluid may have evolved from pure seawater by reaction with the ocean crust and/or mixing with other fluids.

Stable isotopes are good tracers for the nature of the altering fluid. The δ18O values measured in serpentinites suggest that the fluid phase has a δ18O ⪡ 5.5‰, the average value of fresh peridotites and consistent with dominant seawater. As discussed above, as seawater penetrates into the crust, however, it reacts with the rocks and its composition evolves. This evolution results in heavier δ18O. A possible way of estimating the δ18O of the fluid phase is to constrain the temperature using the fractionation between serpentine and magnetite, and then calculate the composition of the fluid phase using the partition coefficient between serpentine and fluid at a given temperature. At MARK (ODP Site 920), the calculated range of δ18O for the fluid phase varies between 3.3 and 4.4‰ at 350 °C, and between 4.3 and 5.4‰ at 450 °C. At Hess Deep, consistent values of 4‰ for a temperature of 325 °C have been calculated for a sample collected by submersible [1], and 3.3–4.4‰ at 450 °C for the drilled samples [65]. Even with the uncertainty, it can be stated that δ18O suggests evolved seawater rather than unaltered seawater. The relatively heavy value of 6.6‰ found at Hess Deep could result from mixing with magmatic fluid [65].

A possible mixing of unaltered seawater with a fluid of deep origin has also been suggested from δD values. Ocean floor serpentinites are characterized by very light δD (<−60‰), which cannot be explained by simple interaction with interaction with seawater, and their origin has been debated [65,116,130]. The mixing with magmatic or metamorphic fluids (resulting from dehydration reaction of previously altered ocean crust) has been invoked [116,130]. However, at Hess Deep, at least 20% of magmatic fluid is required to explain the very light δD values. Given the very low water content of MORB magmas, this percentage does not seem realistic. Moreover, there is no petrological evidence for intensive dehydration reactions. An alternative explanation could be the D/H fractionation during the production of molecular hydrogen associated with serpentinization [65].

At Hess Deep, the existence of a magmatic component is also suggested by δ13C signatures [65]. The thermal decomposition of the serpentinites produces CO2 with a δ13C consistent with magmatic values (−4.5–7.8‰), as opposed to aragonite veins which are consistent with oceanic carbon.

A very low oxygen fugacity during serpentinization can be inferred from the presence of sulfides and metal alloys [64,101]. In Hess Deep serpentinites, the paragenesis of opaque phases consisting of magnetite + awaruite + pentlandite ± heazlewoodite, stable at temperatures ranging from 400 to 100 °C, indicates highly reducing conditions and low fO2 [4]. These extreme conditions are attributed to the production of H+ during silicate reactions (see reaction (3)) which maintains low fO2 and produces H2S from primary sulfides.

Strontium isotopes are also a good tracer for the interaction with seawater. A number of studies have shown that the 87Sr/86Sr span a range between mantle (0.7023) and present-day seawater (0.7092) values with a peak around 0.708–0.709, therefore arguing for a seawater dominated fluid phase (Fig. 7). The large interval is interpreted in terms of the mixing of three components: MORB, mantle peridotites and seawater [85]. MORBs and oceanic peridotites have similar strontium isotopic compositions, but the concentration is much higher in MORBs than in peridotites [85]. MORBs and peridotite have the same strontium isotopic compositions, but their strontium concentrations vary from above 100 ppm in basalts to less than 10 ppm in peridotites. Because the strontium content of peridotites is very low compared with seawater, interaction with seawater is dominated by the 87Sr/86Sr ratio of the fluid, and serpentinites should rapidly be in equilibrium with seawater, depending on the water/rock ratio. Intermediate values may result either from low water/rock ratios, or from interaction with the overlying basaltic crust during penetration at depth. Fig. 7 also points out that some whole rock analyses of serpentinites yield puzzling 87Sr/86Sr ratios, higher than seawater. These values were first documented for serpentinized peridotites from the equatorial M.A.R. [25]. The proposed explanation for these values was that the peridotites were remnants of continental mantle left behind during the breakup of Pangea [24]. More recently, such high 87Sr/86Sr ratios were found again in serpentinized abyssal peridotites from other localities [118]. On the basis of mineral separates and leaching experiments, these authors argue that the high ratios are due to detrital sediment particles of continental origin infiltrated through the cracks of the serpentinites. Although this process is not related to serpentinization, it should be kept in mind because it may affect the 87Sr/86Sr ratios of abyssal serpentinites.

The combined use of stable and radiogenic isotopes as tracers leads to the conclusion that the fluid phase involved in the serpentinization reaction at mid-ocean ridges consists of evolved seawater, with a possible minor magmatic component.

5 Elemental fluxes during serpentinisation

The first and major consequence of serpentinization is hydration. Serpentine minerals contain over 12% water. In serpentinites, they represent the major phase and the amount of water has often been used as a proxy for the degree of serpentinization. The second consequence is oxidation of iron due to the formation of magnetite by reaction (3). However, there has been a number of debates on whether, besides these two effects, serpentinization has a chemical consequence on the bulk chemistry of the rocks. A good summary of these debates is given by O'Hanley [104]. The essence of the problem is the question of volume, because serpentinite has a much lower density than a fresh peridotite (2.5 g/cm3 versus 3.3 g/cm3). If serpentinization occurs at constant volume, the decrease in density must be accompanied by a loss of chemical elements. By contrast, if the chemical elements remain constant, then there must be a volume increase to account for the decrease in density.

The problem of volume increase due to hydration has not yet been completely solved. Most ocean floor serpentinites have been formed under static conditions; serpentine pseudomorphing primary minerals preserve the details of the original texture, and does not favour a volume increase at the crystal scale. At the sample scale, however, vein networks are commonly reported and can account for a volume expansion. From observations in continental serpentinites, O'Hanley [103] proposes that progressive serpentinization produces a kernel pattern than can account for volume expansion. This model could apply to oceanic serpentinites, but, unfortunately, no such detailed outcrop observations are available.

The problem in evaluating chemical fluxes is that the fresh protolith is never available for comparison with the altered rock. Although peridotites are relatively homogeneous in terms of mineral assemblages, the mineral compositions may vary widely, reflecting the amount of melting as well as possible reaction with percolating melts. Therefore there is no ‘standard composition’ that could be used as a reference.

5.1 Major elements

On the basis of correlated variations between elements (CaO, Al2O3, FeO∗/MgO) that can be interpreted in terms of primary processes, it has been suggested that most of the chemical variations among samples are due to the primary heterogeneity of the peridotites, even though some mobilization during serpentinization may also occur (i.e. loss of CaO) [100]. A more quantitative attempt to evaluate chemical fluxes was made in serpentinized peridotites from the Franciscan formation [45]. In this example, serpentinization, besides hydration, does not seem to affect major element concentrations, except for calcium. The consequence is a calculated volume increase of 35% for harzbugites and 48% for dunites. A study of serpentinized dunites and wehrlites from the Bay of Island ophiolites comes to the same conclusion [86]. On the basis of modal reconstructions, a volume increase of 32% is estimated and mass balance calculation indicated evidence for appreciable metasomatism for CaO, Al2O3, FeO and MgO. No mass balance calculations have been attempted on serpentinized abyssal peridotites but the general consensus is that the major elements are not severely affected, which implies an overall volume increase [74,87,96]. The fact that serpentine minerals pseudomorphing primary phases commonly retain the minor elements such as Al, Cr and Ni is also in favour of immobility during serpentinization. The only evidence for a loss in magnesium has been documented in peridotites altered at low-temperature and is likely to be related to the formation of clay minerals [119]. In this case, an average of 5% MgO loss is estimated as a result of weathering (temperature ⪡100 °C), probably when the rocks are exposed on the seafloor.

Experimental reactions between peridotite and water have been conducted at temperatures between 200 and 400 °C and a pressure of 500 bars, with the aim of constraining chemical fluxes [3,78,114]. The results remain inconclusive on the final chemical budget because equilibrium is not reached, but they help us to understand reaction pathways. In most experiments, SiO2 initially increases in the solution while MgO and pH decrease. The low pH favours the dissolution of Fe, Mn, Zn. Subsequently, the pH increases and the dissolution rates decrease. The data show that reaction pathways are dependant on the mineral assemblages of the peridotites, the solution chemistry, in particular the MgO concentration which affects the pH, and therefore the dissolution of minerals and the water/rock ratios.

There is evidence for local metasomatism associated with serpentinization. The occurrence of rodingites, gabbroic dikes recrystallized to secondary assemblages rich in calsilicates (hydrogrossular, prehnite, epidote, pumpellyite), implies the input of calcium, generally considered to have been leached from the peridotites during serpentinization [7,14,76]. At Hess Deep, however, it has been argued that the incipient formation of rodingites could simply reflect a redistribution of sodium and calcium within the gabbroic bodies during the serpentinization event [96]. The other evidence for mass transfers during serpentinization is the presence of tremolite-talc schists often associated with serpentinites [58,66,91]. Pyroxene is serpentinized at temperatures as high as 500 °C, while olivine is stable down to 400 °C. Serpentinization of pyroxenes definitely results in a loss of silica. An increased silica activity in the fluid results in the stability of talc and tremolite over serpentine [3]. If silica rich fluids are channelled in fault zones, the alteration of peridotites occurs under dynamic conditions and results in the formation of serpentine-talc-tremolite schists. However, this evidence for metasomatism remains volumetrically small compared with the bulk of massive serpentinites.

5.2 Trace elements

The behaviour of trace elements during serpentinization is not well constrained yet.

Serpentines are enriched in chlorine. In situ analyses of individual serpentine crystals document values between 90 and 14 800 ppm [74,84,96], see review in [6], with an average value of 1850 ppm. Bulk rock analyses confirm these numbers: 1065–1470 ppm in serpentinites from the 15°N detachment surface at the M.A.R. (Mével, unpublished data) and 168–2211 ppm in serpentinites from the SWIR (Decitre, unpublished data). Anselmi et al. [6] favour the location of Cl as isomorphic substitution for (OH) groups in serpentines as opposed to secondary formed hydroxichloride. Früh-Green et al. [65] also report 6% chlorine in brucite veins, but brucite is not a common phase, except at Hess Deep. Further work is certainly necessary to better constrain which mineral partitions chlorine, but in any case, serpentinites are clearly a sink for chlorine.

Serpentinites are enriched in boron (100 ppm) compared with fresh peridotites (15–25 ppm) [125]. Values ranging from 24 to 110 ppm (corrected for the percentage of serpentinization) have subsequently been measured [30] on another suite of samples, also documenting an inverse correlation between B and temperature. The uptake of B is favoured at low temperatures (<50 °C). This behaviour was confirmed by experiments [114] which show that at 300 °C, there is no change in the B concentration of the reacting fluid, while it drastically decreases during cooling to 25 °C, suggesting that the boron uptake occurs during retrograde reactions with seawater.

Fluorine also seems to be taken-up during serpentinization. A bulk rock value of 204 ppm [122] of fluorine is confirmed by in situ nuclear microprobe analyses [107] which yield an average of 206 ppm.

Decitre et al. [47] report bulk rock serpentinite concentrations for lithium ranging from 0.6 to 8.2 ppm, while the mantle value is 1–3 ppm. They conclude that serpentinized peridotites can be only a minor sink for Li. The δ6Li suggest that Li is recycled from the altered ocean crust rather than seawater.

The behaviour of sulfur during serpentinization has been studied at Hess Deep in comparison with the Iberian margin [4]. At Hess Deep, high temperature serpentinization results in an slight uptake of sulfur (mean = 355 ppm versus 250 ppm for the mantle value). It reflects the combined effect of a decrease in sulfide sulfur (trace to 165 ppm) due to the breakdown of primary sulfides (replaced by metal alloys and sulfide phases containing less S) and an increase in sulfate sulfur (50 to 790 ppm) due to the uptake of sulfate from seawater. It is suggested that the wide spectrum of δ34S (21‰ to −3.3‰) for sulfates reflects a mixing of seawater sulfates (high values) with sulfates derived from oxidation of sulfides. The δ34S of sulfides varies from 1.5‰ to −23.7‰. The highest values are consistent with magmatic values, while the lowest are best explained by the microbial reduction of seawater sulfates during the late stage of serpentinization (at temperature <120 °C). The combination of these processes results in a net increase in δ34S (mean = 8‰) for bulk serpentinites. This study also indicates a difference with the Iberian margin serpentinites, formed at lower temperatures and higher fluid fluxes, where a higher microbial activity results in a higher uptake of total sulfur (mean S content = 3800 ppm) and a decrease in δ34S (mean=−5‰). A subsequent study of MARK area serpentinites also documents high sulfur contents (up to 1 wt%) and high δ34S in sulfides (3.7 to 12.7‰) [5]. In this case, however, the authors ascribe the enrichment in sulfur to a multistage reaction process. Aqueous fluids enriched in sulfur through hydrothermal reactions with subjacent gabbroic intrusions at temperatures in the range of 350–400 °C are subsequently involved in serpentinization reactions at temperatures <300 °C. In any case, serpentinization obviously influences the global cycle of sulfur and results in a net increase of sulfur and a modification in the δ34S.

The behaviour of REE as well as radiogenic isotopes during serpentinization is a major issue for petrologists because it is important to determine whether they retain their primary values; however, no systematic studies have been conducted on oceanic serpentinites. A review of studies on continental/ophiolitic peridotites [95] shows that there is no consensus on the behaviour of REE. The authors conducted experiments to better constrain this behaviour, by reacting a lherzolite, a harzburgite and a dunite with seawater at 300 °C. Again, the results remain ambiguous. For lherzolite and dunite, the REE remain immobile, while for the harzburgite, an uptake in LREE (La > Ce > Nd) occurs. The authors attribute this difference to the role of secondary Ca-bearing phases. It should be pointed out that some of the experiments produce anhydrite which is never observed in natural serpentinites because it has likely been redissolved by seawater at temperatures <150 °C. These experiments also constrain the behaviour of some radiogenic isotopes, 143Nd/144Nd and 87Sr/86Sr. As discussed in Section 4, the 87Sr/86Sr ratio is strongly affected during serpentinization. But a 87Sr/86Sr versus 143Nd/144Nd binary diagram shows that, by contrast, neodymium isotopes are little affected. The representative points form a horizontal array at constant 143Nd/144Nd values of 0.51310–0.51314, consistent with mantle values. Only at very water/rock ratios could the 143Nd/144Nd ratio be also affected [119].

5.3 Discussion

This review shows that the chemical consequences of serpentinization are still not very well understood. It seems that serpentinization does not occur at constant volume and that major elements, besides hydration and oxidation, are not severely affected. Local metasomatism may result in the formation of rodingites and/or talc and tremolite schists. Serpentinites are clearly a sink for Cl, B, F and S. The behaviour of REE and some radiogenic elements seems to be dependent on the water/rock ratio, on the extent of serpentinization, and on the behaviour of pyroxene, since this phase concentrates most of these elements. Further work is clearly necessary to better understand the chemical fluxes associated with serpentinization processes. Now that it is recognized that serpentinites are a important component of the crust, it becomes crucial to constrain these fluxes. They may have a global impact on the composition of seawater. On the other hand, when heterogenous oceanic lithosphere is entrained in subduction zones, there is a potential for recycling chemical elements into the mantle.

6 Consequences of serpentinization on physical properties of peridotites

Due to massive hydration and crystallization of secondary phases, the physical properties of abyssal peridotites are strongly modified by serpentinization. A summary of the major consequences are given in this section.

The average density of a fresh peridotite is approximately 3.3 g/cm3. Serpentine minerals have a density of approximately 2.5 g/cm3. Serpentinization is therefore responsible for a strong decrease in density. A compilation of density measurements of serpentinites [99] shows that, as expected, there is an inverse correlation between density and the extent of serpentinization (Fig. 8A). As discussed in Section 5, serpentinization does not seem to be accompanied by major chemical fluxes, and the consequence is an increase of volume. In the extensional environment of a mid-ocean ridge, this volume increase is likely accommodated by tectonic activity, as evidenced by vein networks.

The decrease in density affects the seismic velocities. Following the pioneer work of Christensen [43,44], all the seismic velocities measured on serpentinites have shown a strong dependence with the degree of serpentinization. A compilation [99] shows an inverse relation between the amount of serpentinization and seismic velocities (Fig. 8B). A partially serpentinized peridotite may therefore have the same seismic velocities as a gabbro [37,77], and a seismically layered oceanic crust may be compositionally heterogeneous (Fig. 1) [34]. Because observations and sampling on the seafloor are necessarily localized, evaluating the proposition of serpentinites in the crust is an arduous ask [37]. If serpentinized peridotites, which are residual rocks from the mantle, crop out at the seafloor, this raises the question of the significance of the MOHO, classically interpreted as the transition between magmatic, mafic rocks and residual, ultramafic rocks (see Section 2) [34]. This sharp seismic boundary could correspond to a hydration front, i.e. the transition between partially serpentinized peridotites and fresh peridotites, corresponding to an increase in density. Because serpentinization occurs at temperatures below 500 °C, this hydration front may also correspond to a thermal boundary, i.e. the 500 °C isotherm [73].

The magnetic properties of ocean floor peridotites are also strongly affected by serpentinization because it produces secondary magnetite [52]. Therefore, compared to a fresh peridotite, a serpentinite has a high magnetic susceptibility and a ferromagnetic behaviour [126]. Because of the crystallization of secondary magnetite, it also acquires a natural remanent magnetization (NRM) which can contribute to the magnetic anomalies of the seafloor [52]. At slow spreading ridges, it has been recognized that the off-axis traces of inside corner highs – massifs located at the intersection between a fracture zone and the ridge axis – are commonly marked by more positive magnetization, attributed to the occurrence of serpentinites [109,127]. Moreover, the skewness of magnetic anomalies on the seafloor has been ascribed to the contribution of serpentinized peridotites [53,54]. To interpret magnetization maps of the seafloor it is therefore essential to consider the possible presence of serpentinites.

A detailed study of the magnetic properties of oceanic serpentinites [108] has revealed the complexity of magnetite formation and how it affects the magnetic properties. The magnetic susceptibility is directly correlated to the amount of magnetite. However, this amount does not increase linearly with the rate of serpentinization as initially proposed [15] because the partitioning of iron between serpentine minerals and magnetite varies with the extent of serpentinization. The authors have shown that it remains modest at serpentinization rates below 75% because the iron partly enters serpentine minerals (up to 6% FeO). At higher serpentinization rates, the iron content of serpentine minerals decreases (2–3%) and more magnetite forms. They also show that the size of magnetite grains influences the NRM. The small sized magnetite grains associated with serpentine in mesh texture produce NRM as high as basalts. By contrast, in the case of large magnetite crystals, their occurrence as irregular aggregates likely promotes strong magnetostatic interactions between the grains and as a result reduces their coercitivity. Finally, low temperature oxidation of magnetite produces maghemite, and drastically decreases the magnetic susceptibility and NRM of serpentinites. In conclusion, this study confirms that serpentinites have generally high magnetic susceptibility and NRM and can contribute to magnetic anomalies. It demonstrates, however, that the modification in the magnetic properties of serpentinites is not linearly related to the rate of serpentinization. It is still necessary to better understand what controls the formation of magnetite to be able to predict the magnetic properties of the serpentinites peridotites in the ocean crust.

A last major effect of serpentinization concerns rheology which in turn affects the tectonic activity of the ocean lithosphere. Deformation experiments show that serpentinites, particularly when made of lizardite, are weaker than the other components of the oceanic lithosphere and display brittle deformation without dilatancy [55,56,112]. A small degree of serpentinization (<15%) reduces the strength of the peridotite to that of serpentine, while displaying the characteristic behaviour of pure serpentinites (e.g. non dilatant brittle deformation). The presence of lizardite-rich serpentinites in the crust may therefore strongly influence its strength and tectonics [55,57].

7 Serpentinization driven hydrothermal activity

The fact that serpentinization could affect the chemistry of the water column was first documented in the 1990s at the Mid-Atlantic Ridge. Specific anomalies, characterized by high methane concentrations together with low TDM (total dissolved manganese) contents and turbidity were identified and shown to be associated with serpentinite outcrops [39,40,42]. Serpentinization produces H2 because of the oxidation of iron during the formation of magnetite using the oxygen from the aqueous fluid phase [64,101]. Calculated ultramafic hosted vent fluid compositions predict abundant H2 concentrations, as opposed to basalt hosted vent fluids [131], in agreement with the observations. The production of methane is attributed to Fischer–Tropsch type reactions such as:

CO2+4H2=CH4+2H2O

The formation of methane as well as other hydrocarbon components during serpentinization have been reproduced experimentally at 300 °C, 500 bars [10].

Further evidence for the existence of hydrothermal activity associated with serpentinites is the discovery of black smokers hosted on serpentinized peridotites. The Logatchev field was first discovered at 14°45′N latitude [17], followed by the Rainbow field at 36°14′N latitude [62] on the Mid-Atlantic Ridge. Although they are built on serpentinites, these two hydrothermal fields share a number of characteristics with hydrothermal fields hosted in basalts (Table 2), and support biological communities. The fluids vent at high temperatures (>300 °C) and they build up sulfide chimneys. They have low pH, high H2S and metal contents. However, they are characterized by high H+ contents, consistent with the production of hydrogen during serpentinization [51]. Moreover, the presence of complex hydrocarbon molecules [75] – similar to those produced experimentally [10] – has been documented at Rainbow. This could be of great biological importance. Not only can methane support microbial communities [79,92], but also complex hydrocarbons are considered as prebiotic molecules which could have played a role in the appearance of life on Earth. There are some differences between the two fields, however. Hydrothermal fluids from the Rainbow field yield very high chlorinities, metal and REE concentrations, which could reflect phase separation [51]. Another field, the Saldanha hydrothermal field has also been discovered at 36°30N latitude on the Mid-Atlantic ridge, at the southern tip of the FAMOUS segment. Active vents discharge clear warm fluids through sediments, but no data on fluid compositions are yet available [11]. It should be pointed out that the black smoker type of vents generate turbidity in the water column. Therefore, they cannot account for the methane anomalies not associated with TDM and turbidity documented in the water column [39] in the vicinity of serpentinite exposures.

The most recent discovery was the Lost City hydrothermal field [82]. This field is located off axis (1.5 Myear old crust) at 30°N, at the corner intersection between Atlantis fracture zone and the M.A.R. The fluids vent at low temperature (40–75 °C) and build spectacular hydrothermal chimneys (up to 60 m high) made up essentially of carbonates and brucite. The fluid compositions contrast with those from the Rainbow and Logachev sites (Table 2). In particular, they are characterized by high MgO and high pH, and low H2S contents. The associated serpentinites indicate crystallization temperature of around 200 °C [66]. This field definitely differs from the two others both in temperature and chemistry of the fluids and associated deposits. Abundant microbial activity is associated with fluid venting and mineral precipitation [83]. In this case, the venting fluids could generate the methane anomalies not associated with turbidity that are commonly in the water column, in association with serpentinite outcrops.

Another evidence for hydrothermal activity was first documented by Bonatti et al. [29]. It consists of massive sepiolite deposits which are ascribed to the precipitation from a fluid phase resulting from serpentinization. The same type of deposits occurs at the western portion of the SWIR [8]. The presence of sepiolite on the ocean floor could therefore be used as an indicator of serpentinization at depth.

Hydrothermal activity requires heat and different possible heat sources can be invoked [8]: (i) latent heat released by crystallization of basaltic magma intrusions in the lithospheric mantle; (ii) cooling heat mined from the lithospheric mantle; (iii) heat released by exothermic serpentinization reactions [69]. The question is whether the only heat released by serpentinization reactions can activate hydrothermal circulation and can account for fluid temperatures as high as 350 °C. Lowell and Rona [89] show that the heat released depends both on the serpentinization rate and the mass flow rate. They calculate that, in the absence of a regional background heat flux, serpentinization rates need to be very high (103 kg/s) and flow rates low (10 kg/s) to generate hydrothermal temperatures above 100 °C. Based on experimental diffusion rates, Mac Donald and Fyfe [90] evaluated that serpentinization rates are likely in the order of 0.1 kg/s. Even if this number can be increased if permeability generated by tectonic activity is considered, it remains extremely low compared to the value required. If a regional background heat flux is considered, the necessary rate of serpentinization decreases and becomes more realistic. But to generate hydrothermal temperatures of 300 °C, a high temperature regime, typical of magmatic systems at mid-ocean ridges is necessary. Lowell and Rona conclude that high temperature hydrothermal fields such as Rainbow require magmatic heat to drive the system. By contrast, the Lost City field can be driven by the heat released by serpentinization reactions. Provided that seawater can penetrate at depth, hydrothermal systems generated by serpentinization reactions are likely to be a significant component of hydrothermal activity at slow spreading ridges and generate anomalies in the water column. Bach et al. [8] came to the same conclusion. Assuming a heat capacity of seawater of 4 J g−1 K−1 and a water/rock ratio of 1, they calculate that serpentinization can heat up the circulating water by 25 to 150 °C. This can account for the range of temperatures measured at the Lost City type of hydrothermal field as well as for the formation of sepiolite deposits, but not for the Rainbow type of field.

These results suggest that black smoker vent fields (Rainbow type) can occur only at the ridge axis, where magmatic instrusions can provide heat to activate the hydrothermal circulation. Because the heat generated by serpentinization reactions can activate the Lost City type of vent field, such a type of hydrothermal activity can theoretically occur everywhere, either beneath the axial valley or off-axis. It only requires that seawater penetrates into unaltered peridotites. This can happen off-axis if tectonic activity generates permeability though fractures and faults. At this stage, we know that serpentinization is active at the axis since all the peridotites collected in the axial valley are serpentinized. However, we lack appropriate data to evaluate the intensity of off-axis serpentinization. Searching for methane and/or hydrogen anomalies in the water column off-axis would probably be the best strategy.

8 Conclusions

Recent developments on the understanding of the structure of mid-ocean ridges have demonstrated that serpentinites make up a significant portion of the seismically-defined crust. Therefore, the MOHO does not systematically correspond to the boundary between a magmatic crust and a residual mantle. In specific areas, particularly at the end of ridge segments generated in slow to ultraslow spreading environments, it may instead correspond to a hydration boundary, matching the 500 °C isotherm under the ridge axis. This has a major implication when evaluating the magmatic fluxes at mid-ocean ridges. The latter are clearly overestimated when the whole crustal thickness is considered. It is therefore of major importance to be able to quantitatively evaluate the proportion of serpentinized peridotites in the crust. Besides direct geological observation and sampling through dredging, diving and ocean drilling, it is necessary to develop tools, using indirect measurements such as seismic velocity profiles and/or magnetic properties.

Serpentinite fabrics show that most of the serpentinization occurs under static conditions. Determinations of serpentine species show the predominance of lizardite. By contrast, mineral associations as well as oxygen isotope fractionation demonstrate that serpentinization reactions start at high temperature, in the range of 300–500 °C, even if lower temperatures are also documented. This suggests that the nature of the serpentine species may be controlled by factors other than temperature. High temperature serpentinization likely starts at depth, at the ridge axis, by interaction of seawater or seawater derived fluids with cooling peridotites. The lack of evidence for a massive leaching of major elements favours a compensation of the decrease in density by a volume increase. Because serpentinization requires a major flux of water, this raises the question of fluid penetration. The extensional environment must generate permeability through normal faulting, fissuring and cracking. At temperatures below 500 °C, the availability of water must be the limiting factor for extensive serpentinization.

The serpentinization of essentially anhydrous peridotites results in a massive hydration and oxidation. Major elements do not seem to be strongly affected by serpentinization, although the local rodingitization of associated gabbroic dikes and formation and talcshists require the mobilization of calcium and silicium. The global chemical fluxes between peridotite and seawater, however, remain poorly constrained. They seem to be dependent on the temperature and the mineral association. In particular, the presence and degree of alteration of pyroxene is likely of major importance, because this mineral concentrates a large part of the trace and REE of the fresh peridotite. In the present state of knowledge, it is safe to state that serpentinites are enriched in water, chlorine, fluorine, boron, sulfur, δ34S, 87Sr compared with fresh peridotites. The subduction of heterogeneous oceanic lithosphere does not only drive water but other elements, in particular halogens, into the mantle. These can affect arc magmatism through the dewatering of the suducting slab or be recycled in the mantle. Serpentinites must therefore be considered as one of the components of the subduction factory.

The presence of serpentinites strongly modifies the physical properties of the crust (density, seismic velocities, magnetic properties) and its rheology. To interpret geophysical data and tectonic fabrics in slow-spreading mid-ocean ridge environments, it is essential to keep in mind that serpentinites may be an important component of the oceanic crust.

Finally, hydrothermal circulation cells are associated with serpentinization. These can be identified by anomalies in the water column: methane anomalies associated with serpentinite outcrops in the axial valley likely document active serpentinization. The Rainbow type hydrothermal vent field with high temperature black smokers, however, seems to require a magmatic heat source. In contrast, the Lost City-type hydrothermal vent field could be generated by serpentinization reaction heat only. Biological activity, supported by the production of hydrogen and methane, is associated with active venting. The recent discovery of these hydrothermal fields stresses that serpentinization at mid-ocean ridges must be considered in thermal and geochemical budgets.

Acknowledgements

This review paper benefited from discussions with a number of colleagues, in particular P. Agrinier, M. Cannat, J. Escartin, G. Früh-Green and W.E. Seyfried. I thank J. Honnorez for encouraging me to write this synthesis and for his constructive remarks. This is IPGP contribution number 1949.


Bibliographie

[1] P. Agrinier; R. Hékinian; D. Bideau; M. Javoy O and H stable isotope of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos triple junction, Earth Planet. Sci. Lett., Volume 136 (1995), pp. 183-196

[2] P. Agrinier; M. Cannat Oxygen isotopic constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge (23°N) in the MARK area (J.A. Karson; M. Cannat; D.J. Miller; D. Elthon, eds.), Proc. ODP, Sci. Results, Vol. 153, College Station, TX, 1997, pp. 381-388

[3] D.E. Allen, W.E. Seyfried, Compositional control on vent fluids from ultramafic hosted hydrothermal systems at mid-ocean ridges. An experimental study at 400 °C, 500 bars, Geochim. Cosmochim. Acta, in press

[4] J.C. Alt; W.C.S. Shanks Sulfur in serpentinized oceanic peridotites: serpentinization processes, J. Geophys. Res., Volume 103 (1998), pp. 9917-9929

[5] J.C. Alt; W.C.S. Shanks Serpentinization of abyssal peridotites from MARK area: sulfur reacti, Geochim. Cosmochim. Acta, Volume 67 (2003), pp. 641-653

[6] B. Anselmi; M. Mellini; C. Viti Chlorine in Elba, Monti Livornesi and Murlo serpentinites: evidence for seawater interaction, Eur. J. Mineral., Volume 12 (2000), pp. 137-146

[7] F. Aumento; H. Loubat The Mid-Atlantic Ridge near 45°N: serpentinized ultramafic intrusions, Can. J. Earth Sci., Volume 8 (1971), pp. 631-663

[8] W. Bach; N.R. Banerjee; H.J.B. Dick; E.T. Baker Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10–16°E, Geochem. Geophys. Geosyst., Volume 3 (2002) (10.1029/2001GC000279)

[9] S.W. Bailey Structures and compositions of other trioctahedral 1:1 phyllosilicates, Rev. Mineral., Volume 19 (1988), pp. 169-188

[10] E.A. Berndt; D.E. Allen; W.E.J. Seyfried Reduction of CO2 during serpentinization of olivine at 300 °C, Geology, Volume 24 (1996), pp. 351-354

[11] F.J.A.S. Barriga; Y. Fouquet; A. Almeida; M.J. Biscoto; J.L. Charlou et al. Discovery of the Saldanha hydrothermal field on the FAMOUS segment of the Mid-Atlantic Ridge (36°30′N), EOS, Volume 79 (1998), p. 67

[12] M.O. Beslier; M. Ask; G. Boillot Ocean-continent boundary in the Iberian abyssal plain from multichannel seismic data, Tectonophysics, Volume 218 (1993), pp. 383-393

[13] M.O. Beslier; J.Y. Royer; P. Hill; E. Boeuf; C. Buchanan; F. Chatin; J. Girardeau; G. Jacovetti; A. Moreau; M. Munschy; C. Partouche; S. Thomas; U. Robert Mantle exhumation at a rift zone; evidence for a wide ocean-continent transition along the Southwest Australian passive margin, EUG Conf. Abstracts EUG10, Volume 4 (1999), p. 377

[14] D. Bideau; R. Hébert; R. Hékinian; M. Cannat Metamorphism of deep seated rocks from the Garrett ultrafast transform (East Pacific Rise near 13°25′S), J. Geophys. Res., Volume 96 (1991), pp. 10079-10099

[15] M. Bina; B. Henry Magnetic properties, opaque mineralogy and magnetic anisotropies of serpentinized peridotites from Hole 670A near the Mid-Atlantic Ridge, Phys. Earth Planet. In., Volume 65 (1990), pp. 88-103

[16] S.H. Bloomer Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench, implications for its structure and evolution, J. Geophys. Res., Volume 88 (1983), pp. 7411-7418

[17] Y. Bogdanov; A.M. Sagalevitch; E.S. Chernayev; A.M. Ashadze; E.G. Gurvich; V.N. Lukashin; G.V. Ivanov; V.N. Peresypkin A study of the hydrothermal field at 14°45′N on the Mid-Atlantic Ridge using the “MIR” submersibles, Bridge Newsletters, Volume 9 (1995), pp. 9-13

[18] G. Boillot; S. Grimaud; A. Mauffret; D. Mougenot; J. Mergoil-Daniel; J. Kornprobst; G. Torrent Ocean-continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia bank, Earth Planet. Sci. Lett., Volume 48 (1980), pp. 23-34

[19] G. Boillot; E.L. Winterer; A.W. Meyer, Proceedings ODP, Init. Repts, 103, Ocean Drilling Program, College Station, TX, 1987

[20] G. Boillot; J. Girardeau; J. Kornprobst Rifting of the Galicia margin: crustal thinning and emplacement of mantle rocks on the seafloor (G. Boillot; E.L. Winterer, eds.), Proceedings ODP Sci. Results, 103, Ocean Drilling Program, College Station, 1988, pp. 741-756

[21] G. Boillot; G. Féraud; M. Recq; J. Girardeau Undercrusting by serpentinites beneath rifted margins, Nature, Volume 341 (1989), pp. 523-525

[22] E. Bonatti Ultramafic rocks from the Mid-Atlantic Ridge, Nature, Volume 219 (1968), pp. 363-364

[23] E. Bonatti Serpentinite protrusions from the Mid-Atlantic Ridge, Earth Planet. Sci. Lett., Volume 32 (1976), pp. 107-113

[24] E. Bonatti Ancient continental mantle beneath oceanic ridges, J. Geophys. Res., Volume 78 (1971), pp. 3825-3831

[25] E. Bonatti; J. Honnorez; G. Ferrara Equatorial Mid-Atlantic Ridge: petrologic and Sr isotopic evidence for an alpine-type rock assemblage, Earth Planet. Sci. Lett., Volume 9 (1970), pp. 247-256

[26] E. Bonatti; C. Emiliani; G. Ferrara; J. Honnorez; H. Rydell Ultramafic carbonate breccias from the Equatorial Mid-Atlantic Ridge, Mar. Geol., Volume 16 (1974), pp. 83-102

[27] E. Bonatti; J. Honnorez Sections of the Earth's crust in the Equatorial Atlantic, J. Geophys. Res., Volume 81 (1976), pp. 4104-4116

[28] E. Bonatti; P.R. Hamlyn Oceanic ultramafic rocks (C. Emiliani, ed.), The Sea, 7, Wiley and Sons, New York, 1981, pp. 241-283

[29] E. Bonatti; E.C. Simmons; D. Breger; P.R. Hamlyn; J. Lawrence Ultramafic rock/seawater interaction in the oceanic crust: Mg-silicate (sepiolite) deposit from the Indian Ocean floor, Earth Planet. Sci. Lett., Volume 62 (1983), pp. 229-238

[30] E. Bonatti; J.R. Lawrence; N. Morandi Serpentinization of oceanic peridotites: temperature dependence of mineralogy and boron, Earth Planet. Sci. Lett., Volume 70 (1984), pp. 88-94

[31] E. Bonatti; M. Seyler; J. Channel; J. Girardeau; J. Mascle Peridotites drilled from the Tyrrhenian sea (K.A. Kasten; J. Mascle, eds.), Proceedings ODP Sci. Results, 107, Ocean Drilling Program, College Station, 1990, pp. 37-47

[32] N.L. Bowen; O.F. Tuttle The system MgOSiO2H2O, Geol. Soc. Am. Bull., Volume 60 (1949), pp. 439-460

[33] J.R. Cann; D.K. Blackman; D.K. Smith; E. McAllister; B. Jannsen; S. Mello; E. Avgerinos; A.R. Pasco; J. Escartin Corrugated slip surfaces formed at North Atlantic ridge-transform intersections, Nature, Volume 385 (1997), pp. 329-332

[34] M. Cannat Emplacement of mantle rocks in the seafloor at mid-ocean ridges, J. Geophys. Res., Volume 98 (1993), pp. 4163-4172

[35] M. Cannat; J.A. Karson; D.J. Miller Proceedings ODP, Init. Repts, Vol. 53, Ocean Drilling Program, College Station, TX, 1994

[36] M. Cannat; C. Mével; M. Maı̈a; C. Deplus; P. Gente; P. Agrinier; A. Belarouchi; G. Dubuisson; E. Humler; J.R. Reynolds Thin crust, ultramafic exposure and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N), Geology, Volume 23 (1995), pp. 49-52

[37] R.L. Carlson The abundance of ultramafic rocks in the Atlantic ocean crust, Geophys. J. Int., Volume 144 (2001), pp. 37-48

[38] L. Caruzo; J.V. Chernosky The stability of lizardite, Can. Mineral., Volume 17 (1979), pp. 757-769

[39] J.-L. Charlou; H. Bougault; P. Appriou; T. Nelsen; P. Rona Different TDM/CH4 hydrothermal plume signatures: TAG site at 26°N and serpentinized ultrabasic diapir at 15°05′N on the Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, Volume 55 (1991), pp. 3200-3322

[40] J.-L. Charlou; J.-P. Donval Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic Ridge, J. Geophys. Res., Volume 98 (1993), pp. 9625-9642

[41] J.-L. Charlou; J.-P. Donval; P. Jean-Baptiste; A. Dapoigny; P. Rona Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermal field (26°N, MAR), Geophys. Res. Lett., Volume 23 (1996), pp. 3491-3494

[42] J.-L. Charlou; Y. Fouquet; H. Bougault; J.-P. Donval; J. Etoubleau; P. Jean-Baptiste; A. Dapoigny; P. Appriou; P.A. Rona Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, Volume 62 (1998), pp. 2323-2333

[43] N.I. Christensen Elasticity of ultrabasic rocks, J. Geophys. Res., Volume 71 (1966), pp. 5921-5931

[44] N.I. Christensen The abundance of serpentinites in the oceanic crust, J. Geol., Volume 80 (1972), pp. 709-719

[45] R.G. Coleman A chemical study of serpentinization – Burro mountain, California, J. Petrol., Volume 12 (1971), pp. 311-328

[46] M. Constantin; R. Hekinian; D. Ackermand; P. Stoffers Mafic and Ultramafic Intrusions into Upper Mantle Peridotites from Fast Spreading Centers of the Easter Microplate (South East Pacific) (R.L.M. Vissers; A. Nicolas, eds.), Mantle and Lower Crust Exposed in Ocean Ridges and Ophiolites, Kluwer Academic Publishing, Dordrecht, 1995, pp. 71-120

[47] S. Decitre; E. Deloule; L. Reisberg; R. James; P. Agrinier; C. Mével Behavior of Li and its isotopes during serpentinization of oceanic peridotites, Geochem. Geophys. Geosyst. (2001) (10.1029/2001GC000178)

[48] R. Detrick; J. Honnorez; W.B. Bryan; T. Juteau Proceedings ODP, Init. Repts, Vols. 106/109, Ocean Drilling Program, College Station, TX, 1988

[49] H.J.B. Dick Abyssal peridotites, very spreading ridges and ocean ridge magmatism (A.D. Saunders; M.J. Norry, eds.), Magmatism in the Ocean Basins, Blackwell, Malden, MA, 1989, pp. 71-105

[50] Y. Dilek; A. Coulton; S.D. Hurst Serpentinization and hydrothermal veining in peridotites at site 920 in the MARK area (J.A. Karson; M. Cannat; D. Elthon, eds.), Proceedings ODP, Sci. Results, 153, College Station, TX, 1997, pp. 35-59

[51] E. Douville; J.-L. Charlou; E.H. Oelkers; P. Bienvenu; C.F.J. Colon; J.P. Donval; Y. Fouquet; D. Prieur; P. Appriou The Rainbow vent fluid (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids, Chem. Geol., Volume 184 (2002), pp. 37-48

[52] D.J. Dunlop; M. Prévôt Magnetic properties and opaque mineralogy of drilled submarine rocks, Geophys. J. R. Astron. Soc., Volume 7 (1982), pp. 709-757

[53] J. Dyment; J. Arkani-Hamed Spreading-rate dependent magnetization of the oceanic lithosphere inferred from the anomalous skewness of marine magnetic anomalies, Geophys. J. Int., Volume 121 (1995), pp. 789-804

[54] J. Dyment; J. Arkani-Hamed; A. Ghods Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centers: insights from the shape of the anomalies, Geophys. J. Int., Volume 129 (1997), pp. 691-701

[55] J. Escartin; B. Hirth; B. Evans Nondilatant brittle deformation of serpentinites: implications for Mohr-Coulomb theory and the strenght of faults, J. Geophys. Res., Volume 102 (1997), pp. 2897-2913

[56] J. Escartin; G. Hirth; B. Evans Effects of serpentinization on the lithosphere strength and the style of normal faulting at slow spreading ridges, Earth Planet. Sci. Lett., Volume 151 (1997), pp. 181-190

[57] J. Escartin; G. Hirth; B. Evans Strength of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere, Geology, Volume 29 (2001), pp. 1023-1026

[58] J. Escartin, C. Mével, C.J. MacLeod, A. McCaig, Constraints on the origin of detachments and deformation conditions: the Mid-Atlantic Ridge core complex at 15°45′N, Geochem. Geophys. Geosyst., Vol. 4, No 8, 1067, | DOI

[59] B.W. Evans; W. Johannes; H. Otterdoom; V. Trommsdorff Stability of chrysotile and antigorite in the serpentine multisystem, Schweiz. Mineral. Petrogr. Mitt. (1976), pp. 79-93

[60] J. Ewans; J. Hawkins Petrology of “seamounts” on the trench slope break, EOS, Volume 60 (1979), p. 968

[61] R.L. Fisher; C.G. Engel Ultramafic and basaltic rocks dredged from the near-shore flank of the Tonga trench, Geol. Soc. Am. Bull., Volume 80 (1969), pp. 1373-1378

[62] Y. Fouquet; J.-L. Charlou; H. Ondréas; J. Radford-Knoery; J.-P. Donval; E. Douville; R. Apprioual; P. Cambon; H. Pell; J.-Y. Landur; A. Normand; E. Ponsevera; C. German; L. Parson; F. Barriga; I. Costa; J. Relvas; A. Ribeiro Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14′N), EOS (1997), p. 832

[63] J. Francheteau; R. Armijo; J.-L. Cheminée; R. Hékinian; P. Lonsdale; N. Blum 1 My East Pacific Rise oceanic crust and uppermost mantle exposed by rifting in Hess Deep (equatorial Pacific Ocean), Earth Planet. Sci. Lett., Volume 101 (1990), pp. 281-296

[64] R. Frost On the stability of sulfides, oxides and native metals in serpentinite, J. Petrology, Volume 26 (1985), pp. 31-63

[65] G. Früh-Green; A. Plas; C. Lécuyer Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep (Site 895) (C. Mével; K.M. Gillis; J.F. Allan; P.S. Meyer, eds.), Proceedings of the ODP, Sci. Results, Vol. 147, College Station, TX, 1996

[66] G. Früh-Green; C. Boschi; D.S. Kelley; J.A.D. Connolly; M.O. Schrenk The role of serpentinization in metasomatism, carbonate precitpitation and microbial activity: stable isotope constraints from the Lost City vent field (MAR 30°N), EOS, Volume 83 (2002), p. 1451

[67] P. Fryer; G.F. Fryer Origin of non-volcanic seamounts in a forearc environment (B. Keating; P. Fryer; R. Batiza, eds.), Seamounts, Islands and Atolls, Geophys. Monogr. Series, 43, Am. Geophys. Union, 1987, pp. 61-69

[68] P. Fryer; J.A. Pearce; L.B. Stokking Proc. ODP, Init. Repts, Vol. 125, Ocean Drilling Program, College Station, TX, 1990

[69] W.S. Fyfe; P. Lonsdale Ocean floor hydrothermal activity (C. Emiliani, ed.), The Sea, 7, Wiley and Sons, New York, 1981, pp. 589-638

[70] K.R. Gillis; C. Mével; J.F. Allen Proceeding ODP, Init. Repts, Vol. 53, Ocean Drilling Program, College Station, TX, 1993

[71] E. Gracia; J.-L. Charlou; J. Radford-Knoery; L.M. Parson Non transform offsets along the Mid-Atlantic Ridge south of the Azores (38°N–34°N): ultramafic exposures and hosting of hydrothermal vents, Earth Planet. Sci. Lett., Volume 177 (2000), pp. 89-103

[72] B. Grobety; A. Plas; G. Früh-Green Serpentinization temperature of ocean floor peridotites from the Hess Deep rift valley, Pacific Ocean, Terra Nova, Volume 9 (1997), p. 549

[73] H.H. Hess History of the ocean basins, Petrologic Studies, Buddington Volume, Geological Society of America, Boulder, CO, 1962, pp. 599-620

[74] R. Hébert; A.C. Adamson; S.C. Komor Metamorphic petrology of ODP Leg 109, Hole 670A, serpentinized peridotites: serpentinization processes at a slow spreading ridge environment (R. Detrick; J. Honnorez; W.B. Bryan; T. Juteau, eds.), Proceedings ODP, Sci. Results, Vols. 106–109, College Station, TX, 1990, pp. 103-113

[75] N.G. Holm; J.-L. Charlou Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge, Earth Planet. Sci. Lett., Volume 191 (2001), pp. 1-8

[76] J. Honnorez; P. Kirst Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance, Contrib. Mineral. Petrol., Volume 49 (1975), pp. 233-257

[77] H. Horen; M. Zamora; G. Dubuisson Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: abundance of serpentine at slow-spreading ridges, Geophys. Res. Lett., Volume 23 (1996), pp. 9-12

[78] D.R. Janecky; W.E. Seyfried Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry, Geochim. Cosmochim. Acta, Volume 50 (1986), pp. 1357-1378

[79] H.W. Jannash Microbial interactions with hydrothermal fluids (S.E. Humphris et al., eds.), Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, Am. Geophys. Union, Washington, DC, 1995, pp. 273-296

[80] P. Jean-Baptiste; J.-L. Charlou; M. Stievenard Oxygen isotope study of mid-ocean ridge hydrothermal fluids: implication for the oxygen-18 budget of the oceans, Geochim. Cosmochim. Acta, Volume 61 (1997), pp. 2669-2677

[81] J.A. Karson; G. Thompson; S.E. Humphris; J.M. Edmonds; W.B. Bryan; J.R. Brown; A.T. Winters; R.A. Pockalny; J.F. Casey; A.C. Campbell; G. Klinkhammer; M.R. Palmer; R.J. Kinzler; M.M. Sulanowska Along axis variation in seafloor spreading in the MARK area, Nature, Volume 328 (1987), pp. 681-685

[82] D.S. Kelley; J.A. Karson; D.K. Blackman; G.L. Früh-Green; D.A. Butterfield; M.D. Lilley; E.J. Olson; M.O. Shrenk; K.K. Roe; G.T. Lebon; P. Rivizzigno An off-axis hydrothermal vent field discovered near the Mid-Atlantic Ridge at 30°N, Nature, Volume 412 (2001), pp. 145-149

[83] D.S. Kelley; J.A. Baross; G.L. Früh-Green; M.O. Shrenk; J.A. Karson The ultramafic-hosted Lost City hydrothermal field: clues in the search for life elsewhere in the solar system, EOS (2002), p. 222

[84] K.L. Kimball; F.S. Spear; H.J.B. Dick High temperature alteration of abyssal ultramafics from the Islas Orcadas Fracture Zone, South Atlantic, Contrib. Mineral. Petrol., Volume 91 (1985), pp. 307-320

[85] K.L. Kimball; D.C. Gerlach Sr isotopic constraints on hydrothermal alteration of ultramafic rocks in two oceanic fracture zones from the South Atlantic ocean, Earth Planet. Sci. Lett., Volume 78 (1986), pp. 177-188

[86] S.C. Komor; D. Elthon; J.F. Casey Serpentinization of cumulate ultramafic rocks from the North Arm Mountain massif of the Bay of Islands ophiolite, Geochim. Cosmochim. Acta, Volume 49 (1985), pp. 2331-2338

[87] S.C. Komor; T.L. Grove; R. Hébert Abyssal peridotites from ODP Hole 670A (21°10′N, 45°02′W): residues of mantle melting exposed by non contructive axial divergence (R.S. Detrick; J. Honnorez; W.B. Bryan; T. Juteau, eds.), Proceedings ODP, Sci. Results, Vols. 106–109, College Station, TX, 1990, pp. 85-101

[88] Y. Lagabrielle; D. Bideau; M. Cannat; J.A. Karson; C. Mével Ultramafic-mafic plutonic rock suites exposed along the Mid-Atlantic Ridge (10–30°N). Symmetrical-asymmetrical distribution and implications for seafloor spreading processes (W.R. Buck; P.T. Delaney; J.A. Karson; Y. Lagabrielle, eds.), Faulting and Magmatism at Mid-Ocean Ridges, Volume Geophysical Monograph, 106, AGU, Washington, DC, 1998, pp. 153-176

[89] R.P. Lowell; P.A. Rona Seafloor hydrothermal systems driven by the serpentinization of peridotite, Geophys. Res. Lett., Volume 29 (2002) (10.1029/2001GL014411)

[90] A.H. MacDonald; W.S. Fyfe Rate of serpentinization in seafloor environments, Tectonophysics, Volume 116 (1985), pp. 123-135

[91] C.J. MacLeod; J. Escartı́n; G.J. Banks; D.H.B. Irving; R.M. Lilly; Y.-L. Niu; D. Banerji; A. McCaig; S. Allerton; D.K. Smith Direct geological evidence for oceanic detachment fauling: The Mid-Atlantic Ridge, 15°45′N, Geology, Volume 30 (2002), pp. 879-882

[92] T. McCollom; E.L. Shock Geochemical constraints on chemolithoautrophic metabolism by microorganisms in seafloor hydrothermal systems, Geochim. Cosmochim. Acta, Volume 61 (1997), pp. 4375-4391

[93] B. Martin; W.S. Fyfe Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization, Chem. Geol., Volume 6 (1970), pp. 185-195

[94] M. Mellini; P.F. Zanazzi Crystal structure of lizardite-1T and lizardite 2H1 from Coli, Italy, Am. Mineral., Volume 72 (1987), pp. 943-948

[95] M.A. Menzies; A. Long; G. Ingram; M. Tatnell; D. Janecky MORB peridotite-seawater interaction: experimental constraints on the behaviour of trace ellements, 87Sr/86Sr and 143Nd/144Nd ratios (H.M. Prichard; T. Alabaster; N.B.W. Harris; C.R. Neary, eds.), Magmatic Processes and Plate Tectonics, Geological Society Special Publication, 76, 1993, pp. 309-322

[96] C. Mével; C. Stamoudi Hydrothermal alteration of the upper mantle section at Hess Deep (C. Mével; K. Gillis; J. Allan, eds.), Proceedings of the ODP, Sci. Res., Vol. 147, College Station, TX, 1996, pp. 293-309

[97] C. Mével; the EDUL Scientific Party Sampling the South West Indian Ridge: first results of the EDUL cruise (R/V Marion Dufresne), InterRidge News, Volume 6 (1997), pp. 25-26

[98] P. Michael; J. Thiede; H.J.B. Dick; S.L. Goldstein; D. Graham; W. Jokat; C.H. Langmuir; R. Muhe; J.E. Snow The Arctic Mid-Ocean Ride Expedition – AMORE 2002 – Seafloor spreading at the top of the world, EOS, Volume 82 (2001), p. 1097

[99] D.J. Miller; N.I. Christensen Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, South of the Kane transform zone (MARK area) (J.A. Karson; M. Cannat; D.J. Miller; D. Elthon, eds.), Proc. ODP, Sci. Results, Vol. 153, College Station, TX, 1997

[100] A. Miyashiro; F. Shido; M. Ewing Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24 and 30°N, Contrib. Mineral. Petrol., Volume 23 (1969), pp. 117-127

[101] J.B. Moody Serpentinization: a review, Lithos, Volume 9 (1976), pp. 125-138

[102] I.A. Nicholls; J. Ferguson; H. Jones; G.P. Marks; J.C. Mutter Ultramafic blocks from the ocean floor southwest of Australia, Earth Planet. Sci. Lett., Volume 56 (1981), pp. 362-374

[103] D.S. O'Hanley Solution to the volume problem in serpentinization, Geology, Volume 20 (1992), pp. 705-708

[104] D.S. O'Hanley Serpentinites, Oxford University Press, New York, 1996 (277 pp)

[105] D.S. O'Hanley; F.J. Wicks Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia, Can. Mineral., Volume 33 (1995), pp. 753-773

[106] D.S. O'Hanley; J.V. Chernovsky; F.J. Wicks The stability of lizardite and chrysotile, Can. Mineral., Volume 27 (1989), pp. 483-493

[107] B. Orberger; N. Métrich; M. Mosbach; C. Mével; Y. Fouquet Nuclear microprobe analysis of serpentine from the Mid-Atlantic Ridge, Nucl. Instrum. Meth. B, Volume 158 (1999), pp. 575-581

[108] O. Oufi; M. Cannat; H. Horen Magnetic properties of variably serpentinized abyssal peridotites, J. Geophys. Res., Volume 107 (2002), pp. 1-19

[109] J.E. Pariso; C. Rommevaux; J.C. Sempéré Three dimensional inversion of marine magnetic anomalies: implications for crustal accretion along the Mid-Atlantic Ridge (28°–31°30′N), Marine Geophys. Res., Volume 18 (1996), pp. 85-101

[110] PENROSE Ophiolites, Geotimes (1972), pp. 24-25

[111] H.M. Prichard A petrographic study of the process of serpentinization in ophiolites and the ocean crust, Contrib. Mineral. Petrol., Volume 68 (1979), pp. 231-241

[112] C.B. Raleigh; M.S. Paterson Experimental deformation of serpentinites and its tectonic implication, J. Geophys. Res., Volume 70 (1965), pp. 3865-3985

[113] R. Sakai; M. Kusakabe; M. Noto; T. Ishii Origin of water responsible for serpentinization of Izu–Ogasawara–Marianna forearc seamounts in view of H and O isotopes, Earth Planet. Sci. Lett., Volume 100 (1990), pp. 291-303

[114] W.E. Seyfried; W.E. Dibble Seawater-peridotite interaction at 300 °C and 500 bars: implications for the origin of oceanic serpentinites, Geochim. Cosmochim. Acta, Volume 44 (1980), pp. 309-321

[115] W.C. Shanks Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration and microbial processes (J.M. Valley; R. Cole, eds.), Reviews in Mineralogy and Geochemistry, 41, 2001, pp. 469-525

[116] S.M.F. Sheppard Isotopic evidence for the origins of water during metamorphic processus in oceanic crust and ophiolite complexes, Coll. Int. CNRS, Volume 272 (1980), pp. 135-147

[117] J. Sinton; R.S. Detrick Mid-ocean ridge magma chambers, J. Geophys. Res., Volume 97 (1992), pp. 197-216

[118] J.E. Snow; S. Hart; H.J.B. Dick “Orphan” strontium-87 in abyssal peridotites: daddy was a granite, Science, Volume 262 (1993), pp. 1861-1863

[119] J.E. Snow; H.J.B. Dick Pervasive magnesium loss by marine weathering of peridotites, Geochim. Cosmochim. Acta, Volume 59 (1995), pp. 4219-4235

[120] J.E. Snow; L. Reisberg Os isotopic systematics of MORB mantle: results from altered abyssal peridotites, Earth Planet. Sci. Lett., Volume 136 (1995), pp. 723-733

[121] C. Stamoudi, Processus de serpentinisation des péridotites de Hess Deep et de la zone MARK, unpublished thesis, Université Pierre et Marie Curie, Paris (2002) 372 pp

[122] A.M. Steuber; W.H. Huang; W.D. Johns Chlorine and fluorine in ultramafic rocks, Geochim. Cosmochim. Acta, Volume 32 (1968), pp. 353-358

[123] K. Tamaki; C. Mével; FUJI scientific Party Spreading Tectonics of the Eastern part of the Southwestern Indian Ridge: a Synthesis of FUJI Expedition, EOS, Volume 79 (1998), p. 892

[124] P. Tartarotti; M. Cannat; C. Mével Gabbroic dikelets in serpentinized peridotites from the Mid-Atlantic ridge at 23°20′N (R.L.M. Vissers; A. Nicolas, eds.), Mantle and Lower Crust Exposed in Ocean Ridges and Ophiolites, Kluwer Academic Publishing, Dordrecht, 1995, pp. 35-69

[125] G. Thompson; W.G. Melson Boron contents of serpentinites and metabasalts in the oceanic crust: implications for the boron cycle in the ocean, Earth Planet. Sci. Lett., Volume 62 (1970), pp. 229-238

[126] P.B. Toft; J. Arkani-Hamed; S.E. Haggerty The effect of serpentinization on density and magnetic susceptibility, Phys. Earth Planet. In., Volume 65 (1990), pp. 137-157

[127] B. Tucholke; J. Lin A geological model for the structure of ridge segments in slow spreading ocean crust, J. Geophys. Res., Volume 99 (1994), pp. 11937-11958

[128] S. Uehara; H. Shirozu Variations in chemical compositions and structural properties of antigorite, Mineral J., Volume 12 (1985), pp. 299-318

[129] D.B. Wenner; H.P. Taylor Temperatures of serpentinization of ultramafic rocks based on 18O/16O fractionation between coexisting serpentine and magnetite, Contrib. Mineral. Petrol., Volume 32 (1971), pp. 165-185

[130] D.B. Wenner; H.P. Taylor Oxygen and hydrogen isotope studies of serpentinization of ultramafic rocks in oceanic environments and continental ophiolite complexes, Am. J. Sci., Volume 273 (1973), pp. 207-239

[131] L.R. Wetzel; E.L. Shock Distinguishing ultramafic- from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions, J. Geophys. Res., Volume 105 (2000), pp. 8319-8340

[132] F.J. Wicks; E.J.W. Wittacker A reappraisal of the structure of serpentine minerals, Can. Mineral., Volume 13 (1975), pp. 227-243

[133] F.J. Wicks; D.S. O'Hanley Serpentine minerals: structure and petrology, Reviews in Mineralogy, 19, Min. Soc. America, 1988, pp. 91-167

[134] R.B. Witmarsh; M.O. Beslier; P. Wallace, Proceedings ODP, Init. Repts, 149, Ocean Drilling Program, College Station, TX, 1993


Cité par

  • Luna J. J. Geerts; Astrid Hylén; Filip J. R. Meysman Review and syntheses: Ocean alkalinity enhancement and carbon dioxide removal through marine enhanced rock weathering using olivine, Biogeosciences, Volume 22 (2025) no. 2, p. 355 | DOI:10.5194/bg-22-355-2025
  • Mehmet Tevfik Seferoğlu; Elif Nur Acı Chrome waste utilization in base layers: Mechanical strength and environmental risk assessment, Case Studies in Construction Materials, Volume 22 (2025), p. e04873 | DOI:10.1016/j.cscm.2025.e04873
  • E. Hostettler; J.D. Barnes; J.C. Lassiter; B. Dragovic; A. Satkoski Origins of rodingite-forming fluids from the seafloor to exhumed terranes: Insights from calcium, strontium, and oxygen isotopes, Chemical Geology, Volume 683 (2025), p. 122775 | DOI:10.1016/j.chemgeo.2025.122775
  • Charis M. Horn; Philip Skemer Rheology of hydrous minerals in the subduction multisystem, Earth and Planetary Science Letters, Volume 651 (2025), p. 119171 | DOI:10.1016/j.epsl.2024.119171
  • Zhongwen Hu; Mutian Qin; Huilin Xing; Jianchao Wang; Guodong Jin; Yuyang Tan; Weichao Yan Effects of serpentinization and deserpentinization on rock elastic properties in subduction zones, Earth-Science Reviews, Volume 263 (2025), p. 105069 | DOI:10.1016/j.earscirev.2025.105069
  • Yuto Miki; Eiichi Takazawa; Kenta Ueki; Tatsu Kuwatani Variable Upper Mantle Geochemical Processes Constrained From Independent Component Analysis of the Fizh Massif, Northern Oman Ophiolite, Geochemistry, Geophysics, Geosystems, Volume 26 (2025) no. 3 | DOI:10.1029/2024gc012134
  • Aled D. Evans; Matthew J. Cooper; Dave Craw; Damon A.H. Teagle Multiple episodes of serpentinite alteration revealed by progressive leaching experiments, Geochimica et Cosmochimica Acta, Volume 397 (2025), p. 188 | DOI:10.1016/j.gca.2025.04.001
  • Bernhard Pracejus; Aliya Al-Ansari; Khamis Al-Dhafri; Daniel Moraetis; Abdulaziz Al-Foori; Mahmood Al-Hinai Microbial Carbonate Formation In The Hyperalkaline Gravière Spring (Samail Ophiolite, Sultanate of Oman), Geomicrobiology Journal (2025), p. 1 | DOI:10.1080/01490451.2025.2518202
  • He‐Ming Wang; Mai‐Linh Doan; Anne‐Line Auzende; Stéphane Schwartz; Samuel Chapman; Jérôme Fortin; Xiao‐Ming Tang Seismic Velocities of Subducted Serpentinites Through the Lizardite‐Antigorite Transition, Geophysical Research Letters, Volume 52 (2025) no. 13 | DOI:10.1029/2025gl116304
  • S. Raju; R. Anshu; Susobhan Neogi Tectonic evolution of the Madawara greenstone belt, southern Bundelkhand craton, central India: a window to see the Meso- to Neoarchaean geodynamics, International Geology Review, Volume 67 (2025) no. 1, p. 83 | DOI:10.1080/00206814.2024.2370506
  • Yuchen Liu; Changqian Ma Origins of Two Types of Serpentinites from Hong’an, Western Dabie Orogen, Central China and Associated Fluid/Melt-Rock Interactions: Implications from Geochemistry and Mineralogy, Journal of Earth Science, Volume 36 (2025) no. 3, p. 992 | DOI:10.1007/s12583-022-1774-2
  • Anna Mittelholz; Max Moorkamp; Adrien Broquet; Lujendra Ojha Gravity and Magnetic Field Signatures in Hydrothermally Affected Regions on Mars, Journal of Geophysical Research: Planets, Volume 130 (2025) no. 4 | DOI:10.1029/2024je008832
  • Liang Qi; Simon Allerton; Adrian R. Muxworthy; Yong Zhang; Hristo Gergov Remagnetization of Serpentinite During Deformation: Evidence From a Fossil Oceanic Transform Fault Zone of the Troodos Ophiolite, Journal of Geophysical Research: Solid Earth, Volume 130 (2025) no. 4 | DOI:10.1029/2024jb030790
  • Liang Qi; Adrian R. Muxworthy; Jenny S. Collier; Simon Allerton Magnetization of Ultramafic Rocks in the Troodos Ophiolite: Implications for Ridge Axis Serpentinization and Ophiolite Emplacement, Journal of Geophysical Research: Solid Earth, Volume 130 (2025) no. 4 | DOI:10.1029/2024jb030452
  • Wei Chen; Guoliang Zhang Carbon Input and Output at Subduction Zones: Review and Prospect, Journal of Ocean University of China, Volume 24 (2025) no. 3, p. 657 | DOI:10.1007/s11802-025-5942-8
  • Andrew J. Martin; Bramley J. Murton; Christopher J. MacLeod; John W. Jamieson; Isobel I. Yeo; Sven Petersen; Katie A. McFall; Simon Allerton; Anna Lichtschlag; Christian Bishop; Acer Figueroa; Szu-Ying Lai Deep-sea drilling of the 13°30′ N oceanic core complex: Assessing links between fluid flow, metal enrichment and seafloor massive sulfide deposit formation near Semenov-1, Lithos, Volume 494-495 (2025), p. 107921 | DOI:10.1016/j.lithos.2024.107921
  • Jialing Zhang; Chun-Feng Li; Zhaocai Wu; Yuhan Li; Yinxia Fang; Chongzhi Dong; He Li Asymmetric oceanic crustal accretion and mantle serpentinization in the southwestern propagator tip of the South China Sea basin, Marine and Petroleum Geology, Volume 177 (2025), p. 107380 | DOI:10.1016/j.marpetgeo.2025.107380
  • Stephan Kurszlaukis; Volker Lorenz Floating reefs and their relevance for the emplacement of maar-diatreme volcanoes, Mineralogy and Petrology (2025) | DOI:10.1007/s00710-025-00935-z
  • M. Al Kalbani; M. Serati; H. Hofmann; T. Bore, SPE Conference at Oman Petroleum Energy Show (2025) | DOI:10.2118/224909-ms
  • Mingqi Liu; Taras Gerya; Antoine Rozel The Effect of Brittle‐Ductile Weakening on the Formation of Faulting Patterns at Mid‐Ocean Ridges, Tectonics, Volume 44 (2025) no. 2 | DOI:10.1029/2024tc008586
  • Francisco Gabriel Ferreira de Lima; Walter Eugênio de Medeiros; Emanuel Ferraz Jardim de Sá Geophysically-BASED structural framework and tectonic evolution of the Brazilian equatorial margin, Tectonophysics, Volume 896 (2025), p. 230604 | DOI:10.1016/j.tecto.2024.230604
  • Yashee Mathur; Tapan Mukerji Changes in physical properties of rocks during serpentinization and implications for natural hydrogen exploration, The Leading Edge, Volume 44 (2025) no. 6, p. 479 | DOI:10.1190/tle44060479.1
  • Laurie Reisberg; Sonja Aulbach Continental lithospheric mantle, Treatise on Geochemistry (2025), p. 773 | DOI:10.1016/b978-0-323-99762-1.00079-6
  • Alma Karen Ramírez-Cabañas; Alberto Flandes; Pedro Elías Mirón-Enríquez Exploring the general chemistry of the core and ocean of Enceladus, Advances in Space Research, Volume 74 (2024) no. 1, p. 480 | DOI:10.1016/j.asr.2024.04.046
  • Ahmet Şaşmaz; Ayşe Didem Kılıç; Nevin Konakçı Chemical and Thermal Changes in Mg3Si2O5 (OH)4 Polymorph Minerals and Importance as an Industrial Material, Applied Sciences, Volume 14 (2024) no. 22, p. 10298 | DOI:10.3390/app142210298
  • Hong-peng TONG; Wen-xi TAN; Shen ZHANG; Duo-fu CHEN Hydrogen and oxygen isotopic compositions of serpentinite and their influencing factors, Bulletin of Mineralogy, Petrology and Geochemistry, Volume 43 (2024) no. 6, p. 1304 | DOI:10.3724/j.issn.1007-2802.20240053
  • E. Cannaò; M. Tiepolo; S. Agostini; M. Scambelluri Fossil hydrothermal oceanic systems through in-situ B isotopes in ophicarbonates (N. Apennines, Italy), Chemical Geology, Volume 645 (2024), p. 121899 | DOI:10.1016/j.chemgeo.2023.121899
  • Xiaohui Li; Sanzhong Li; Zixuan Zhang; Yuan Zhong; Dong-Yong Li Magnesium isotopic fractionation during post-serpentinization alteration: Implications for arc and oceanic Mg cycles, Chemical Geology, Volume 648 (2024), p. 121866 | DOI:10.1016/j.chemgeo.2023.121866
  • Pouyan Asem; Juerg Matter; Jennifer T. Mitchell; Chelsea Neil; Joseph F. Labuz Geochemical-hydromechanical couplings during water-serpentinized harzburgite interactions at 20°C and 30 bars, Chemical Geology, Volume 670 (2024), p. 122413 | DOI:10.1016/j.chemgeo.2024.122413
  • Dingran Zhao; Hongjuan Sun; Tongjiang Peng; Li Zeng Ionic dissolution and structural evolution of chrysotile and lizardite at the mineral–water interface: reactions in sulfuric acid solution, Clays and Clay Minerals, Volume 72 (2024) | DOI:10.1017/cmn.2024.26
  • Mohamed Th. S. Heikal; Adel A. Surour; Abdelaziz A. Said Chemical, thermal and infra-red characterization of chrysotile modes from the Wadi Daftah serpentinite (Semail ophiolite), United Arab Emirates, Discover Geoscience, Volume 2 (2024) no. 1 | DOI:10.1007/s44288-024-00087-1
  • V. Teknik; I.M. Artemieva; H. Thybo Limited arc magmatism and seismicity due to extensive mantle wedge serpentinization in the Makran subduction zone, Earth and Planetary Science Letters, Volume 645 (2024), p. 118950 | DOI:10.1016/j.epsl.2024.118950
  • Baptiste Debret; Muriel Andreani; Marguerite Godard A review of abyssal serpentinite geochemistry and geodynamics, Earth-Science Reviews, Volume 258 (2024), p. 104910 | DOI:10.1016/j.earscirev.2024.104910
  • Kean Chen; Huichao Zhang; Nigel J. Cook; Chunhui Tao; Fang An; Jin Liang; Weifang Yang GOLD ENRICHMENT MECHANISM IN MID-OCEAN RIDGE HYDROTHERMAL SYSTEMS: AN EXAMPLE FROM THE LONGQI HYDROTHERMAL FIELD ON THE ULTRASLOW-SPREADING SOUTHWEST INDIAN RIDGE, Economic Geology, Volume 119 (2024) no. 6, p. 1413 | DOI:10.5382/econgeo.5095
  • Colin Fauguerolles; Teddy Castelain; Johan Villeneuve; Michel Pichavant H2 mobility and redox control in open vs. closed hydrothermal oceanic systems – evidence from serpentinization experiments, European Journal of Mineralogy, Volume 36 (2024) no. 4, p. 555 | DOI:10.5194/ejm-36-555-2024
  • Fahad Alshehri; Mokhles K. Azer; Paul D. Asimow; Bassam A. Abuamarah Gold and sulfide-bearing listvenite in the mantle section of the Tays ophiolite in the Arabian Shield, Saudi Arabia, Geochemistry, Volume 84 (2024) no. 2, p. 126081 | DOI:10.1016/j.chemer.2024.126081
  • Lorenzo Marzini; Marco Iannini; Giovanna Giorgetti; Filippo Bonciani; Paolo Conti; Riccardo Salvini; Cecilia Viti Asbestos Hazard in Serpentinite Rocks: Influence of Mineralogical and Structural Characteristics on Fiber Potential Release, Geosciences, Volume 14 (2024) no. 8, p. 210 | DOI:10.3390/geosciences14080210
  • Sankhadeep Roy; Biswajit Ghosh; Soumi Chattopadhaya; Debaditya Bandyopadhyay; Archisman Dhar; Manojit Koley; Tomoaki Morishita; Sachin Kumar Tripathi Mayodia ophiolitic complex of Arunachal Pradesh, India: a multistage evolutionary record during the Tethyan closure, International Geology Review, Volume 66 (2024) no. 17, p. 3017 | DOI:10.1080/00206814.2024.2312512
  • Miao Zhang; Jing Zhao; Jia Guo; Xi Chen; Xiuhong Peng Origin and multi-episodic melt/fluid interactions revealed by the subducted serpentinites in the North Qilian Belt, NW China: Implications for the compositional heterogeneity of the fossil oceanic mantle, Journal of Asian Earth Sciences, Volume 271 (2024), p. 106237 | DOI:10.1016/j.jseaes.2024.106237
  • Chunyang Liu; Li‐Juan Xu; Haibo Ma; Sheng‐Ao Liu; Ping‐Ping Liu; Xiangli Wang; Shuning Li Stable Chromium Isotope Fractionation During the Alteration of Abyssal Peridotite: Implications for Marine Chromium Isotope Mass Balance, Journal of Geophysical Research: Solid Earth, Volume 129 (2024) no. 3 | DOI:10.1029/2023jb027140
  • Sonia Perrotta; Mirko Barone; Kathleen M. Marsaglia; Kitty L. Milliken; Vincenzo Perrone; Salvatore Critelli Detrital signatures of clastic serpentinite in tectonically diverse settings and interpretation of an example from the Northern Apennines, Journal of Sedimentary Research, Volume 94 (2024) no. 2, p. 207 | DOI:10.2110/jsr.2022.093
  • Giancarlo Capitani; Roberto Compagnoni; Roberto Cossio; Linda Pastero; Roberto Conconi; Marcello Mellini Unusual spinel in the “Verde Prato” serpentinized peridotite, Lithos, Volume 486-487 (2024), p. 107777 | DOI:10.1016/j.lithos.2024.107777
  • Qing He; Zongdong Pan; Shaoping Lu; Hongfang Gao; Han Chen; Rui Gao Origin of a high-velocity layer: Insights from seismic reflection imaging (South China Sea), Marine and Petroleum Geology, Volume 163 (2024), p. 106798 | DOI:10.1016/j.marpetgeo.2024.106798
  • Tarek Sedki; Haroun A. Mohamed; Shehata Ali; Rafat Zaki Sol Hamed Ophiolitic Complex, Southern Eastern Desert, Egypt: Petrological, Economic Potentiality and Structural Implications, Metamorphic Rocks as the Key to Understanding Geodynamic Processes (2024) | DOI:10.5772/intechopen.1003957
  • Vincent Guigoz; Anthony Seret; Marc Portail; Ludovic Ferrière; Guy Libourel; Harold C. Connolly; Dante S. Lauretta High‐resolution cathodoluminescence of calcites from the Cold Bokkeveld chondrite: New insights on carbonatation processes in CM parent bodies, Meteoritics Planetary Science, Volume 59 (2024) no. 9, p. 2432 | DOI:10.1111/maps.14225
  • Anas A. Karimov; Marina A. Gornova; Vasiliy A. Belyaev; Sergei Yu. Skuzovatov; Alexander Ya. Medvedev; Nikolay V. Bryanskiy In Situ Geochemical Evaluation of Retrograde Hydration Effects in the Peri-Siberian Forearc Mantle (Khara-Nur and Alag-Khadny Peridotite Complexes), Minerals, Volume 14 (2024) no. 5, p. 457 | DOI:10.3390/min14050457
  • Jing Zhao; Xiaoping Long Altered spinels act as a mirror of multi-episodic fluid metasomatism in the forearc mantle: An example from the Minhe ophiolite in Qilian Orogen, NW China, Ore and Energy Resource Geology, Volume 17 (2024), p. 100052 | DOI:10.1016/j.oreoa.2024.100052
  • G. V. Ledneva; B. A. Bazylev; S. N. Sychev; A. V. Rogov Metamorphosed Ultramafic and Mafic Lithoclasts and Detrital Minerals from Sandstones of Clastic Ophiolitic Deposits of the Rassokha Terrane: A Setting of Formation of the Chersky Range Ophiolites, Petrology, Volume 32 (2024) no. 3, p. 422 | DOI:10.1134/s0869591124700048
  • Otgon‐Erdene Davaasuren; Sang‐Mo Koh; Bum Han Lee; Chul‐Ho Heo Serpentinization and potential Ni‐Cr mineralization of the Andong ultramafic block in South Korea, Resource Geology, Volume 74 (2024) no. 1 | DOI:10.1111/rge.12331
  • Ruifang Huang; Weidong Sun; Xing Ding; Yusheng Zhao; Yibing Li; Xiuqi Shang The influence of silica on reaction rates and molecular hydrogen (H2) generation during olivine hydrothermal alteration, Science China Earth Sciences, Volume 67 (2024) no. 1, p. 222 | DOI:10.1007/s11430-023-1172-9
  • Peter Haas; Myron F. H. Thomas; Christian Heine; Jörg Ebbing; Andrey Seregin; Jimmy van Itterbeeck Increased metamorphic conditions in the lower crust during oceanic transform fault evolution, Solid Earth, Volume 15 (2024) no. 12, p. 1419 | DOI:10.5194/se-15-1419-2024
  • G. V. Ledneva; B. A. Bazylev; S. N. Sychev; A. V. Rogov Metamorphosed ultramafic and mafic lithoclasts and detrital minerals from sandstones of clastic ophiolitic deposits of the Rassokha terrane: a setting of formation of the Chersky range ophiolites, Петрология, Volume 32 (2024) no. 3 | DOI:10.31857/s0869590324030062
  • Chao WANG; Renbiao TAO; Jesse B. WALTERS; Tianshi REN; Jingbo NAN; Lifei ZHANG Deciphering the Origin of Abiotic Organic Compounds on Earth: Review and Future Prospects, Acta Geologica Sinica - English Edition, Volume 97 (2023) no. 1, p. 288 | DOI:10.1111/1755-6724.15045
  • Yanjuan Wang; Rujun Chen; Xiangping Gu; Fabrizio Nestola; Zengqian Hou; Zhusen Yang; Guochen Dong; Hu Guo; Kai Qu Tetrahedrite-(Ni), Cu6(Cu4Ni2)Sb4S13, the first nickel member of tetrahedrite group mineral from Luobusa chromite deposits, Tibet, China, American Mineralogist, Volume 108 (2023) no. 10, p. 1984 | DOI:10.2138/am-2022-8761
  • Thomas Ferreira da Costa Campos; José Humberto Araujo; Susanna Eleonora Sichel; Valéria Fonseca da Silva Pastura; Kenji Freire Motoki; Leonardo Mairink Barão; Marcia Maia; Estefan Monteiro da Fonseca; Julio Navoni; Thais Vargas; Peter Szatmari; Daniele Brunelli Mapping of surface radiogenic heat production from in situ gamma spectrometry and chemical data of exhumed mantle peridotites at the St. Peter and St. Paul archipelago (equatorial Atlantic), Applied Radiation and Isotopes, Volume 192 (2023), p. 110608 | DOI:10.1016/j.apradiso.2022.110608
  • Andrés Castrillón; Franck Lartaud; Antonio Delgado-Huertas; Fernando Núñez-Useche Mineralogical, petrographic, and geochemical analyzes which confirm the hydrothermal origin of the sediments that overlie the peridotites of Cerro Matoso, Colombia, Boletín de Geología, Volume 45 (2023) no. 1 | DOI:10.18273/revbol.v45n1-2023003
  • Daniela Rubatto; Morgan Williams; Thorsten Andreas Markmann; Jörg Hermann; Pierre Lanari Tracing fluid infiltration into oceanic crust up to ultra-high-pressure conditions, Contributions to Mineralogy and Petrology, Volume 178 (2023) no. 11 | DOI:10.1007/s00410-023-02060-6
  • Andrew J. Martin; Christopher J. MacLeod; Katie A. McFall; Iain McDonald; John W. Jamieson; Sophie Cox Ultramafic-Hosted Ni-Cu-Co-(As) Mineralization from an Ancient Oceanic Transform Fault Zone in the Troodos Ophiolite, Cyprus: An Analogue for Ultramafic Sea-Floor Massive Sulfide Mineralization?, Economic Geology, Volume 118 (2023) no. 5, p. 1125 | DOI:10.5382/econgeo.4996
  • Yul Roh; Hyeonyi Jeong; Byungno Park; Chaewon Kim; Yumi Kim; Mina Seo; Haengsoo Shin; Hyunwook Kim; Yeji Sung Asbestos Trend in Korea from 1918 to 2027 Using Text Mining Techniques in a Big Data Environment, Economic and Environmental Geology, Volume 56 (2023) no. 4, p. 457 | DOI:10.9719/eeg.2023.56.4.457
  • Irena Miladinova; Walter Kurz; Thomas Hilmbauer‐Hofmarcher Fluid‐Mantle Interaction Along the Mariana Convergent Margin, Geochemistry, Geophysics, Geosystems, Volume 24 (2023) no. 9 | DOI:10.1029/2023gc010968
  • Maria Rosa Scicchitano; Juan Carlos de Obeso; Tyler B. Blum; John W. Valley; Peter B. Kelemen; William O. Nachlas; William Schneider; Michael J. Spicuzza; Franziska D.H. Wilke; Vladimir Roddatis An empirical calibration of the serpentine-water oxygen isotope fractionation at T = 25–100 °C, Geochimica et Cosmochimica Acta, Volume 346 (2023), p. 192 | DOI:10.1016/j.gca.2023.02.015
  • Jia Wang; Teng Ding; Tingting Tan; Chunhui Tao; Jin Liang; Bin Wu Sulfur sources for ultramafic‐hosted sulfide mineralization in the Tianzuo hydrothermal field, 63.5° E, South‐west Indian Ridge: Insights from sulfur and carbon isotopes, Geological Journal, Volume 58 (2023) no. 4, p. 1325 | DOI:10.1002/gj.4661
  • Branimir Šegvić; Damir Slovenec; Luka Badurina Major and rare earth element mineral chemistry of low-grade assemblages inform dynamics of hydrothermal ocean-floor metamorphism in the Dinaridic Neotethys, Geological Magazine, Volume 160 (2023) no. 3, p. 444 | DOI:10.1017/s0016756822001030
  • Brandon T. Bishop; Sungwon Cho; Linda Warren; Lillian Soto-Cordero; Patricia Pedraza; German A. Prieto; Viviana Dionicio Oceanic intraplate faulting as a pathway for deep hydration of the lithosphere: Perspectives from the Caribbean, Geosphere, Volume 19 (2023) no. 1, p. 206 | DOI:10.1130/ges02534.1
  • Qiang Wang; Minghui Zhao; Jiazheng Zhang; Haoyu Zhang; Jean-Claude Sibuet; Zizheng Li; Enyuan He; Xuelin Qiu; Wen Peng; Guizhong Chen Breakup mechanism of the northern South China Sea: Evidence from the deep crustal structure across the continent-ocean transition, Gondwana Research, Volume 120 (2023), p. 47 | DOI:10.1016/j.gr.2022.09.004
  • Wen-Ping Liu; Wei Yin; Bin-Long Ye; Tian-Lei Zhao; Qi-Zhi Yao; Yi-Liang Li; Sheng-Quan Fu; Gen-Tao Zhou Reliable spectroscopic identification of minerals associated with serpentinization: Relevance to Mars exploration, Icarus, Volume 394 (2023), p. 115440 | DOI:10.1016/j.icarus.2023.115440
  • Mingqi Liu; Taras Gerya Forced Subduction Initiation Near Spreading Centers: Effects of Brittle‐Ductile Damage, Journal of Geophysical Research: Solid Earth, Volume 128 (2023) no. 2 | DOI:10.1029/2022jb024701
  • Esther Schmädicke; Thomas M. Will Origin of Erzgebirge ultrahigh‐pressure garnetite: Formation from a basaltic protolith by serpentinization‐assisted metasomatism?, Journal of Metamorphic Geology, Volume 41 (2023) no. 9, p. 1237 | DOI:10.1111/jmg.12742
  • Zhiqiang ZHOU; Hongjuan SUN; Tongjiang PENG Serpentinization of forsterite under hydrothermal conditions and controlled synthesis of lizardite, Journal of Mineralogical and Petrological Sciences, Volume 118 (2023) no. 1, p. n/a | DOI:10.2465/jmps.220630b
  • Luc S Doucet; Zheng-Xiang Li; Daniel Brennan; Robin Offler; Hamed Gamaleldien; Bryant Ware; Svetlana G Tessalina; Bertrand N Moine Precambrian History of the Pacific Mantle Domain: New Constraints from Woodsreef and Port Macquarie Serpentinized Spinel Harzburgites of the New England Orogen, Australia, Journal of Petrology, Volume 64 (2023) no. 5 | DOI:10.1093/petrology/egad028
  • Afonso Loureiro; Alexandra Afilhado; Philippe Schnürle; Mikael Evain; Nuno A. Dias; Frauke Klingelhöfer; Flora Gallais; João Marcelo Pinheiro; José Eduardo Soares; Reinhardt Fuck; J.A. Cupertino; Adriano Viana; Carlos Corela; Maryline Moulin; Daniel Aslanian Imaging exhumed continental and proto-oceanic crusts in the Camamu triple junction, Brazil, Journal of South American Earth Sciences, Volume 126 (2023), p. 104336 | DOI:10.1016/j.jsames.2023.104336
  • Celine Martin; Kennet E. Flores; George E. Harlow; Samuel Angiboust; Florent Hodel; George L. Guice The B isotopic signature of serpentine from obducted ophiolites: Mixing of fluids and tectonic implications, Lithos, Volume 456-457 (2023), p. 107275 | DOI:10.1016/j.lithos.2023.107275
  • Ruolin Liu; Junhong Zhao; Meifu Zhou; Han Qi Alteration of chromite during serpentinization of peridotites, Lithos, Volume 460-461 (2023), p. 107385 | DOI:10.1016/j.lithos.2023.107385
  • Teng Ding; Ágata Alveirinho Dias; Jia Wang; Tingting Tan; Jin Liang; Bin Wu; Chunhui Tao Serpentinization and its implications for ultramafic-hosted sulfide mineralization: A case study at the Tianzuo hydrothermal field, 63.5°E, Southwest Indian Ridge, Marine Geology, Volume 455 (2023), p. 106969 | DOI:10.1016/j.margeo.2022.106969
  • P. Linsy; L. Surya Prakash; Parijat Roy; Muhammad Shuhail; P. John Kurian Geochemical Characteristics of Iron in a Sediment Core at 63°40′ E, Eastern Southwest Indian Ridge: Implications on Regional Hydrothermal Activities and Source Origin, Minerals, Volume 13 (2023) no. 2, p. 209 | DOI:10.3390/min13020209
  • Tuğçe Beyazay; Kendra S. Belthle; Christophe Farès; Martina Preiner; Joseph Moran; William F. Martin; Harun Tüysüz Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-36088-w
  • Mohamed Hamdy; Shaimaa El-Shafei; Hamed Gamaleldien; Tamer Abu-Alam Silica cycling in Neoproterozoic oceanic lithosphere: A case study from Wadi Igla carbonate-serpentinite (southern Eastern Desert of Egypt), Precambrian Research, Volume 390 (2023), p. 107033 | DOI:10.1016/j.precamres.2023.107033
  • Dan Lévy; Vincent Roche; Gabriel Pasquet; Valentine Combaudon; Ugo Geymond; Keanu Loiseau; Isabelle Moretti Natural H2 exploration: tools and workflows to characterize a play, Science and Technology for Energy Transition, Volume 78 (2023), p. 27 | DOI:10.2516/stet/2023021
  • O. El Idrissi; S. Ternengo; B. Monnier; G. Lepoint; A. Aiello; R. Bastien; R. Lourkisti; M. Bonnin; J. Santini; V. Pasqualini; S. Gobert Assessment of trace element contamination and effects on Paracentrotus lividus using several approaches: Pollution indices, accumulation factors and biochemical tools, Science of The Total Environment, Volume 869 (2023), p. 161686 | DOI:10.1016/j.scitotenv.2023.161686
  • Marianna Corre; Fabrice Brunet; Stéphane Schwartz; Cécile Gautheron; Arnaud Agranier; Stéphane Lesimple Quaternary low-temperature serpentinization and carbonation in the New Caledonia ophiolite, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-46691-y
  • El Saeed R. Lasheen; Waheed H. Mohamed; Mahmoud H. Elyaseer; Mohamed A. Rashwan; Mokhles K. Azer Geochemical and remote sensing integrated with satellite gravity data of Darhib and Atshan talc deposits, South Eastern Desert, Egypt, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-31398-x
  • Yanlin Wang; Pin Yan; Junhui Yu; Guanghong Tu; Jun Wang; Yan Qiu; Changliang Chen Geophysical evidence for a serpentine mud volcano in the relict slow-spreading center of the South China Sea, Tectonophysics, Volume 846 (2023), p. 229665 | DOI:10.1016/j.tecto.2022.229665
  • ZHANG YuZhen; JIANG ZhaoXia; LI SanZhong; WANG YuHua; YU Lei The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration, Acta Petrologica Sinica, Volume 38 (2022) no. 4, p. 1063 | DOI:10.18654/1000-0569/2022.04.07
  • Gwenn Peron‐Pinvidic What is a Rifted Margin? From the Early Models to Modern Views and Future Challenges, Continental Rifted Margins 1 (2022), p. 71 | DOI:10.1002/9781119986928.ch2
  • Xiaomin Yu; Yingxin Liu; Chuqi Cao Mineralogy and Geochemistry of “Laoshan Jade” from Shandong Province, China: Implications for Petrogenesis, Crystals, Volume 12 (2022) no. 2, p. 243 | DOI:10.3390/cryst12020243
  • C. Konn; J.P. Donval; V. Guyader; Y. Germain; A.-S. Alix; E. Roussel; O. Rouxel Extending the dataset of fluid geochemistry of the Menez Gwen, Lucky Strike, Rainbow, TAG and Snake Pit hydrothermal vent fields: Investigation of temporal stability and organic contribution, Deep Sea Research Part I: Oceanographic Research Papers, Volume 179 (2022), p. 103630 | DOI:10.1016/j.dsr.2021.103630
  • Wen-Yong Duan; Xu-Ping Li; Hans-Peter Schertl; Arne P. Willner C-O-H-S fluids released by oceanic serpentinite in subduction zones: Implications for arc-magma oxidation, Earth and Planetary Science Letters, Volume 594 (2022), p. 117709 | DOI:10.1016/j.epsl.2022.117709
  • Laurence Noel Warr Earth’s clay mineral inventory and its climate interaction: A quantitative assessment, Earth-Science Reviews, Volume 234 (2022), p. 104198 | DOI:10.1016/j.earscirev.2022.104198
  • A. M. Abdel-Rahman; H. M. El-Desoky; B. N. A. Shalaby; H. A. Awad; Antoaneta Ene; M. A. Heikal; H. El-Awny; W. Fahmy; S. A. Taalab; Hesham M. H. Zakaly Ultramafic Rocks and Their Alteration Products From Northwestern Allaqi Province, Southeastern Desert, Egypt: Petrology, Mineralogy, and Geochemistry, Frontiers in Earth Science, Volume 10 (2022) | DOI:10.3389/feart.2022.894582
  • Natalie H. Raia; Donna L. Whitney; Christian Teyssier; Stéphane Lesimple Serpentinites of Different Tectonic Origin in an Exhumed Subduction Complex (New Caledonia, SW Pacific), Geochemistry, Geophysics, Geosystems, Volume 23 (2022) no. 8 | DOI:10.1029/2022gc010395
  • Maria Rosa Scicchitano; Romain Lafay; John W. Valley; Noriko T. Kita; William O. Nachlas Protracted hydrothermal alteration recorded at the microscale in the Chenaillet ophicarbonates (Western Alps): Insights from in situ δ18O thermometry in serpentine, carbonate and magnetite, Geochimica et Cosmochimica Acta, Volume 318 (2022), p. 144 | DOI:10.1016/j.gca.2021.11.025
  • Shili Liao; Chunhui Tao; John W. Jamieson; Jia Liu; Chuanwei Zhu; Fernando J.A.S. Barriga; Wei Li; Jin Liang; Weifang Yang; Jianping Zhou; Xianming Deng; Junyu Yu Oxidizing fluids associated with detachment hosted hydrothermal systems: Example from the Suye hydrothermal field on the ultraslow-spreading Southwest Indian Ridge, Geochimica et Cosmochimica Acta, Volume 328 (2022), p. 19 | DOI:10.1016/j.gca.2022.04.025
  • Piotr Marian Wojtulek; Bernhard Schulz; Reiner Klemd; Grzegorz Gil; Michał Dajek; Katarzyna Delura The Central-Sudetic ophiolites – Remnants of the SSZ-type Devonian oceanic lithosphere in the European part of the Variscan Orogen, Gondwana Research, Volume 105 (2022), p. 343 | DOI:10.1016/j.gr.2021.09.015
  • Isabelle Moretti; Ugo Geymond; Gabriel Pasquet; Leo Aimar; Alain Rabaute Natural hydrogen emanations in Namibia: Field acquisition and vegetation indexes from multispectral satellite image analysis, International Journal of Hydrogen Energy, Volume 47 (2022) no. 84, p. 35588 | DOI:10.1016/j.ijhydene.2022.08.135
  • Mohamed M. Hamdy; El Saeed R. Lasheen; Wael Abdelwahab Gold-bearing listwaenites in ophiolitic ultramafics from the Eastern Desert of Egypt: Subduction zone-related alteration of Neoproterozoic mantle?, Journal of African Earth Sciences, Volume 193 (2022), p. 104574 | DOI:10.1016/j.jafrearsci.2022.104574
  • Arathi G Panicker; Burla Sai Kiran; Balaboina Vikram Raju; Mekala Ram Mohan Characterisation of serpentine polymorphs from the Holenarsipur Greenstone Belt, Western Dharwar Craton: Implications for multi-stage serpentinisation, Journal of Earth System Science, Volume 131 (2022) no. 2 | DOI:10.1007/s12040-022-01817-0
  • Tao Gou; Shaohong Xia; Zhouchuan Huang; Dapeng Zhao Structural Heterogeneity of the Alaska‐Aleutian Forearc: Implications for Interplate Coupling and Seismogenic Behaviors, Journal of Geophysical Research: Solid Earth, Volume 127 (2022) no. 11 | DOI:10.1029/2022jb024621
  • Gisella Rebay; Roger Powell; Tim J. B. Holland Calculated phase equilibria for high‐pressure serpentinites and compositionally related rocks close to the MgO–Al2O3–SiO2–H2O (MASH) system, Journal of Metamorphic Geology, Volume 40 (2022) no. 7, p. 1219 | DOI:10.1111/jmg.12663
  • Andrés Castrillón; Teresa Pi-Puig; Javier Guerrero; Fernando Nuñez-Useche; Augusto Rodriguez; Carles Canet Clay mineralogy and texture of deep-sea hydrothermal mudstone associated with the Cerro Matoso peridotite in accreted oceanic crust from Colombia, Journal of South American Earth Sciences, Volume 117 (2022), p. 103886 | DOI:10.1016/j.jsames.2022.103886
  • Nicolas Cortiade; Adélie Delacour; Damien Guillaume; Bertrand Moine; June Chevet Serpentinization of mantle xenoliths in Kerguelen archipelago: A first petrographic and geochemical study, Lithos, Volume 428-429 (2022), p. 106796 | DOI:10.1016/j.lithos.2022.106796
  • Haibo Yan; Zhuoyu Liu; Jian Di; Xing Ding Crystal Growth of Osmium(IV) Dioxide in Chlorine-Bearing Hydrothermal Fluids, Minerals, Volume 12 (2022) no. 9, p. 1092 | DOI:10.3390/min12091092
  • Marko Holma; Zongxian Zhang; Pasi Kuusiniemi; Kai Loo; Timo Enqvist Future Prospects of Muography for Geological Research and Geotechnical and Mining Engineering, Muography (2022), p. 199 | DOI:10.1002/9781119722748.ch15
  • Sonia Ouadahi; Abderrahmane Bendaoud; Jean-Louis Bodinier; Jean-Marie Dautria; Alain Vauchez; El-Hocine Fettous; Olivier Alard A suture related accretionary wedge in the Gondwana assembly: Insights from serpentinites in the Hoggar shield, Algeria, Precambrian Research, Volume 369 (2022), p. 106505 | DOI:10.1016/j.precamres.2021.106505
  • Yongsik Jeong; Jaehyung Yu; Lei Wang; Huy Hoa Huynh; Hyun-Cheol Kim Monitoring Asbestos Mine Remediation Using Airborne Hyperspectral Imaging System: A Case Study of Jefferson Lake Mine, US, Remote Sensing, Volume 14 (2022) no. 21, p. 5572 | DOI:10.3390/rs14215572
  • Xi Liu; Hai-Zhen Wei; A.E. Williams-Jones; Jing Ma; Jian-Jun Lu; Shao-Yong Jiang; Yin-Chuan Li; Ge Dong Chlorine isotope fractionation during serpentinization and hydrothermal mineralization: A density functional theory study, Chemical Geology, Volume 581 (2021), p. 120406 | DOI:10.1016/j.chemgeo.2021.120406
  • Claire Aupart; Luiz Morales; Marguerite Godard; Bjørn Jamtveit Seismic faults triggered early stage serpentinization of peridotites from the Samail Ophiolite, Oman, Earth and Planetary Science Letters, Volume 574 (2021), p. 117137 | DOI:10.1016/j.epsl.2021.117137
  • Emmanuel Fritsch; Etienne Balan; Sabine Petit; Farid Juillot Structural, textural, and chemical controls on the OH stretching vibrations in serpentine-group minerals, European Journal of Mineralogy, Volume 33 (2021) no. 4, p. 447 | DOI:10.5194/ejm-33-447-2021
  • Shehata Ali; Theodoros Ntaflos; Mabrouk Sami Geochemistry of Khor Um-Safi ophiolitic serpentinites, central Eastern desert, Egypt: Implications for neoproterozoic arc-basin system in the Arabian-Nubian shield, Geochemistry, Volume 81 (2021) no. 1, p. 125690 | DOI:10.1016/j.chemer.2020.125690
  • Michaela Meier; Vera Schlindwein; John‐Robert Scholz; Jonah Geils; Mechita C. Schmidt‐Aursch; Frank Krüger; Wojciech Czuba; Tomasz Janik Segment‐Scale Seismicity of the Ultraslow Spreading Knipovich Ridge, Geochemistry, Geophysics, Geosystems, Volume 22 (2021) no. 2 | DOI:10.1029/2020gc009375
  • Yan-Jun Wang; Wen-Jun Hu; Hong Zhong; Wei-Guang Zhu; Zhong-Jie Bai Oceanic lithosphere heterogeneity in the eastern Paleo-Tethys revealed by PGE and Re–Os isotopes of mantle peridotites in the Jinshajiang ophiolite, Geoscience Frontiers, Volume 12 (2021) no. 3, p. 101114 | DOI:10.1016/j.gsf.2020.11.011
  • Gabriel Pasquet; Rokiya Houssein Hassan; Olivier Sissmann; Jacques Varet; Isabelle Moretti An Attempt to Study Natural H2 Resources across an Oceanic Ridge Penetrating a Continent: The Asal–Ghoubbet Rift (Republic of Djibouti), Geosciences, Volume 12 (2021) no. 1, p. 16 | DOI:10.3390/geosciences12010016
  • Yuhan Li; Haibo Huang; Ingo Grevemeyer; Xuelin Qiu; Haoyu Zhang; Qiang Wang Crustal structure beneath the Zhongsha Block and the adjacent abyssal basins, South China Sea: New insights into rifting and initiation of seafloor spreading, Gondwana Research, Volume 99 (2021), p. 53 | DOI:10.1016/j.gr.2021.06.015
  • Betchaida D. Payot; Satoko Ishimaru; Akihiro Tamura; Carla B. Dimalanta; Graciano P. Yumul; Shoji Arai Remarkably fresh abyssal peridotites from Sibuyan island, Romblon Island Group, Philippines: Markers of young arc-continent collision, Journal of Asian Earth Sciences: X, Volume 5 (2021), p. 100051 | DOI:10.1016/j.jaesx.2021.100051
  • A. Corbalán; M. R. Nedimović; K. E. Louden; M. Cannat; I. Grevemeyer; L. Watremez; S. Leroy Seismic Velocity Structure Along and Across the Ultraslow‐Spreading Southwest Indian Ridge at 64°30′E Showcases Flipping Detachment Faults, Journal of Geophysical Research: Solid Earth, Volume 126 (2021) no. 10 | DOI:10.1029/2021jb022177
  • Esther M. Schwarzenbach; Monica Vogel; Gretchen L. Früh‐Green; Chiara Boschi Serpentinization, Carbonation, and Metasomatism of Ultramafic Sequences in the Northern Apennine Ophiolite (NW Italy), Journal of Geophysical Research: Solid Earth, Volume 126 (2021) no. 5 | DOI:10.1029/2020jb020619
  • Sophie Cox; Åke Fagereng; Christopher J. MacLeod Shear Zone Development in Serpentinized Mantle: Implications for the Strength of Oceanic Transform Faults, Journal of Geophysical Research: Solid Earth, Volume 126 (2021) no. 5 | DOI:10.1029/2020jb020763
  • James M D Day; Diana B Brown Ancient Melt-Depletion in Fresh to Strongly Serpentinized Tonga Trench Peridotites, Journal of Petrology, Volume 62 (2021) no. 12 | DOI:10.1093/petrology/egab088
  • Jehiel Nteme Mukonzo; Marie-Christine Boiron; Yves Lagabrielle; Michel Cathelineau; Benoit Quesnel Fluid–rock interactions along detachment faults during continental rifting and mantle exhumation: the case of the Urdach lherzolite body (North Pyrenees), Journal of the Geological Society, Volume 178 (2021) no. 2 | DOI:10.1144/jgs2020-116
  • El Hachemi Boukaoud; Gaston Godard; Moulley Charaf Chabou; Youcef Bouftouha; SidAli Doukkari Petrology and geochemistry of the Texenna ophiolites, northeastern Algeria: Implications for the Maghrebian flysch suture zone, Lithos, Volume 390-391 (2021), p. 106019 | DOI:10.1016/j.lithos.2021.106019
  • Antoine Boutier; Alberto Vitale Brovarone; Isabelle Martinez; Olivier Sissmann; Sara Mana High-pressure serpentinization and abiotic methane formation in metaperidotite from the Appalachian subduction, northern Vermont, Lithos, Volume 396-397 (2021), p. 106190 | DOI:10.1016/j.lithos.2021.106190
  • C. Tichadou; M. Godard; M. Muñoz; P. Labaume; A. Vauchez; E.C. Gaucher; S. Calassou Mineralogical and geochemical study of serpentinized peridotites from the North-Western Pyrenees: New insights on serpentinization along magma-poor continental passive margins, Lithos, Volume 406-407 (2021), p. 106521 | DOI:10.1016/j.lithos.2021.106521
  • Paolo A. Sossi; Baptiste Debret The Role of Redox Processes in Determining the Iron Isotope Compositions of Minerals, Melts, and Fluids, Magma Redox Geochemistry (2021), p. 303 | DOI:10.1002/9781119473206.ch15
  • Xian Chen; Xiaoming Sun; Zhongwei Wu; Yan Wang; Xiao Lin; Hongjun Chen Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock, Minerals, Volume 11 (2021) no. 2, p. 138 | DOI:10.3390/min11020138
  • Lushi Liu; Jilong Lu; Chunhui Tao; Shili Liao; Shengbo Chen GIS-based Mineral Prospectivity Mapping of Seafloor Massive Sulfide on Ultraslow-spreading Ridges: A Case Study of Southwest Indian Ridge 48.7°–50.5° E, Natural Resources Research, Volume 30 (2021) no. 2, p. 971 | DOI:10.1007/s11053-020-09797-y
  • Allen P. Nutman; Maria R. Scicchitano; Clark R.L. Friend; Vickie C. Bennett; Allan R. Chivas Isua (Greenland)  3700 Ma meta-serpentinite olivine Mg# and δ18O signatures show connection between the early mantle and hydrosphere: Geodynamic implications, Precambrian Research, Volume 361 (2021), p. 106249 | DOI:10.1016/j.precamres.2021.106249
  • Dario Di Giuseppe; Natale Perchiazzi; Daniele Brunelli; Tommaso Giovanardi; Luca Nodari; Giancarlo Della Ventura; Daniele Malferrari; Marcia Maia; Alessandro F. Gualtieri Occurrence and characterization of tremolite asbestos from the Mid Atlantic Ridge, Scientific Reports, Volume 11 (2021) no. 1 | DOI:10.1038/s41598-021-85576-w
  • Eloïse Bessière; Romain Augier; Laurent Jolivet; Jacques Précigout; Adrien Romagny Exhumation of the Ronda Peridotite During Hyper‐Extension: New Structural and Thermal Constraints From the Nieves Unit (Western Betic Cordillera, Spain), Tectonics, Volume 40 (2021) no. 10 | DOI:10.1029/2020tc006271
  • Mohamed G. Shahien; Mokhles K. Azer; Paul D. Asimow Neoproterozoic Ophiolites of the Arabian-Nubian Shield, The Geology of the Arabian-Nubian Shield (2021), p. 297 | DOI:10.1007/978-3-030-72995-0_12
  • Hisham A. Gahlan; Mokhles K. Azer; Paul D. Asimow; Zakaria Hamimi The Mantle Section of Neoproterozoic Ophiolites from the Pan-African Belt, Eastern Desert, Egypt: Tectonomagmatic Evolution, Metamorphism, and Mineralization, The Geology of the Egyptian Nubian Shield (2021), p. 309 | DOI:10.1007/978-3-030-49771-2_12
  • Mohamed M. Hamdy; Mohamed Z. Khedr Ophiolite-Associated Cu, Ni, and Cr Deposits, The Geology of the Egyptian Nubian Shield (2021), p. 487 | DOI:10.1007/978-3-030-49771-2_18
  • Philomene Nga Essomba Tsoungui; Sylvestre Ganno; Evine Laure Tanko Njiosseu; Jean Lavenir Ndema Mbongue; Brice Kamguia Woguia; Landry Soh Tamehe; Jonas Didero Takodjou Wambo; Jean Paul Nzenti Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon, Acta Geochimica, Volume 39 (2020) no. 3, p. 404 | DOI:10.1007/s11631-019-00368-4
  • Jingsui YANG; Dongyang LIAN; Paul T ROBINSON; Tian QIU; Fahui XIONG; Weiwei WU Geological Evidence does not Support a Shallow Origin for Diamonds in Ophiolite, Acta Geologica Sinica - English Edition, Volume 94 (2020) no. S1, p. 70 | DOI:10.1111/1755-6724.14477
  • WU Kai; YUAN HongLin; LYU Nan; ZHANG LiPeng The behavior of fluid mobile elements during serpentinization and dehydration of serpentinites in subduction zones, Acta Petrologica Sinica, Volume 36 (2020) no. 1, p. 141 | DOI:10.18654/1000-0569/2020.01.14
  • Céline Martin; Kennet E. Flores; Alberto Vitale-Brovarone; Samuel Angiboust; George E. Harlow Deep mantle serpentinization in subduction zones: Insight from in situ B isotopes in slab and mantle wedge serpentinites, Chemical Geology, Volume 545 (2020), p. 119637 | DOI:10.1016/j.chemgeo.2020.119637
  • E. Cannaò; M. Scambelluri; G.E. Bebout; S. Agostini; T. Pettke; M. Godard; L. Crispini Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling, Chemical Geology, Volume 546 (2020), p. 119626 | DOI:10.1016/j.chemgeo.2020.119626
  • M.A. Masoud; A.M. El-Khayatt; W.A. Kansouh; K. Sakr; M.G. Shahien; A.M. Zayed Insights into the effect of the mineralogical composition of serpentine aggregates on the radiation attenuation properties of their concretes, Construction and Building Materials, Volume 263 (2020), p. 120141 | DOI:10.1016/j.conbuildmat.2020.120141
  • Juliette Maurice; Nathalie Bolfan-Casanova; Sylvie Demouchy; Paul Chauvigne; Federica Schiavi; Baptiste Debret The intrinsic nature of antigorite breakdown at 3 GPa: Experimental constraints on redox conditions of serpentinite dehydration in subduction zones, Contributions to Mineralogy and Petrology, Volume 175 (2020) no. 10 | DOI:10.1007/s00410-020-01731-y
  • Marc Ulrich; Manuel Muñoz; Philippe Boulvais; Michel Cathelineau; Dominique Cluzel; Stéphane Guillot; Christian Picard Serpentinization of New Caledonia peridotites: from depth to (sub-)surface, Contributions to Mineralogy and Petrology, Volume 175 (2020) no. 9 | DOI:10.1007/s00410-020-01713-0
  • Kevin Lepot Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon, Earth-Science Reviews, Volume 209 (2020), p. 103296 | DOI:10.1016/j.earscirev.2020.103296
  • F. Hodel; M. Macouin; R. I. F. Trindade; J. F. D. F. Araujo; M. Respaud; J. F. Meunier; L. Cassayre; S. Rousse; L. Drigo; J. Schorne‐Pinto Magnetic Properties of Ferritchromite and Cr‐Magnetite and Monitoring of Cr‐Spinels Alteration in Ultramafic and Mafic Rocks, Geochemistry, Geophysics, Geosystems, Volume 21 (2020) no. 11 | DOI:10.1029/2020gc009227
  • Charis Horn; Pierre Bouilhol; Philip Skemer Serpentinization, Deformation, and Seismic Anisotropy in the Subduction Mantle Wedge, Geochemistry, Geophysics, Geosystems, Volume 21 (2020) no. 4 | DOI:10.1029/2020gc008950
  • Tijen Üner Listwaenitization and enrichment of precious metals in the hydrothermal mineralization zones of serpentinites in Sugeçer-Van (Eastern Anatolia, Turkey), Geochemistry: Exploration, Environment, Analysis, Volume 20 (2020) no. 1, p. 68 | DOI:10.1144/geochem2018-087
  • Y. Mart The structural evolution of oceanic core complexes: A concept based on analog modeling, Geodynamics Tectonophysics, Volume 11 (2020) no. 1, p. 1 | DOI:10.5800/gt-2020-11-1-0458
  • Zhi‐Bo Liu; Jing‐Chao Li; Tao Zhao; Yang Song; Guo‐Li Yuan; Yun Lin; Hua‐Sheng Shao; M. Santosh Serpentinisation and magnetite formation in the Angwu ultramafic rocks from the central Bangong–Nujiang suture zone, Tibetan Plateau, Geological Journal, Volume 55 (2020) no. 2, p. 1283 | DOI:10.1002/gj.3496
  • Vittorio Scribano; Serafina Carbone Convective Instability in Intraplate Oceanic Mantle Caused by Amphibolite-Derived Garnet-Pyroxenites—A Xenolith Perspective (Hyblean Plateau, Sicily), Geosciences, Volume 10 (2020) no. 9, p. 378 | DOI:10.3390/geosciences10090378
  • Dominique Cluzel; Philippe Boulvais; Marion Iseppi; Didier Lahondère; Stéphane Lesimple; Pierre Maurizot; Jean-Louis Paquette; Alexandre Tarantola; Marc Ulrich Slab-derived origin of tremolite–antigorite veins in a supra-subduction ophiolite: the Peridotite Nappe (New Caledonia) as a case study, International Journal of Earth Sciences, Volume 109 (2020) no. 1, p. 171 | DOI:10.1007/s00531-019-01796-6
  • Yang Chen; Xiqiu Han; Yejian Wang; Jianggu Lu Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation, Journal of Earth Science, Volume 31 (2020) no. 1, p. 91 | DOI:10.1007/s12583-020-0876-y
  • Bijan Roshanravan Translating a mineral systems model into continuous and data-driven targeting models: An example from the Dolatabad chromite district, southeastern Iran, Journal of Geochemical Exploration, Volume 215 (2020), p. 106556 | DOI:10.1016/j.gexplo.2020.106556
  • Wen‐Jun Hu; Hong Zhong; Zhu‐Yin Chu; Wei‐Guang Zhu; Zhong‐Jie Bai; Chang Zhang Ancient Refertilization Process Preserved in the Plagioclase Peridotites: An Example From the Shuanggou Ophiolite, Southwest China, Journal of Geophysical Research: Solid Earth, Volume 125 (2020) no. 1 | DOI:10.1029/2019jb017552
  • J. F. Vieira Duarte; M.‐A. Kaczmarek; P. Vonlanthen; B. Putlitz; O. Müntener Hydration of a Mantle Shear Zone Beyond Serpentine Stability: A Possible Link to Microseismicity Along Ultraslow Spreading Ridges?, Journal of Geophysical Research: Solid Earth, Volume 125 (2020) no. 10 | DOI:10.1029/2020jb019509
  • Long Zhang; Wei‐dong Sun; Zhao‐Feng Zhang; Yajun An; Fang Liu Iron Isotope Behavior During Melt‐Peridotite Interaction in Supra‐subduction Zone Ophiolite From Northern Tibet, Journal of Geophysical Research: Solid Earth, Volume 125 (2020) no. 2 | DOI:10.1029/2019jb018823
  • Lucile Dessimoulie; Adélie Delacour; Damien Guillaume; June Chevet; Jean-Yves Cottin Major and trace elements exchanges during fluid-rock interaction at ultraslow-spreading oceanic lithosphere: Example of the South West Indian Ridge (SWIR), Lithos, Volume 352-353 (2020), p. 105233 | DOI:10.1016/j.lithos.2019.105233
  • Rémi Magott; Olivier Fabbri; Marc Fournier Seismically-induced serpentine dehydration as a possible mechanism of water release in subduction zones. Insights from the Alpine Corsica pseudotachylyte-bearing Monte Maggiore ophiolitic unit, Lithos, Volume 362-363 (2020), p. 105474 | DOI:10.1016/j.lithos.2020.105474
  • Afifé El Korh; Marie-Christine Boiron; Damien Cividini A multi-isotope study (Fe, Ge, O) of hydrothermal alteration in the Limousin ophiolite (French Massif Central), Lithos, Volume 378-379 (2020), p. 105876 | DOI:10.1016/j.lithos.2020.105876
  • M. A. Masoud; Alaa M. Rashad; K. Sakr; M. G. Shahien; A. M. Zayed Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production, Materials and Structures, Volume 53 (2020) no. 4 | DOI:10.1617/s11527-020-01525-5
  • Suzanne Picazo; Benjamin Malvoisin; Lukas Baumgartner; Anne-Sophie Bouvier Low Temperature Serpentinite Replacement by Carbonates during Seawater Influx in the Newfoundland Margin, Minerals, Volume 10 (2020) no. 2, p. 184 | DOI:10.3390/min10020184
  • Lisa E. Mayhew; Eric T. Ellison A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 378 (2020) no. 2165, p. 20180420 | DOI:10.1098/rsta.2018.0420
  • Alice Vho; Pierre Lanari; Daniela Rubatto; Jörg Hermann Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach, Solid Earth, Volume 11 (2020) no. 2, p. 307 | DOI:10.5194/se-11-307-2020
  • LI JingChao; ZHAO Tao; LIU ZhiBo; LIN Yun; SHAO HuaSheng; YUAN GuoLi; SONG Yang The processes and influencing factors of serpentinization and associated magnetite mineralization of ultramafic rocks from Angwu area, North Tibet, Acta Petrologica Sinica, Volume 35 (2019) no. 7, p. 2158 | DOI:10.18654/1000-0569/2019.07.13
  • Yves Lagabrielle; Riccardo Asti; Serge Fourcade; Benjamin Corre; Marc Poujol; Jessica Uzel; Pierre Labaume; Camille Clerc; Romain Lafay; Suzanne Picazo; René Maury Mantle exhumation at magma-poor passive continental margins. Part I. 3D architecture and metasomatic evolution of a fossil exhumed mantle domain (Urdach lherzolite, north-western Pyrenees, France), BSGF - Earth Sciences Bulletin, Volume 190 (2019), p. 8 | DOI:10.1051/bsgf/2019007
  • Sergey A. Marakushev; Ol'ga V. Belonogova Ideas and perspectives: Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing on early Earth, Biogeosciences, Volume 16 (2019) no. 8, p. 1817 | DOI:10.5194/bg-16-1817-2019
  • Jesse Hutchinson; Honn Kao; George Spence; Koichiro Obana; Kelin Wang; Shuichi Kodaira Seismic Characteristics of the Nootka Fault Zone: Results from the Seafloor Earthquake Array Japan–Canada Cascadia Experiment (SeaJade), Bulletin of the Seismological Society of America, Volume 109 (2019) no. 6, p. 2252 | DOI:10.1785/0120190008
  • Otgonbayar Dandar; Atsushi Okamoto; Masaoki Uno; Ryosuke Oyanagi; Takayoshi Nagaya; Ulziiburen Burenjargal; Tsuyoshi Miyamoto; Noriyoshi Tsuchiya Formation of secondary olivine after orthopyroxene during hydration of mantle wedge: evidence from the Khantaishir Ophiolite, western Mongolia, Contributions to Mineralogy and Petrology, Volume 174 (2019) no. 11 | DOI:10.1007/s00410-019-1623-1
  • Morgane Gillard; Julie Tugend; Othmar Müntener; Gianreto Manatschal; Garry D. Karner; Julia Autin; Daniel Sauter; Patricio H. Figueredo; Marc Ulrich The role of serpentinization and magmatism in the formation of decoupling interfaces at magma-poor rifted margins, Earth-Science Reviews, Volume 196 (2019), p. 102882 | DOI:10.1016/j.earscirev.2019.102882
  • Elmar Albers; Timothy Schroeder; Wolfgang Bach Melt Impregnation of Mantle Peridotite Facilitates High‐Temperature Hydration and Mechanical Weakening: Implications for Oceanic Detachment Faults, Geochemistry, Geophysics, Geosystems, Volume 20 (2019) no. 1, p. 84 | DOI:10.1029/2018gc007783
  • G. Shimoda; T. Kogiso Effect of Serpentinite Dehydration in Subducting Slabs on Isotopic Diversity in Recycled Oceanic Crust and Its Role in Isotopic Heterogeneity of the Mantle, Geochemistry, Geophysics, Geosystems, Volume 20 (2019) no. 11, p. 5449 | DOI:10.1029/2019gc008336
  • Benjamin L. Melosh Fault Initiation in Serpentinite, Geochemistry, Geophysics, Geosystems, Volume 20 (2019) no. 6, p. 2626 | DOI:10.1029/2018gc008092
  • Kevin Lepot; Kenneth H. Williford; Pascal Philippot; Christophe Thomazo; Takayuki Ushikubo; Kouki Kitajima; Smaïl Mostefaoui; John W. Valley Extreme 13C-depletions and organic sulfur content argue for S-fueled anaerobic methane oxidation in 2.72 Ga old stromatolites, Geochimica et Cosmochimica Acta, Volume 244 (2019), p. 522 | DOI:10.1016/j.gca.2018.10.014
  • Benoît Quesnel; Marie-Christine Boiron; Michel Cathelineau; Laurent Truche; Thomas Rigaudier; Gérard Bardoux; Pierre Agrinier; Michel de Saint Blanquat; Emmanuel Masini; Eric C. Gaucher Nature and Origin of Mineralizing Fluids in Hyperextensional Systems: The Case of Cretaceous Mg Metasomatism in the Pyrenees, Geofluids, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/7213050
  • Jolante W. van Wijk; Samuel P. Heyman; Gary J. Axen; Patricia Persaud Nature of the crust in the northern Gulf of California and Salton Trough, Geosphere, Volume 15 (2019) no. 5, p. 1598 | DOI:10.1130/ges02082.1
  • F. Hodel; R.I.F. Trindade; M. Macouin; V.T. Meira; E.L. Dantas; M.A.P. Paixão; M. Rospabé; M.P. Castro; G.N. Queiroga; A.R. Alkmim; C.C. Lana A Neoproterozoic hyper-extended margin associated with Rodinia's demise and Gondwana's build-up: The Araguaia Belt, central Brazil, Gondwana Research, Volume 66 (2019), p. 43 | DOI:10.1016/j.gr.2018.08.010
  • Ling Chen; Limei Tang; Xiaohu Li; Yanhui Dong; Xing Yu; Weiwei Ding Geochemistry of peridotites from the Yap Trench, Western Pacific: implications for subduction zone mantle evolution, International Geology Review, Volume 61 (2019) no. 9, p. 1037 | DOI:10.1080/00206814.2018.1484305
  • I M Bhat; T Ahmad; D V Subba Rao Alteration of primary Cr-spinel mineral composition from the Suru Valley ophiolitic peridotites, Ladakh Himalaya: Their low-temperature metamorphic implications, Journal of Earth System Science, Volume 128 (2019) no. 7 | DOI:10.1007/s12040-019-1222-6
  • Afifé El Korh; Etienne Deloule; Béatrice Luais; Marie-Christine Boiron; Luc Bastian; Nathalie Vigier Lithium Behaviour and Isotope Fractionation During Fluid–Rock Interactions in Variscan Oceanic Suture Zones: Limousin Ophiolite and Ile de Groix High-pressure Terrane (France), Journal of Petrology, Volume 60 (2019) no. 10, p. 1963 | DOI:10.1093/petrology/egz060
  • Adel A. Surour Mid-ocean ridge vs. forearc and subduction settings: Clues from rodingitization of tectonic fragments in the Neoproterozoic ophiolites of the Eastern Desert, Egypt, Lithos, Volume 342-343 (2019), p. 18 | DOI:10.1016/j.lithos.2019.05.021
  • Ling Chen; Limei Tang; Xiaohu Li; Jie Zhang; Wei Wang; Zhenggang Li; Hao Wang; Xichang Wu; Fengyou Chu Ancient Melt Depletion and Metasomatic History of the Subduction Zone Mantle: Osmium Isotope Evidence of Peridotites from the Yap Trench, Western Pacific, Minerals, Volume 9 (2019) no. 12, p. 717 | DOI:10.3390/min9120717
  • Mohammad Asif Iqubal; Rachana Sharma; Kamaluddin; Sohan Jheeta Synthesis of Nucleic Acid Bases by Metal Ferrite Nanoparticles from a Single Carbon Atom Precursor Molecule: Formamide, Origins of Life and Evolution of Biospheres, Volume 49 (2019) no. 3, p. 147 | DOI:10.1007/s11084-019-09585-6
  • Qiang Sun; Yuliang Zhang; Zhihao Dong Low-Wave-Velocity and High-Electrical-Conductivity Layer of Serpentine: A Compilation, Pure and Applied Geophysics, Volume 176 (2019) no. 11, p. 4941 | DOI:10.1007/s00024-019-02218-z
  • Hamed Gamal El Dien; Zheng-Xiang Li; Youngwoo Kil; Tamer Abu-Alam Origin of arc magmatic signature: A temperature-dependent process for trace element (re)-mobilization in subduction zones, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-019-43605-9
  • Isabel Ribeiro da Costa; Frederick Joseph Wicks; Fernando J.A.S. Barriga Serpentinization at the Rainbow and Saldanha sites, Mid-Atlantic Ridge: Mineralogical, geochemical, and isotopic features, The Canadian Mineralogist, Volume 57 (2019) no. 5, p. 677 | DOI:10.3749/canmin.1900010
  • Gian Carlo Capitani; Gennaro Ventruti Ni-serpentine nanoflakes in the garnierite ore from Campello Monti (Strona Valley, Italy): Népouite with some pecoraite outlines and the processing of Ni-containing ore bodies, American Mineralogist, Volume 103 (2018) no. 4, p. 629 | DOI:10.2138/am-2018-6229
  • Maria Rosa Scicchitano; Daniela Rubatto; Jörg Hermann; Alik S. Majumdar; Andrew Putnis Oxygen isotope analysis of olivine by ion microprobe: Matrix effects and applications to a serpentinised dunite, Chemical Geology, Volume 499 (2018), p. 126 | DOI:10.1016/j.chemgeo.2018.09.020
  • Tacit Külah; Selahattin Kadir; Hülya Erkoyun; Jennifer Huggett; Eşref Atabey Occurrence of Fibrous Chrysotile and Tremolite in the Çankiri and Ankara Regions, Central Anatolia, Turkey, Clays and Clay Minerals, Volume 66 (2018) no. 2, p. 146 | DOI:10.1346/ccmn.2018.064088
  • Anne Huhta; Aulis Kärki A proposal for the definition, nomenclature, and classification of soapstones, GFF, Volume 140 (2018) no. 1, p. 38 | DOI:10.1080/11035897.2018.1432681
  • Estefania Ortiz; Masako Tominaga; Dawn Cardace; Matthew O. Schrenk; Tori M. Hoehler; Michael D. Kubo; Dale F. Rucker Geophysical Characterization of Serpentinite Hosted Hydrogeology at the McLaughlin Natural Reserve, Coast Range Ophiolite, Geochemistry, Geophysics, Geosystems, Volume 19 (2018) no. 1, p. 114 | DOI:10.1002/2017gc007001
  • GIANNI BALESTRO; ANDREA FESTA; ALESSANDRO BORGHI; DANIELE CASTELLI; MARCO GATTIGLIO; PAOLA TARTAROTTI Role of Late Jurassic intra-oceanic structural inheritance in the Alpine tectonic evolution of the Monviso meta-ophiolite Complex (Western Alps), Geological Magazine, Volume 155 (2018) no. 2, p. 233 | DOI:10.1017/s0016756817000553
  • Fei Ji; Fei Li; Jin-Yao Gao; Qiao Zhang; Wei-Feng Hao 3-D density structure of the Ross Sea basins, West Antarctica from constrained gravity inversion and their tectonic implications, Geophysical Journal International, Volume 215 (2018) no. 2, p. 1241 | DOI:10.1093/gji/ggy343
  • E. Cannaò; N. Malaspina From oceanic to continental subduction: Implications for the geochemical and redox evolution of the supra-subduction mantle, Geosphere, Volume 14 (2018) no. 6, p. 2311 | DOI:10.1130/ges01597.1
  • Maria Rosa Scicchitano; Daniela Rubatto; Jörg Hermann; Tingting Shen; José Alberto Padrón‐Navarta; Ian S. Williams; Yong‐Fei Zheng In Situ Oxygen Isotope Determination in Serpentine Minerals by Ion Microprobe: Reference Materials and Applications to Ultrahigh‐Pressure Serpentinites, Geostandards and Geoanalytical Research, Volume 42 (2018) no. 4, p. 459 | DOI:10.1111/ggr.12232
  • Abdel-Aal M. Abdel-Karim; Shehata Ali; Shaimaa A. El-Shafei Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt, International Journal of Earth Sciences, Volume 107 (2018) no. 7, p. 2337 | DOI:10.1007/s00531-018-1601-2
  • Mohamed M. Hamdy; Hamed Gamal El Dien; Mohamed A. Abd El-Wahed; Tomoaki Morishita Garnierite-bearing serpentinite from the Central Eastern Desert of Egypt: A signature of paleo-weathering in the Arabian Nubian Shield?, Journal of African Earth Sciences, Volume 146 (2018), p. 95 | DOI:10.1016/j.jafrearsci.2017.10.007
  • T. Tesei; C. W. A. Harbord; N. De Paola; C. Collettini; C. Viti Friction of Mineralogically Controlled Serpentinites and Implications for Fault Weakness, Journal of Geophysical Research: Solid Earth, Volume 123 (2018) no. 8, p. 6976 | DOI:10.1029/2018jb016058
  • Emily H.G. Cooperdock; Natalie H. Raia; Jaime D. Barnes; Daniel F. Stockli; Esther M. Schwarzenbach Tectonic origin of serpentinites on Syros, Greece: Geochemical signatures of abyssal origin preserved in a HP/LT subduction complex, Lithos, Volume 296-299 (2018), p. 352 | DOI:10.1016/j.lithos.2017.10.020
  • Kai Wu; Xing Ding; Ming-Xing Ling; Wei-dong Sun; Li-Peng Zhang; Yong-Bin Hu; Rui-Fang Huang Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions, Lithos, Volume 302-303 (2018), p. 50 | DOI:10.1016/j.lithos.2017.12.019
  • Geoffrey Aertgeerts; Jean Pierre Lorand; Christophe Monnier; Carole La Petrogenesis of South Armorican serpentinized peridotites, Lithos, Volume 314-315 (2018), p. 100 | DOI:10.1016/j.lithos.2018.05.013
  • S. Escario; M. Godard; P. Gouze; R. Leprovost Experimental study of the effects of solute transport on reaction paths during incipient serpentinization, Lithos, Volume 323 (2018), p. 191 | DOI:10.1016/j.lithos.2018.09.020
  • Martin Hovland; Håkon Rueslåtten; Hans Konrad Johnsen Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: A review Part 1: Towards a new understanding, Marine and Petroleum Geology, Volume 92 (2018), p. 987 | DOI:10.1016/j.marpetgeo.2017.12.029
  • Lihui Jia; Fancong Meng; Huibin Feng The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai-Tibet Plateau—crustal relics of the Paleo-Tethys ocean, Mineralogy and Petrology, Volume 112 (2018) no. 3, p. 317 | DOI:10.1007/s00710-017-0544-9
  • Cecilia Viti; Cristiano Collettini; Telemaco Tesei; Matthew S. Tarling; Steven A.F. Smith Deformation Processes, Textural Evolution and Weakening in Retrograde Serpentinites, Minerals, Volume 8 (2018) no. 6, p. 241 | DOI:10.3390/min8060241
  • Bénédicte Ménez; Céline Pisapia; Muriel Andreani; Frédéric Jamme; Quentin P. Vanbellingen; Alain Brunelle; Laurent Richard; Paul Dumas; Matthieu Réfrégiers Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere, Nature, Volume 564 (2018) no. 7734, p. 59 | DOI:10.1038/s41586-018-0684-z
  • Marie Catherine Sforna; Daniele Brunelli; Céline Pisapia; Valerio Pasini; Daniele Malferrari; Bénédicte Ménez Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust, Nature Communications, Volume 9 (2018) no. 1 | DOI:10.1038/s41467-018-07385-6
  • Michele Zucali; Nicoletta Marinoni; Valeria Diella; Alessandro Croce; Caterina Rinaudo; Emanuele Fontana Deciphering the tectonic-geodynamic context of the gem-quality “noble serpentine” deposit formation combining microstructural, chemical and micro-Raman analyses in Palaeozoic olivine-bearing marbles and serpentine-hosting rocks (Pizzo Tremogge, Margna unit – Austroalpine, Val Malenco – Central Alps, Italy), Ore Geology Reviews, Volume 92 (2018), p. 257 | DOI:10.1016/j.oregeorev.2017.11.020
  • D. Pedreira; J. A. Pulgar; J. Díaz; J. L. Alonso; J. Gallastegui; A. Teixell Comment on “Reconstruction of the Exhumed Mantle Across the North Iberian Margin by Crustal‐Scale 3‐D Gravity Inversion and Geological Cross Section” by Pedrera et al., Tectonics, Volume 37 (2018) no. 11, p. 4338 | DOI:10.1029/2018tc005129
  • Tao Zhang; Jinyao Gao; Min Xu; Zhongyan Shen; Zhaocai Wu Thickness of extrusive basalts dominating the magnetic structure along the ultraslow-spreading Mohns Ridge axis (71.8°–73.7°N), Tectonophysics, Volume 742-743 (2018), p. 1 | DOI:10.1016/j.tecto.2018.05.009
  • Jaime D. Barnes; Craig E. Manning; Marco Scambelluri; Jane Selverstone The Behavior of Halogens During Subduction-Zone Processes, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes (2018), p. 545 | DOI:10.1007/978-3-319-61667-4_8
  • Mohamed M. Hamdy; Hamed M. Gamal El Dien Nature of serpentinization and carbonation of ophiolitic peridotites (Eastern Desert, Egypt): constrains from stable isotopes and whole-rock geochemistry, Arabian Journal of Geosciences, Volume 10 (2017) no. 19 | DOI:10.1007/s12517-017-3215-6
  • Biswajit Ghosh; Tomoaki Morishita; Jyotisankar Ray; Akihiro Tamura; Tomoyuki Mizukami; Yusuke Soda; Thungyani N. Ovung A new occurrence of titanian (hydro)andradite from the Nagaland ophiolite, India: Implications for element mobility in hydrothermal environments, Chemical Geology, Volume 457 (2017), p. 47 | DOI:10.1016/j.chemgeo.2017.03.012
  • Fiona Elizabeth Mothersole; Katy Evans; B. Ronald Frost Abyssal and hydrated mantle wedge serpentinised peridotites: a comparison of the 1520N fracture zone and New Caledonia serpentinites, Contributions to Mineralogy and Petrology, Volume 172 (2017) no. 8 | DOI:10.1007/s00410-017-1381-x
  • I. DeFelipe; D. Pedreira; J. A. Pulgar; E. Iriarte; M. Mendia Mantle exhumation and metamorphism in the Basque‐Cantabrian Basin (NSpain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North‐Pyrenean Zone (Urdach and Lherz), Geochemistry, Geophysics, Geosystems, Volume 18 (2017) no. 2, p. 631 | DOI:10.1002/2016gc006690
  • Ping-Ping Liu; Fang-Zhen Teng; Henry J.B. Dick; Mei-Fu Zhou; Sun-Lin Chung Magnesium isotopic composition of the oceanic mantle and oceanic Mg cycling, Geochimica et Cosmochimica Acta, Volume 206 (2017), p. 151 | DOI:10.1016/j.gca.2017.02.016
  • Hélène Pilorgé; Bruno Reynard; Laurent Remusat; Sylvie Le Floch; Gilles Montagnac; Hervé Cardon D/H diffusion in serpentine, Geochimica et Cosmochimica Acta, Volume 211 (2017), p. 355 | DOI:10.1016/j.gca.2017.05.022
  • Andrew J. Luhmann; Benjamin M. Tutolo; Brian C. Bagley; David F.R. Mildner; Peter P. Scheuermann; Joshua M. Feinberg; Konstantin Ignatyev; William E. Seyfried Chemical and physical changes during seawater flow through intact dunite cores: An experimental study at 150–200 °C, Geochimica et Cosmochimica Acta, Volume 214 (2017), p. 86 | DOI:10.1016/j.gca.2017.07.020
  • Ruifang Huang; Chiou-Ting Lin; Weidong Sun; Xing Ding; Wenhuan Zhan; Jihao Zhu The production of iron oxide during peridotite serpentinization: Influence of pyroxene, Geoscience Frontiers, Volume 8 (2017) no. 6, p. 1311 | DOI:10.1016/j.gsf.2017.01.001
  • Pauline Chenin; Gianreto Manatschal; Suzanne Picazo; Othmar Müntener; Garry Karner; Christopher Johnson; Marc Ulrich Influence of the architecture of magma-poor hyperextended rifted margins on orogens produced by the closure of narrow versus wide oceans, Geosphere, Volume 13 (2017) no. 2, p. 559 | DOI:10.1130/ges01363.1
  • Influence of temperature, pressure, and fluid salinity on the distribution of chlorine into serpentine minerals, Journal of Asian Earth Sciences, Volume 140 (2017), p. 82 | DOI:10.1016/j.jseaes.2017.03.015
  • Ruifang Huang; Weidong Sun; Wenhuan Zhan; Xing Ding; Jihao Zhu; Jiqiang Liu Influence of temperature, pressure, and fluid salinity on the distribution of chlorine into serpentine minerals, Journal of Asian Earth Sciences, Volume 145 (2017), p. 101 | DOI:10.1016/j.jseaes.2017.04.022
  • Ruifang Huang; Maoshuang Song; Xing Ding; Sanyuan Zhu; Wenhuan Zhan; Weidong Sun Influence of pyroxene and spinel on the kinetics of peridotite serpentinization, Journal of Geophysical Research: Solid Earth, Volume 122 (2017) no. 9, p. 7111 | DOI:10.1002/2017jb014231
  • Yann SONZOGNI; Allan H. TREIMAN; Susanne P. SCHWENZER Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California, Journal of Mineralogical and Petrological Sciences, Volume 112 (2017) no. 2, p. 59 | DOI:10.2465/jmps.160509
  • Peng-Fei Zhang; Mei-Fu Zhou; Ben-Xun Su; Ibrahim Uysal; Paul T. Robinson; Erdi Avcı; Yong-Sheng He Iron isotopic fractionation and origin of chromitites in the paleo-Moho transition zone of the Kop ophiolite, NE Turkey, Lithos, Volume 268-271 (2017), p. 65 | DOI:10.1016/j.lithos.2016.10.019
  • Romain Lafay; Lukas P. Baumgartner; Schwartz Stephane; Picazo Suzanne; Montes-Hernandez German; Vennemann Torsten Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophicalcites, Western Alps, France): Processes of carbonate cementation, Lithos, Volume 294-295 (2017), p. 319 | DOI:10.1016/j.lithos.2017.10.006
  • Luca Toffolo; Paolo Nimis; Silvana Martin; Simone Tumiati; Wolfgang Bach The Cogne magnetite deposit (Western Alps, Italy): A Late Jurassic seafloor ultramafic-hosted hydrothermal system?, Ore Geology Reviews, Volume 83 (2017), p. 103 | DOI:10.1016/j.oregeorev.2016.11.030
  • F. Hodel; M. Macouin; A. Triantafyllou; J. Carlut; J. Berger; S. Rousse; N. Ennih; R.I.F. Trindade Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Anti-Atlas, Morocco), Precambrian Research, Volume 300 (2017), p. 151 | DOI:10.1016/j.precamres.2017.08.005
  • Alicja M. Lacinska; Michael T. Styles; Keith Bateman; Doris Wagner; Matthew R. Hall; Charles Gowing; Paul D. Brown Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralisation, Chemical Geology, Volume 437 (2016), p. 153 | DOI:10.1016/j.chemgeo.2016.05.015
  • Esther M. Schwarzenbach; Mark J. Caddick; James S. Beard; Robert J. Bodnar Serpentinization, element transfer, and the progressive development of zoning in veins: evidence from a partially serpentinized harzburgite, Contributions to Mineralogy and Petrology, Volume 171 (2016) no. 1 | DOI:10.1007/s00410-015-1219-3
  • John W. Jamieson; Sven Petersen; Wolfgang Bach Hydrothermalism, Encyclopedia of Marine Geosciences (2016), p. 344 | DOI:10.1007/978-94-007-6238-1_15
  • Salah A. Al-Khirbash Geology, mineralogy, and geochemistry of low grade Ni-lateritic soil (Oman Mountains, Oman), Geochemistry, Volume 76 (2016) no. 3, p. 363 | DOI:10.1016/j.chemer.2016.08.002
  • Alistair J. Harding; Adrien F. Arnulf; Donna K. Blackman Velocity structure near IODP Hole U1309D, Atlantis Massif, from waveform inversion of streamer data and borehole measurements, Geochemistry, Geophysics, Geosystems, Volume 17 (2016) no. 6, p. 1990 | DOI:10.1002/2016gc006312
  • D. Bonnemains; J. Carlut; J. Escartín; C. Mével; M. Andreani; B. Debret Magnetic signatures of serpentinization at ophiolite complexes, Geochemistry, Geophysics, Geosystems, Volume 17 (2016) no. 8, p. 2969 | DOI:10.1002/2016gc006321
  • Romain Lafay; German Montes-Hernandez; Emilie Janots; Manuel Munoz; Anne Line Auzende; Antoine Gehin; Rodica Chiriac; Olivier Proux Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems, Geochimica et Cosmochimica Acta, Volume 179 (2016), p. 177 | DOI:10.1016/j.gca.2016.02.014
  • Benoît Quesnel; Philippe Boulvais; Pierre Gautier; Michel Cathelineau; Cédric M. John; Malorie Dierick; Pierre Agrinier; Maxime Drouillet Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe, Geochimica et Cosmochimica Acta, Volume 183 (2016), p. 234 | DOI:10.1016/j.gca.2016.03.021
  • E. Cannaò; M. Scambelluri; S. Agostini; S. Tonarini; M. Godard Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy), Geochimica et Cosmochimica Acta, Volume 190 (2016), p. 115 | DOI:10.1016/j.gca.2016.06.034
  • Jie Zhang; Jiabiao Li; Aiguo Ruan; Zhenli Wu; Zhiteng Yu; Xiongwei Niu; Weiwei Ding The velocity structure of a fossil spreading centre in the Southwest Sub‐basin, South China Sea, Geological Journal, Volume 51 (2016) no. S1, p. 548 | DOI:10.1002/gj.2778
  • N. Mohammadi; H. Ahmadipour; D. R. Lentz; H. Shafaii Moghadam Emplacement of serpentinites in the Chohar Gonbad-Gugher-Baft ophiolitic mélange, southeast Iran: examination of the mineral–chemical, petrologic, and structural features, International Journal of Earth Sciences, Volume 105 (2016) no. 2, p. 537 | DOI:10.1007/s00531-015-1187-x
  • Basile Kotschoubey; Raimundo Netuno Villas; Benevides Aires Chloritites of the Tocantins Group, Araguaia fold belt, central-northern Brazil: Vestiges of basaltic magmatism and metallogenetic implications, Journal of South American Earth Sciences, Volume 69 (2016), p. 171 | DOI:10.1016/j.jsames.2016.04.001
  • Carl Frisby; Michael Bizimis; Soumen Mallick Seawater-derived rare earth element addition to abyssal peridotites during serpentinization, Lithos, Volume 248-251 (2016), p. 432 | DOI:10.1016/j.lithos.2016.01.025
  • Fabio Carmelo Manuella; Luisa Ottolini; Serafina Carbone; Lidia Scavo Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: new contributions from Hyblean peridotite xenoliths (southeastern Sicily), Lithos, Volume 264 (2016), p. 405 | DOI:10.1016/j.lithos.2016.09.010
  • Gwenn Peron-Pinvidic; Per Terje Osmundsen Architecture of the distal and outer domains of the Mid-Norwegian rifted margin: Insights from the Rån-Gjallar ridges system, Marine and Petroleum Geology, Volume 77 (2016), p. 280 | DOI:10.1016/j.marpetgeo.2016.06.014
  • Md. Asif Iqubal; Rachana Sharma; Kamaluddin Kamaluddin Surface interaction of ribonucleic acid constituents with spinel ferrite nanoparticles: a prebiotic chemistry experiment, RSC Advances, Volume 6 (2016) no. 73, p. 68574 | DOI:10.1039/c6ra12247g
  • Ruifang Huang; Weidong Sun; Jinzhong Liu; Xing Ding; Shaobang Peng; Wenhuan Zhan The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep33821
  • Cristina Malatesta; Taras Gerya; Laura Crispini; Laura Federico; Giovanni Capponi Interplate deformation at early‐stage oblique subduction: 3‐D thermomechanical numerical modeling, Tectonics, Volume 35 (2016) no. 7, p. 1610 | DOI:10.1002/2016tc004139
  • Eugene G. Grosch; Robert M. Hazen Microbes, Mineral Evolution, and the Rise of Microcontinents—Origin and Coevolution of Life with Early Earth, Astrobiology, Volume 15 (2015) no. 10, p. 922 | DOI:10.1089/ast.2015.1302
  • C. Konn; J.L. Charlou; N.G. Holm; O. Mousis The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge, Astrobiology, Volume 15 (2015) no. 5, p. 381 | DOI:10.1089/ast.2014.1198
  • Anne-Line Auzende; Javier Escartin; Nicolas P. Walte; Stéphane Guillot; Greg Hirth; Daniel J. Frost Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks, Earth and Planetary Science Letters, Volume 411 (2015), p. 229 | DOI:10.1016/j.epsl.2014.11.053
  • Benjamin Malvoisin Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical, Earth and Planetary Science Letters, Volume 430 (2015), p. 75 | DOI:10.1016/j.epsl.2015.07.043
  • J. W. Jamieson; S. Petersen; W. Bach Hydrothermalism, Encyclopedia of Marine Geosciences (2015), p. 1 | DOI:10.1007/978-94-007-6644-0_15-1
  • Marco Maffione; Cedric Thieulot; Douwe J. J. van Hinsbergen; Antony Morris; Oliver Plümper; Wim Spakman Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra‐subduction zone ophiolites, Geochemistry, Geophysics, Geosystems, Volume 16 (2015) no. 6, p. 1753 | DOI:10.1002/2015gc005746
  • W.E. Seyfried; Nicholas J. Pester; Benjamin M. Tutolo; Kang Ding The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes, Geochimica et Cosmochimica Acta, Volume 163 (2015), p. 59 | DOI:10.1016/j.gca.2015.04.040
  • Ricky C. Salapare; Carla B. Dimalanta; Noelynna T. Ramos; Pearlyn C. Manalo; Decibel V. Faustino-Eslava; Karlo L. Queaño; Graciano P. Yumul Upper crustal structure beneath the Zambales Ophiolite Complex, Luzon, Philippines inferred from integrated gravity, magnetic and geological data, Geophysical Journal International, Volume 201 (2015) no. 3, p. 1522 | DOI:10.1093/gji/ggv094
  • Ling Chen; Feng-You Chu; Ji-Hao Zhu; Yan-Hui Dong; Xing Yu; Zheng-Gang Li; Li-Mei Tang Major and trace elements of abyssal peridotites: evidence for melt refertilization beneath the ultraslow-spreading Southwest Indian Ridge (53° E segment), International Geology Review, Volume 57 (2015) no. 13, p. 1715 | DOI:10.1080/00206814.2015.1029014
  • K.A. Evans; R. Powell The effect of subduction on the sulphur, carbon and redox budget of lithospheric mantle, Journal of Metamorphic Geology, Volume 33 (2015) no. 6, p. 649 | DOI:10.1111/jmg.12140
  • Erin E. Roehrig; Daniel A. Laó-Dávila; Amy L. Wolfe Serpentinization history of the Río Guanajibo serpentinite body, Puerto Rico, Journal of South American Earth Sciences, Volume 62 (2015), p. 195 | DOI:10.1016/j.jsames.2015.06.004
  • I. Fanlo; F. Gervilla; V. Colás; I. Subías Zn-, Mn- and Co-rich chromian spinels from the Bou-Azzer mining district (Morocco): Constraints on their relationship with the mineralizing process, Ore Geology Reviews, Volume 71 (2015), p. 82 | DOI:10.1016/j.oregeorev.2015.05.006
  • RuiFang Huang; WeiDong Sun; Xing Ding; JinZhong Liu; ShaoBang Peng Olivine versus peridotite during serpentinization: Gas formation, Science China Earth Sciences, Volume 58 (2015) no. 12, p. 2165 | DOI:10.1007/s11430-015-5222-3
  • Kai Su; QingSong Liu; ZhaoXia Jiang; ZongQi Duan Mechanism of magnetic property changes of serpentinites from ODP Holes 897D and 1070A, Science China Earth Sciences, Volume 58 (2015) no. 5, p. 815 | DOI:10.1007/s11430-014-5019-9
  • Stéphane Guillot; Stéphane Schwartz; Bruno Reynard; Philippe Agard; Cécile Prigent Tectonic significance of serpentinites, Tectonophysics, Volume 646 (2015), p. 1 | DOI:10.1016/j.tecto.2015.01.020
  • D. Ould Moctar; A. Boushaba; M. Dubois Serpentinization of mantle formations in the Mauritanides Belt: regions of Agane and Gouérarate (middle-western Mauritania), Arabian Journal of Geosciences, Volume 7 (2014) no. 5, p. 1985 | DOI:10.1007/s12517-013-0947-9
  • Esther M. Schwarzenbach; Esteban Gazel; Mark J. Caddick Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages, Contributions to Mineralogy and Petrology, Volume 168 (2014) no. 5 | DOI:10.1007/s00410-014-1079-2
  • Carl Spandler; Thomas Pettke; Joerg Hermann Experimental study of trace element release during ultrahigh-pressure serpentinite dehydration, Earth and Planetary Science Letters, Volume 391 (2014), p. 296 | DOI:10.1016/j.epsl.2014.02.010
  • Baptiste Debret; Muriel Andreani; Manuel Muñoz; Nathalie Bolfan-Casanova; Julie Carlut; Christian Nicollet; Stéphane Schwartz; Nicolas Trcera Evolution of Fe redox state in serpentine during subduction, Earth and Planetary Science Letters, Volume 400 (2014), p. 206 | DOI:10.1016/j.epsl.2014.05.038
  • Delphine Veys-Renaux; Emmanuel Rocca; Julien Martin; Gérard Henrion Initial stages of AZ91 Mg alloy micro-arc anodizing: Growth mechanisms and effect on the corrosion resistance, Electrochimica Acta, Volume 124 (2014), p. 36 | DOI:10.1016/j.electacta.2013.08.023
  • Marco Maffione; Antony Morris; Oliver Plümper; Douwe J. J. van Hinsbergen Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes, Geochemistry, Geophysics, Geosystems, Volume 15 (2014) no. 4, p. 923 | DOI:10.1002/2013gc004993
  • Jason Harvey; Ivan P. Savov; Samuele Agostini; Robert A. Cliff; Richard Walshaw Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209, Geochimica et Cosmochimica Acta, Volume 126 (2014), p. 30 | DOI:10.1016/j.gca.2013.10.035
  • Elodie Amiguet; Bertrand Van De Moortèle; Patrick Cordier; Nadège Hilairet; Bruno Reynard Deformation mechanisms and rheology of serpentines in experiments and in nature, Journal of Geophysical Research: Solid Earth, Volume 119 (2014) no. 6, p. 4640 | DOI:10.1002/2013jb010791
  • Vincenzo Perrone; Sonia Perrotta; Kathleen Marsaglia; Angelida Di Staso; Valentina Tiberi The Oligocene ophiolite-derived breccias and sandstones of the Val Marecchia Nappe: Insights for paleogeography and evolution of Northern Apennines (Italy), Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 394 (2014), p. 128 | DOI:10.1016/j.palaeo.2013.11.024
  • XianBin Wang; ZiYuan Ouyang; ShengGuang Zhuo; MingFeng Zhang; GuoDong Zheng; YongLi Wang Serpentinization, abiogenic organic compounds, and deep life, Science China Earth Sciences, Volume 57 (2014) no. 5, p. 878 | DOI:10.1007/s11430-014-4821-8
  • D. Veys-Renaux; C.-E. Barchiche; E. Rocca Corrosion behavior of AZ91 Mg alloy anodized by low-energy micro-arc oxidation: Effect of aluminates and silicates, Surface and Coatings Technology, Volume 251 (2014), p. 232 | DOI:10.1016/j.surfcoat.2014.04.031
  • Manuele Faccenda Water in the slab: A trilogy, Tectonophysics, Volume 614 (2014), p. 1 | DOI:10.1016/j.tecto.2013.12.020
  • R.W. Luth Volatiles in Earth's Mantle, Treatise on Geochemistry (2014), p. 355 | DOI:10.1016/b978-0-08-095975-7.00207-2
  • Romain Lafay; Fabien Deschamps; Stéphane Schwartz; Stéphane Guillot; Marguerite Godard; Baptiste Debret; Christian Nicollet High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps, Chemical Geology, Volume 343 (2013), p. 38 | DOI:10.1016/j.chemgeo.2013.02.008
  • Esther M. Schwarzenbach; Gretchen L. Früh-Green; Stefano M. Bernasconi; Jeffrey C. Alt; Alessio Plas Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems, Chemical Geology, Volume 351 (2013), p. 115 | DOI:10.1016/j.chemgeo.2013.05.016
  • Baptiste Debret; Muriel Andreani; Marguerite Godard; Christian Nicollet; Stéphane Schwartz; Romain Lafay Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps), Chemical Geology, Volume 357 (2013), p. 117 | DOI:10.1016/j.chemgeo.2013.08.025
  • Romain Lafay; German Montes‐Hernandez; Emilie Janots; Rodica Chiriac; Nathaniel Findling; François Toche Nucleation and Growth of Chrysotile Nanotubes in H2SiO3/MgCl2/NaOH Medium at 90 to 300 °C, Chemistry – A European Journal, Volume 19 (2013) no. 17, p. 5417 | DOI:10.1002/chem.201204105
  • Florian Perez; Claude Mügler; Philippe Jean-Baptiste; Jean Luc Charlou Coupled modeling of thermics and hydrogeology with the Cast3M code: application to the Rainbow hydrothermal field (Mid-Atlantic Ridge, 36°14′N), Computational Geosciences, Volume 17 (2013) no. 2, p. 217 | DOI:10.1007/s10596-012-9327-x
  • Marguerite Godard; Linda Luquot; Muriel Andreani; Philippe Gouze Incipient hydration of mantle lithosphere at ridges: A reactive-percolation experiment, Earth and Planetary Science Letters, Volume 371-372 (2013), p. 92 | DOI:10.1016/j.epsl.2013.03.052
  • B. DEBRET; C. NICOLLET; M. ANDREANI; S. SCHWARTZ; M. GODARD Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif – Western Alps), Journal of Metamorphic Geology, Volume 31 (2013) no. 2, p. 165 | DOI:10.1111/jmg.12008
  • K.A. Evans; R. Powell; B.R. Frost Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites, Lithos, Volume 168-169 (2013), p. 67 | DOI:10.1016/j.lithos.2013.01.016
  • Jaime D. Barnes; Rania Eldam; Cin-Ty A. Lee; Jessica C. Errico; Staci Loewy; Miguel Cisneros Petrogenesis of serpentinites from the Franciscan Complex, western California, USA, Lithos, Volume 178 (2013), p. 143 | DOI:10.1016/j.lithos.2012.12.018
  • M. Andreani; M. Muñoz; C. Marcaillou; A. Delacour μXANES study of iron redox state in serpentine during oceanic serpentinization, Lithos, Volume 178 (2013), p. 70 | DOI:10.1016/j.lithos.2013.04.008
  • Valerio Pasini; Daniele Brunelli; Paul Dumas; Christophe Sandt; Joni Frederick; Karim Benzerara; Sylvain Bernard; Bénédicte Ménez Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge, Lithos, Volume 178 (2013), p. 84 | DOI:10.1016/j.lithos.2013.06.014
  • Fabien Deschamps; Marguerite Godard; Stéphane Guillot; Kéiko Hattori Geochemistry of subduction zone serpentinites: A review, Lithos, Volume 178 (2013), p. 96 | DOI:10.1016/j.lithos.2013.05.019
  • Wolfgang Bach; Niels Jöns; Frieder Klein Metasomatism Within the Ocean Crust, Metasomatism and the Chemical Transformation of Rock (2013), p. 253 | DOI:10.1007/978-3-642-28394-9_8
  • F. C. Manuella Can nanodiamonds grow in serpentinite-hosted hydrothermal systems? A theoretical modelling study, Mineralogical Magazine, Volume 77 (2013) no. 8, p. 3163 | DOI:10.1180/minmag.2013.077.8.10
  • Marcello Mellini Structure and microstructure of serpentine minerals, Minerals at the Nanoscale (2013), p. 153 | DOI:10.1180/emu-notes.14.5
  • G. Diego Gatta; Marco Merlini; Giovanni Valdrè; Hanns-Peter Liermann; Gwilherm Nénert; André Rothkirch; Volker Kahlenberg; Alessandro Pavese On the crystal structure and compressional behavior of talc: a mineral of interest in petrology and material science, Physics and Chemistry of Minerals, Volume 40 (2013) no. 2, p. 145 | DOI:10.1007/s00269-012-0554-4
  • Sediment and basement contact coring (2012) | DOI:10.2204/iodp.proc.336.106.2012
  • Petra Herms; Timm John; Ronald J. Bakker; Volker Schenk Evidence for channelized external fluid flow and element transfer in subducting slabs (Raspas Complex, Ecuador), Chemical Geology, Volume 310-311 (2012), p. 79 | DOI:10.1016/j.chemgeo.2012.03.023
  • Fabien Deschamps; Marguerite Godard; Stéphane Guillot; Catherine Chauvel; Muriel Andreani; Kéiko Hattori; Bernd Wunder; Lydéric France Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic, Chemical Geology, Volume 312-313 (2012), p. 93 | DOI:10.1016/j.chemgeo.2012.04.009
  • Elodie Amiguet; Bruno Reynard; Razvan Caracas; Bertrand Van de Moortèle; Nadège Hilairet; Yanbin Wang Creep of phyllosilicates at the onset of plate tectonics, Earth and Planetary Science Letters, Volume 345-348 (2012), p. 142 | DOI:10.1016/j.epsl.2012.06.033
  • K.A. Evans The redox budget of subduction zones, Earth-Science Reviews, Volume 113 (2012) no. 1-2, p. 11 | DOI:10.1016/j.earscirev.2012.03.003
  • N. Augustin; H. Paulick; K. S. Lackschewitz; A. Eisenhauer; D. Garbe‐Schönberg; T. Kuhn; R. Botz; M. Schmidt Alteration at the ultramafic‐hosted Logatchev hydrothermal field: Constraints from trace element and Sr‐O isotope data, Geochemistry, Geophysics, Geosystems, Volume 13 (2012) no. 3 | DOI:10.1029/2011gc003903
  • Zhigang Zeng; Qiaoyun Wang; Xiaomei Wang; Shuai Chen; Xuebo Yin; Zhaoxue Li Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65°E: Implications for magma source and seawater alteration, Journal of Earth System Science, Volume 121 (2012) no. 5, p. 1317 | DOI:10.1007/s12040-012-0229-z
  • Leonid N. Germanovich; Gence Genc; Robert P. Lowell; Peter A. Rona Deformation and surface uplift associated with serpentinization at mid‐ocean ridges and subduction zones, Journal of Geophysical Research: Solid Earth, Volume 117 (2012) no. B7 | DOI:10.1029/2012jb009372
  • János Kodolányi; Thomas Pettke; Carl Spandler; Balz S. Kamber; Katalin Gméling Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones, Journal of Petrology, Volume 53 (2012) no. 2, p. 235 | DOI:10.1093/petrology/egr058
  • Cristina Malatesta; Taras Gerya; Marco Scambelluri; Laura Federico; Laura Crispini; Giovanni Capponi Intraoceanic subduction of “heterogeneous” oceanic lithosphere in narrow basins: 2D numerical modeling, Lithos, Volume 140-141 (2012), p. 234 | DOI:10.1016/j.lithos.2012.01.003
  • Emily C. Pope; Dennis K. Bird; Minik T. Rosing Isotope composition and volume of Earth’s early oceans, Proceedings of the National Academy of Sciences, Volume 109 (2012) no. 12, p. 4371 | DOI:10.1073/pnas.1115705109
  • Ömer Ündül; Atiye Tuğrul The Influence of Weathering on the Engineering Properties of Dunites, Rock Mechanics and Rock Engineering, Volume 45 (2012) no. 2, p. 225 | DOI:10.1007/s00603-011-0174-1
  • Yousif Osman Mohammad Serpentinites and their tectonic signature along the Northwest Zagros Thrust Zone, Kurdistan Region, Iraq, Arabian Journal of Geosciences, Volume 4 (2011) no. 1-2, p. 69 | DOI:10.1007/s12517-009-0080-y
  • K. Schmidt; D. Garbe-Schönberg; A. Koschinsky; H. Strauss; C.L. Jost; V. Klevenz; P. Königer Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): Constraints on fluid–rock interaction in heterogeneous lithosphere, Chemical Geology, Volume 280 (2011) no. 1-2, p. 1 | DOI:10.1016/j.chemgeo.2010.07.008
  • C. Marcaillou; M. Muñoz; O. Vidal; T. Parra; M. Harfouche Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar, Earth and Planetary Science Letters, Volume 303 (2011) no. 3-4, p. 281 | DOI:10.1016/j.epsl.2011.01.006
  • Timm John; Marco Scambelluri; Matthias Frische; Jaime D. Barnes; Wolfgang Bach Dehydration of subducting serpentinite: Implications for halogen mobility in subduction zones and the deep halogen cycle, Earth and Planetary Science Letters, Volume 308 (2011) no. 1-2, p. 65 | DOI:10.1016/j.epsl.2011.05.038
  • C. KONN; D. TESTEMALE; J. QUERELLOU; N. G. HOLM; J. L. CHARLOU New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids, Geobiology, Volume 9 (2011) no. 1, p. 79 | DOI:10.1111/j.1472-4669.2010.00260.x
  • W.E. Seyfried; Nicholas J. Pester; Kang Ding; Mikaella Rough Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes, Geochimica et Cosmochimica Acta, Volume 75 (2011) no. 6, p. 1574 | DOI:10.1016/j.gca.2011.01.001
  • YUMIKO HARIGANE; KATSUYOSHI MICHIBAYASHI; YASUHIKO OHARA Relicts of deformed lithospheric mantle within serpentinites and weathered peridotites from the Godzilla Megamullion, Parece Vela Back‐arc Basin, Philippine Sea, Island Arc, Volume 20 (2011) no. 2, p. 174 | DOI:10.1111/j.1440-1738.2011.00759.x
  • K.A. Cutts; M. Hand; D.E. Kelsey; R.A. Strachan P – T constraints and timing of Barrovian metamorphism in the Shetland Islands, Scottish Caledonides: implications for the structural setting of the Unst ophiolite, Journal of the Geological Society, Volume 168 (2011) no. 6, p. 1265 | DOI:10.1144/0016-76492010-165
  • Á.S. Dias; G.L. Früh-Green; S.M. Bernasconi; F.J.A.S. Barriga Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field, Marine Geology, Volume 279 (2011) no. 1-4, p. 128 | DOI:10.1016/j.margeo.2010.10.017
  • Tamara Worzewski; Marion Jegen; Heidrun Kopp; Heinrich Brasse; Waldo Taylor Castillo Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone, Nature Geoscience, Volume 4 (2011) no. 2, p. 108 | DOI:10.1038/ngeo1041
  • Franck Lartaud; Crispin T. S. Little; Marc de Rafelis; Germain Bayon; Jerome Dyment; Benoit Ildefonse; Vincent Gressier; Yves Fouquet; Françoise Gaill; Nadine Le Bris Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages, Proceedings of the National Academy of Sciences, Volume 108 (2011) no. 19, p. 7698 | DOI:10.1073/pnas.1009383108
  • JiaSong Fang; Li Zhang Exploring the deep biosphere, Science China Earth Sciences, Volume 54 (2011) no. 2, p. 157 | DOI:10.1007/s11430-010-4148-z
  • Fabien Deschamps; Stéphane Guillot; Marguerite Godard; Muriel Andreani; Kéiko Hattori Serpentinites act as sponges for fluid‐mobile elements in abyssal and subduction zone environments, Terra Nova, Volume 23 (2011) no. 3, p. 171 | DOI:10.1111/j.1365-3121.2011.00995.x
  • Fabien Deschamps; Stéphane Guillot; Marguerite Godard; Catherine Chauvel; Muriel Andreani; Kéiko Hattori In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones, Chemical Geology, Volume 269 (2010) no. 3-4, p. 262 | DOI:10.1016/j.chemgeo.2009.10.002
  • Á.S. Dias; R.A. Mills; I. Ribeiro da Costa; R. Costa; R.N. Taylor; M.J. Cooper; F.J.A.S. Barriga Tracing fluid–rock reaction and hydrothermal circulation at the Saldanha hydrothermal field, Chemical Geology, Volume 273 (2010) no. 3-4, p. 168 | DOI:10.1016/j.chemgeo.2010.02.020
  • Mohamed Zaki Khedr; Shoji Arai Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: evidence from the Happo-O’ne metaperidotites (Japan), Contributions to Mineralogy and Petrology, Volume 159 (2010) no. 2, p. 137 | DOI:10.1007/s00410-009-0420-7
  • Bernd Wunder; Fabien Deschamps; Anke Watenphul; Stéphane Guillot; Anette Meixner; Rolf L. Romer; Richard Wirth The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation, Contributions to Mineralogy and Petrology, Volume 159 (2010) no. 6, p. 781 | DOI:10.1007/s00410-009-0454-x
  • Jean Luc Charlou; Jean Pierre Donval; Cécile Konn; Hélène Ondréas; Yves Fouquet; Philippe Jean-Baptiste; Elise Fourré High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, Volume 188 (2010), p. 265 | DOI:10.1029/2008gm000752
  • W. E. Seyfried; Nicholas Pester; Qi Fu Phase equilibria controls on the chemistry of vent fluids from hydrothermal systems on slow spreading ridges: Reactivity of plagioclase and olivine solid solutions and the pH-silica connection, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, Volume 188 (2010), p. 297 | DOI:10.1029/2009gm000854
  • Ken-ichi Hirauchi; Ikuo Katayama; Seiichiro Uehara; Masaaki Miyahara; Yasuhiro Takai Inhibition of subduction thrust earthquakes by low-temperature plastic flow in serpentine, Earth and Planetary Science Letters, Volume 295 (2010) no. 3-4, p. 349 | DOI:10.1016/j.epsl.2010.04.007
  • Franck Lartaud; Marc de Rafelis; Graham Oliver; Elena Krylova; Jérôme Dyment; Benoît Ildefonse; Remy Thibaud; Pascal Gente; Eva Hoisé; Anne‐Leïla Meistertzheim; Yves Fouquet; Françoise Gaill; Nadine Le Bris Fossil clams from a serpentinite‐hosted sedimented vent field near the active smoker complex Rainbow, MAR, 36°13′N: Insight into the biogeography of vent fauna, Geochemistry, Geophysics, Geosystems, Volume 11 (2010) no. 8 | DOI:10.1029/2010gc003079
  • Ralf Halama; Gray E. Bebout; Timm John; Volker Schenk Nitrogen recycling in subducted oceanic lithosphere: The record in high- and ultrahigh-pressure metabasaltic rocks, Geochimica et Cosmochimica Acta, Volume 74 (2010) no. 5, p. 1636 | DOI:10.1016/j.gca.2009.12.003
  • Françoise Boudier; Alain Baronnet; David Mainprice Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite, Journal of Petrology, Volume 51 (2010) no. 1-2, p. 495 | DOI:10.1093/petrology/egp049
  • Cecilia Viti; Takehiro Hirose Thermal decomposition of serpentine during coseismic faulting: Nanostructures and mineral reactions, Journal of Structural Geology, Volume 32 (2010) no. 10, p. 1476 | DOI:10.1016/j.jsg.2010.09.009
  • S. Angiboust; P. Agard Initial water budget: The key to detaching large volumes of eclogitized oceanic crust along the subduction channel?, Lithos, Volume 120 (2010) no. 3-4, p. 453 | DOI:10.1016/j.lithos.2010.09.007
  • Y. Kil; S.-H. Lee; M.-H. Park; R.F. Wendlandt Nature of serpentinization of ultramafic rocks from Hero Fracture Zone, Antarctic: Constraints from stable isotopes, Marine Geology, Volume 274 (2010) no. 1-4, p. 43 | DOI:10.1016/j.margeo.2010.03.004
  • Benoit Langlais; Vincent Lesur; Michael E. Purucker; Jack E. P. Connerney; Mioara Mandea Crustal Magnetic Fields of Terrestrial Planets, Space Science Reviews, Volume 152 (2010) no. 1-4, p. 223 | DOI:10.1007/s11214-009-9557-y
  • Merlin Méheut; Michele Lazzeri; Etienne Balan; Francesco Mauri Structural control over equilibrium silicon and oxygen isotopic fractionation: A first-principles density-functional theory study, Chemical Geology, Volume 258 (2009) no. 1-2, p. 28 | DOI:10.1016/j.chemgeo.2008.06.051
  • Xiaomei Wang; Zhigang Zeng; Changhua Liu; Junbing Chen; Xuebo Yin; Xiaoyuan Wang; Daigeng Chen; Guoliang Zhang; Shuai Chen; Kang Li; Hegen Ouyang Talc-bearing serpentinized peridotites from the southern Mariana forearc: implications for aseismic character within subduction zones, Chinese Journal of Oceanology and Limnology, Volume 27 (2009) no. 3, p. 667 | DOI:10.1007/s00343-009-9207-y
  • Cecilia Viti; Takehiro Hirose Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites, Contributions to Mineralogy and Petrology, Volume 157 (2009) no. 3, p. 327 | DOI:10.1007/s00410-008-0337-6
  • Yoann Quesnel; Christophe Sotin; Benoit Langlais; Simona Costin; Mioara Mandea; Matthias Gottschalk; Jérome Dyment Serpentinization of the martian crust during Noachian, Earth and Planetary Science Letters, Volume 277 (2009) no. 1-2, p. 184 | DOI:10.1016/j.epsl.2008.10.012
  • Flurin Vils; Sonia Tonarini; Angelika Kalt; Hans-Michael Seitz Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209, Earth and Planetary Science Letters, Volume 286 (2009) no. 3-4, p. 414 | DOI:10.1016/j.epsl.2009.07.005
  • Thomas M. McCollom; Wolfgang Bach Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochimica et Cosmochimica Acta, Volume 73 (2009) no. 3, p. 856 | DOI:10.1016/j.gca.2008.10.032
  • Marie-Paule Bassez; Yoshinori Takano; Naohiko Ohkouchi Organic Analysis of Peridotite Rocks from the Ashadze and Logatchev Hydrothermal Sites, International Journal of Molecular Sciences, Volume 10 (2009) no. 7, p. 2986 | DOI:10.3390/ijms10072986
  • T. Morishita; K. Hara; K. Nakamura; T. Sawaguchi; A. Tamura; S. Arai; K. Okino; K. Takai; H. Kumagai Igneous, Alteration and Exhumation Processes Recorded in Abyssal Peridotites and Related Fault Rocks from an Oceanic Core Complex along the Central Indian Ridge, Journal of Petrology, Volume 50 (2009) no. 7, p. 1299 | DOI:10.1093/petrology/egp025
  • Jan C.M. De Hoog; Marian Janák; Mirijam Vrabec; Nikolaus Froitzheim Serpentinised peridotites from an ultrahigh-pressure terrane in the Pohorje Mts. (Eastern Alps, Slovenia): Geochemical constraints on petrogenesis and tectonic setting, Lithos, Volume 109 (2009) no. 3-4, p. 209 | DOI:10.1016/j.lithos.2008.05.006
  • Jaime D. Barnes; Holger Paulick; Zachary D. Sharp; Wolfgang Bach; Georges Beaudoin Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209), Lithos, Volume 110 (2009) no. 1-4, p. 83 | DOI:10.1016/j.lithos.2008.12.004
  • Vittorio Scribano; Marco Viccaro; Renato Cristofolini; Luisa Ottolini Metasomatic events recorded in ultramafic xenoliths from the Hyblean area (Southeastern Sicily, Italy), Mineralogy and Petrology, Volume 95 (2009) no. 3-4, p. 235 | DOI:10.1007/s00710-008-0031-4
  • Benoit Langlais; Vincent Lesur; Michael E. Purucker; Jack E. P. Connerney; Mioara Mandea Crustal Magnetic Fields of Terrestrial Planets, Planetary Magnetism, Volume 33 (2009), p. 223 | DOI:10.1007/978-1-4419-5901-0_7
  • Xiaomei Wang; Zhigang Zeng; Junbing Chen Serpentinization of peridotites from the southern Mariana forearc, Progress in Natural Science, Volume 19 (2009) no. 10, p. 1287 | DOI:10.1016/j.pnsc.2009.04.004
  • Stéphane Guillot; Keiko Hattori; Philippe Agard; Stéphane Schwartz; Olivier Vidal Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review, Subduction Zone Geodynamics (2009), p. 175 | DOI:10.1007/978-3-540-87974-9_10
  • David Mainprice; Benoit Ildefonse Seismic Anisotropy of Subduction Zone Minerals–Contribution of Hydrous Phases, Subduction Zone Geodynamics (2009), p. 63 | DOI:10.1007/978-3-540-87974-9_4
  • Dwijesh RAY; Ranadip BANERJEE; Sridhar D. IYER; Subir MUKHOPADHYAY A New Report of Serpentinites from Northern Central Indian Ridge (at 6°S)—An Implication for Hydrothermal Activity, Acta Geologica Sinica - English Edition, Volume 82 (2008) no. 6, p. 1213 | DOI:10.1111/j.1755-6724.2008.tb00723.x
  • K. Iyer; H. Austrheim; T. John; B. Jamtveit Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway, Chemical Geology, Volume 249 (2008) no. 1-2, p. 66 | DOI:10.1016/j.chemgeo.2007.12.005
  • Adélie Delacour; Gretchen L. Früh-Green; Martin Frank; Marcus Gutjahr; Deborah S. Kelley Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): Implications for fluid fluxes and lithospheric heterogeneity, Chemical Geology, Volume 254 (2008) no. 1-2, p. 19 | DOI:10.1016/j.chemgeo.2008.05.018
  • Tomoaki MORISHITA; Kentaro NAKAMURA; Takashi SAWAGUCHI; Kaori HARA; Shoji ARAI; Hidenori KUMAGAI Elemental Mobilizations during Hydrothermal Alteration of Oceanic Lithosphere, Chigaku Zasshi (Jounal of Geography), Volume 117 (2008) no. 1, p. 220 | DOI:10.5026/jgeography.117.220
  • David Mainprice; Yvon Le Page; John Rodgers; Paul Jouanna Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure, Earth and Planetary Science Letters, Volume 274 (2008) no. 3-4, p. 327 | DOI:10.1016/j.epsl.2008.07.047
  • C. Lafabrie; C. Pergent-Martini; G. Pergent Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean), Environmental Pollution, Volume 151 (2008) no. 1, p. 262 | DOI:10.1016/j.envpol.2007.01.047
  • Alexander Smirnov; Douglas Hausner; Richard Laffers; Daniel R Strongin; Martin AA Schoonen Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle, Geochemical Transactions, Volume 9 (2008) no. 1 | DOI:10.1186/1467-4866-9-5
  • Attila Demény; Ramón Casillas; Agustina Ahijado; Julio de La Nuez; J. Andrew Milton; Géza Nagy Carbonate xenoliths in La Palma: Carbonatite or alteration product?, Geochemistry, Volume 68 (2008) no. 4, p. 369 | DOI:10.1016/j.chemer.2008.05.002
  • Jared J. Standish; Henry J. B. Dick; Peter J. Michael; William G. Melson; Timothy O'Hearn MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E): Major element chemistry and the importance of process versus source, Geochemistry, Geophysics, Geosystems, Volume 9 (2008) no. 5 | DOI:10.1029/2008gc001959
  • Dionysis I. Foustoukos; Ivan P. Savov; David R. Janecky Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30°N Mid-Atlantic Ridge, Geochimica et Cosmochimica Acta, Volume 72 (2008) no. 22, p. 5457 | DOI:10.1016/j.gca.2008.07.035
  • Chiara Boschi; Andrea Dini; Gretchen L. Früh-Green; Deborah S. Kelley Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N): Insights from B and Sr isotope data, Geochimica et Cosmochimica Acta, Volume 72 (2008) no. 7, p. 1801 | DOI:10.1016/j.gca.2008.01.013
  • Helge Hellevang On the forcing mechanism for the H2-driven deep biosphere, International Journal of Astrobiology, Volume 7 (2008) no. 2, p. 157 | DOI:10.1017/s1473550408004205
  • B. W. Evans Control of the Products of Serpentinization by the Fe2+Mg-1 Exchange Potential of Olivine and Orthopyroxene, Journal of Petrology, Volume 49 (2008) no. 10, p. 1873 | DOI:10.1093/petrology/egn050
  • L. Pelletier; F. Vils; A. Kalt; K. Gmeling Li, B and Be Contents of Harzburgites from the Dramala Complex (Pindos Ophiolite, Greece): Evidence for a MOR-type Mantle in a Supra-subduction Zone Environment, Journal of Petrology, Volume 49 (2008) no. 11, p. 2043 | DOI:10.1093/petrology/egn057
  • Guibin Zhang; Shuguang Song; Lifei Zhang; Yaoling Niu The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology, Lithos, Volume 104 (2008) no. 1-4, p. 99 | DOI:10.1016/j.lithos.2007.12.001
  • Fuwu Ji; Huaiyang Zhou; Qunhui Yang The Abiotic Formation of Hydrocarbons from Dissolved CO2 Under Hydrothermal Conditions with Cobalt-Bearing Magnetite, Origins of Life and Evolution of Biospheres, Volume 38 (2008) no. 2, p. 117 | DOI:10.1007/s11084-008-9124-7
  • Carly C. Blair; Steven D'Hondt; Arthur J. Spivack; Richard H. Kingsley Radiolytic Hydrogen and Microbial Respiration in Subsurface Sediments, Astrobiology, Volume 7 (2007) no. 6, p. 951 | DOI:10.1089/ast.2007.0150
  • Katja Schmidt; Andrea Koschinsky; Dieter Garbe-Schönberg; Leandro M. de Carvalho; Richard Seifert Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation, Chemical Geology, Volume 242 (2007) no. 1-2, p. 1 | DOI:10.1016/j.chemgeo.2007.01.023
  • M. Andreani; C. Mével; A.‐M. Boullier; J. Escartín Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites, Geochemistry, Geophysics, Geosystems, Volume 8 (2007) no. 2 | DOI:10.1029/2006gc001373
  • Jeffrey C. Alt; Wayne C. Shanks; Wolfgang Bach; Holger Paulick; Carlos J. Garrido; Georges Beaudoin Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid‐Atlantic Ridge, 15°20′N (ODP Leg 209): A sulfur and oxygen isotope study, Geochemistry, Geophysics, Geosystems, Volume 8 (2007) no. 8 | DOI:10.1029/2007gc001617
  • Kéiko H. Hattori; Stéphane Guillot Geochemical character of serpentinites associated with high‐ to ultrahigh‐pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones, Geochemistry, Geophysics, Geosystems, Volume 8 (2007) no. 9 | DOI:10.1029/2007gc001594
  • D. Pereira; M. Yenes; J. A. Blanco; M. Peinado Characterization of serpentinites to define their appropriate use as dimension stone, Geological Society, London, Special Publications, Volume 271 (2007) no. 1, p. 55 | DOI:10.1144/gsl.sp.2007.271.01.06
  • Ana Filipa A. Marques; Fernando J.A.S. Barriga; Steven D. Scott Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides, Marine Geology, Volume 245 (2007) no. 1-4, p. 20 | DOI:10.1016/j.margeo.2007.05.007
  • P. Philippot; V. Busigny; M. Scambelluri; P. Cartigny Oxygen and nitrogen isotopes as tracers of fluid activities in serpentinites and metasediments during subduction, Mineralogy and Petrology, Volume 91 (2007) no. 1-2, p. 11 | DOI:10.1007/s00710-007-0183-7
  • B. Ildefonse; D. M. Christie; the Mission Moho Workshop Steering Committee Mission Moho Workshop: Drilling Through the Oceanic Crust to the Mantle, Scientific Drilling, Volume 4 (2007), p. 11 | DOI:10.5194/sd-4-11-2007
  • Nils G Holm; Marion Dumont; Magnus Ivarsson; Cécile Konn Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents: a hypothesis, Geochemical Transactions, Volume 7 (2006) no. 1 | DOI:10.1186/1467-4866-7-7
  • M Ivarsson Advantages of doubly polished thin sections for the study of microfossils in volcanic rock, Geochemical Transactions, Volume 7 (2006) no. 1 | DOI:10.1186/1467-4866-7-5
  • Wolfgang Bach; Holger Paulick; Carlos J. Garrido; Benoit Ildefonse; William P. Meurer; Susan E. Humphris Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274), Geophysical Research Letters, Volume 33 (2006) no. 13 | DOI:10.1029/2006gl025681
  • C. Nkoumbou; D. Njopwouo; F. Villiéras; A. Njoya; C. Yonta Ngouné; L. Ngo Ndjock; F.M. Tchoua; J. Yvon Talc indices from Boumnyebel (Central Cameroon), physico-chemical characteristics and geochemistry, Journal of African Earth Sciences, Volume 45 (2006) no. 1, p. 61 | DOI:10.1016/j.jafrearsci.2006.01.007
  • A. F. A. Marques; F. Barriga; V. Chavagnac; Y. Fouquet Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge, Mineralium Deposita, Volume 41 (2006) no. 1, p. 52 | DOI:10.1007/s00126-005-0040-8
  • M. Mellini; C. Rumori; C. Viti Hydrothermally reset magmatic spinels in retrograde serpentinites: formation of “ferritchromit” rims and chlorite aureoles, Contributions to Mineralogy and Petrology, Volume 149 (2005) no. 3, p. 266 | DOI:10.1007/s00410-005-0654-y
  • M. Andreani; A.-M. Boullier; J.-P. Gratier Development of schistosity by dissolution–crystallization in a Californian serpentinite gouge, Journal of Structural Geology, Volume 27 (2005) no. 12, p. 2256 | DOI:10.1016/j.jsg.2005.08.004
  • C. Viti; M. Mellini; C. Rumori Exsolution and hydration of pyroxenes from partially serpentinized harzburgites, Mineralogical Magazine, Volume 69 (2005) no. 4, p. 491 | DOI:10.1180/0026461056940265
  • Wolfgang Bach; Carlos J. Garrido; Holger Paulick; Jason Harvey; Martin Rosner Seawater‐peridotite interactions: First insights from ODP Leg 209, MAR 15°N, Geochemistry, Geophysics, Geosystems, Volume 5 (2004) no. 9 | DOI:10.1029/2004gc000744

Cité par 372 documents. Sources : Crossref


Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: