Outline
Comptes Rendus

Surface Geosciences
Impacts of the dumping site on the environment: Case of the Henchir El Yahoudia Site, Tunis, Tunisia
Comptes Rendus. Géoscience, Volume 338 (2006) no. 16, pp. 1176-1183.

Abstracts

The Henchir El Yahoudia landfill is one among many uncontrolled dumping sites in Tunisia with no bottom liner. It is located at the southeastern edge of Sijoumi Sebkha. The site has been exploited since 1963 until 1994. It constitutes a peculiar case because of its situation, its exploitation mode and the nature of buried wastes. Leachate analysis shows that they are strongly charged with nitrogen (especially ammoniacal and kadjedahl), organic compounds with a high biodegradability and a charge of metallic elements exceeding the Tunisian norm NT 106-002. Sediment analyses show that the highest rate of heavy metals and organic matter coincides with clay-richest layers, characterized by the highest specific-surface values. The percolation of these pollutants until the groundwater between 0.5 and 5 m has provoked a pollution characterized by high rates of organic matter (BOD, COD and nitrogen) and heavy metals.

Le site de Henchir El Yahoudia représente la plus grande et la plus ancienne décharge du Grand Tunis. C'est une décharge non contrôlée, qui a connu plusieurs phases d'exploitation. La localisation de la décharge en bordure de la Sebkha Es Sijoumi et la diversité des déchets qui y sont enfouis représentent les problèmes majeurs du site. Les polluants sont acheminés principalement par les lixiviats. Ces derniers renferment des teneurs en éléments traces, en matière organique et en éléments nutritifs qui dépassent la norme tunisienne NT 106-002, relative aux rejets des eaux usées dans le milieu naturel. En l'absence de tout système de collecte de lixiviats, ces effluents sont en contact direct avec le substratum de la décharge. Les analyses minéralogiques et géochimiques montrent que les niveaux argileux du substratum et, particulièrement les smectites, concentrent les éléments traces et la matière organique et représentent une barrière limitant la percolation de la pollution. Ceci n'a pas empêché la contamination de la nappe, dont le niveau statique est proche de la surface.

Metadata
Received:
Accepted:
Published online:
DOI: 10.1016/j.crte.2006.09.020
Keywords: Dumping site, Leachate, Substratum, Groundwater, Pollution, Heavy metals, Organic Matter, Tunisia
Mot clés : Décharge, Lixiviats, Substratum, Nappe, Pollution, Métaux lourds, Matière organique, Tunisie

Abir Marzougui 1; Abdallah Ben Mammou 1

1 Laboratoire de ressources minérales et environnement, département de géologie, faculté des sciences de Tunis, campus universitaire, 2092 El Manar Tunis, Tunisie
@article{CRGEOS_2006__338_16_1176_0,
     author = {Abir Marzougui and Abdallah Ben Mammou},
     title = {Impacts of the dumping site on the environment: {Case} of the {Henchir} {El} {Yahoudia} {Site,} {Tunis,} {Tunisia}},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {1176--1183},
     publisher = {Elsevier},
     volume = {338},
     number = {16},
     year = {2006},
     doi = {10.1016/j.crte.2006.09.020},
     language = {en},
}
TY  - JOUR
AU  - Abir Marzougui
AU  - Abdallah Ben Mammou
TI  - Impacts of the dumping site on the environment: Case of the Henchir El Yahoudia Site, Tunis, Tunisia
JO  - Comptes Rendus. Géoscience
PY  - 2006
SP  - 1176
EP  - 1183
VL  - 338
IS  - 16
PB  - Elsevier
DO  - 10.1016/j.crte.2006.09.020
LA  - en
ID  - CRGEOS_2006__338_16_1176_0
ER  - 
%0 Journal Article
%A Abir Marzougui
%A Abdallah Ben Mammou
%T Impacts of the dumping site on the environment: Case of the Henchir El Yahoudia Site, Tunis, Tunisia
%J Comptes Rendus. Géoscience
%D 2006
%P 1176-1183
%V 338
%N 16
%I Elsevier
%R 10.1016/j.crte.2006.09.020
%G en
%F CRGEOS_2006__338_16_1176_0
Abir Marzougui; Abdallah Ben Mammou. Impacts of the dumping site on the environment: Case of the Henchir El Yahoudia Site, Tunis, Tunisia. Comptes Rendus. Géoscience, Volume 338 (2006) no. 16, pp. 1176-1183. doi : 10.1016/j.crte.2006.09.020. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2006.09.020/

Version originale du texte intégral

1 Introduction

Landfilled wastes manifest slow decomposition, producing emanations of gases and outflow of leachates. Indeed, the waste mass shows various chemical reactions and complex evolutions that occur under the influence of natural agents, as rain and micro-organisms. These reactions lead to the biologic, physical, and chemical transformations of wastes. The intensity of the phenomenon is mainly related to the air and the humidity. These factors originate from the initial composition of solid waste, the operating mode of the landfill (anarchical or controlled) and the geological and hydrogeological conditions [10].

Leachate is increasingly considered to be a major source of groundwater pollution [11,40]. In fact, it has a complex nature; it typically contains high concentrations of conventional, non-conventional, and hazardous chemicals such as BOD, COD as well as the so-called ‘chemicals hazardous’ including heavy metals and numerous chemical compounds that may severely pollute environment [7,9,12,18,23,24].

Among the 68 dumping sites indexed in Tunisia, the Henchir El Yahoudia is located at 4–8 km south of Tunis; it borders the southeastern shore of the Sijoumi Sebkha (Fig. 1). The site, which is the most extended and the most ancient in Tunisia, has received the wastes of a population of 1.5 million habitants, which means around 4.7×106tons/year. Here, wastes have been landfilled since 1969 and include municipal solid wastes and inert wastes (75%), sludge of waste water treating plants (20%) and industrial wastes (5%), healthcare wastes (20%), with no preliminary treatment [39]. Thus, the urban location of the site can constitute a risk for the neighbouring population. The negative effects of this uncontrolled dumping site are clearly identified, such as nauseous smells, smoke generation and biogases emission, resulting in important carbon fluxes, sanitary risks, fires, asphyxiation of vegetation [13,16,19,32,35]. Previous studies following its closure in 1994 have indicated that leachates from the Henchir El Yahoudia site are negatively impacting groundwater and seriously damaging the environment of the Sebkha [40].

Fig. 1

Location and geological map of the study area.

Carte géologique et de localisation du site d'étude.

This paper studies the vertical and lateral percolation of the pollutants by evaluating the degree of the substratum contamination and its impact on the environment, when assuming the aggravation of the situation as related to increasing urbanization.

2 Analysis method

In order to characterize the dumping site, the Tunisian Environmental Protection Agency (ANPE) has conducted a field investigation in 2000. This study program consisted of two types of investigation works:

  • • outside the zone of wastes: four borings to depth of 30 m have been done;
  • • inside the zone of wastes: 20 shallow borings and 93 excavations were made at the site.

Representative samples of these borings have been taken (Fig. 2) for laboratory analyses that consist on mineralogical and geochemical characterisation.

Fig. 2

Location map of the borings points.

Carte de localisation des sondages.

The experimental procedure was as follows. X-ray spectra were recorded for identification of clay minerals using a diffractometer with Bragg–Bretano geometry. For that, orientated clay aggregates (normal, heated to 550 °C for 2 h and treated with ethylene glycol for 2 h) were prepared. The specific surface was measured by the methylene-blue method [14].

Total Zn, Cu, Pb, Cr, Mn contents in substratum samples were determined by digestion in HF–HNO3–HClO4, and the concentrations of these elements in the digested solution were measured by Atomic Adsorption Spectroscopy (AAS) [4].

The dosage of the TOC is achieved by coulometry with the help of the device Coulomat 702 [21].

3 Characterization of the Henchir El Yahoudia dumping site

3.1 Location

The dumping site is located east of the fault through of Sebkra Es Sigoumi (Fig. 1). The latter, located south of Tunis, is a part of a much extended hydrological watershed (230 km2) and constituted the natural exsurgence of this watershed.

3.2 Morphology

The site can be morphologically divided into three sectors:

  • • an elongated area of 12 ha in the northwest, where a central dome with slight slopes towards the Sebkha is rising;
  • • the central sector organized in three domes, with heights up to 21 m [40] and covering an area of 47 ha;
  • • the third sector is the lowest part of the site located at the southeast and occasionally flooded by the water from the Sebkha during the wet season.

The cover layer presents some cracks, from which biogas and leachate are escaping. Some exudations are also observed at several places of the embankment's base.

The waste mass lies on the ground level of the site, slightly inclined toward the Sebkra whose elevation varies between 10 and 12 m; thus there are no correlations between the altitude and the waste thickness [40].

3.3 Substratum

On the eastern bank of Sebkra Es Sigoumi, as well as on the eastern and northern border of the El Yahoubia Forest, globigerinids-bearing Lower Eocene limestones outcrop. These limestones are capped by calcareous crust [33]. Black–grey Quaternary deposits, considered as ‘lunette’ deposits [8,22], cover the Henchir El Yahoudia Hill; their clay-fraction content is comprised between 30 and 45% and they present a high percentage of gypsum (up to 50%) in the coarse-grained fraction (>250μm) [8].

This lithological succession is also observed in the borings in the dumping site.

The borings realized outside the dumping site indicated a lithologic sequence mainly formed by clay-sandy alternations and silty clay for the upper 6 m deposited on a 2-m-thick layer of white limestone. The remaining part of the sequence to 30 m depth is constituted of a fractured yellow-to-green marl and alternations of marl and limestone, as observed in the geological cross-section of Fig. 3.

Fig. 3

Geological cross-section between SC1, SC2, SC4 and SC5 showing the lithological succession.

Coupe lithologique passant par les sondages SC1, SC2, SC4 et SC5.

4 Results and discussion

4.1 Leachate

Henchir El Yahoudia dumping site produces annually 65 000 to 70 000 m3 of leachate from the 4.7×106tons of buried waste [5], whose moisture rate is about 50% and content of organic matter between 4 and 34% [40]. This content is rather high as compared with those of the developing countries where the latter does not usually exceed 26% [15].

The maximum leachate levels were recorded at the central sector of the site in the form of a dome with a flow direction oriented to the Sebkha, as mentioned above. Leachate spurts were locally observed at some piezometers; this comes from an overpressure caused by the biogas dissolution and the high thickness of wastes and the cover layer.

The composition of the leachates shows that they can be classified among the household wastes and assimilated [15,16,33], characterized by a neutral pH and high contents of nutrient elements, above total nitrogen and organic matter (COD, BOD). These leachates are highly biodegradable and are loaded by heavy elements, especially Cu, Zn, Mn, Pb, Ni, and Cr, whose contents for the major part exceeds the Tunisian norm NT106-002 [28–30,40] relative to wastewater discharge in the environment. As compared to leachates from the discharge of El Jadida (Morocco), the effluents of Henchir El Yahoudia are however much lesser loaded in organic and mineral pollutants [11].

In the absence of drainage pattern, the leachates of El Yahoudia are in direct contact with the geological substratum and two migration types can be pointed out: a vertical and a lateral one. Zaïri et al. [40] noted a contamination of underground water testified by high contents of total nitrogen [28–30] (between 14 and 29.5 mg O2/l) and in organic matter with BOD and COD comprised between 12 and 21 mg O2/l and between 70 and 144 mg O2/l, respectively. The contents in trace elements are low; the maximal values of Cu and Zn do not exceed 0.19 and 1.26 mg/l, respectively.

4.2 Mineralogical study

In order to evaluate the rate of pollutant retention by surficial deposits (‘lunette’ deposits) and by the substratum of Henchir el Yahoudia, a study of grain-size distribution clay-fraction composition and specific surface of clay minerals was performed, whose results for borings SC1, SC2, SC4 and SC5 are presented in Fig. 4.

Fig. 4

Variation of fine fraction, coarse fraction, clay minerals and specific surface according to the depth in SC1, SC2, SC4 and SC5 borings.

Variation verticale des teneurs en fraction fine, fraction grossière, des minéraux argileux et de la surface spécifique le long des sondages : SC1, SC2, SC4 et SC5.

As observed on that figure, substratum and surficial deposits are rich in <63μm fraction (up to 60%). Clay mineral assemblage is composed of smectites, illites and kaolinites. Smectites whose content varies from 10% (SC25 – 7.60 m) to 85% (SC2 – 4 m) are likely to be responsible for the important specific surface measured, from 14 m2/g (SC1 – 7 cm) to 225 m2/g (SC27 – 8 m); the latter as well as high cation exchange capacity explains that the nature and composition of the minerals assemblage are very favourable to a strong metal sorption and pollutant retention capacity of the substratum [3,20,26,31,41].

4.3 Geochemical study

In fact, this assumption is verified in Fig. 5 and Tables 1 and 2: the contaminated levels, essentially enriched in heavy metals and organic matter, correspond to the highest fine-grained fraction and the most important specific surface values (Figs. 4 and 5) in the sedimentary columns.

Fig. 5

Variation of heavy metals and total organic carbon (TOC) contents according to the depth on SC1, SC2, SC4 and SC5 borings.

Variation verticale des teneurs en éléments traces (Zn, Pb, Cr, Cu et Mn) et en COT dans les sondages profonds SC1, SC2, SC4 et SC5.

Table 1

Variation of Pb, Cu, Zn, Cr, Mn contents and TOC percentages between 0 and 2 m below the dumping site

Variation des teneurs en Pb, Cu, Zn, Cr, Mn et du pourcentage du COT entre 0 et 2 m sous la masse des déchets

Samples Pb (ppm) Cu (ppm) Zn (ppm) Cr (ppm) Mn (ppm) TOC (%)
0 m 2 m 0 m 2 m 0 m 2 m 0 m 2 m 0 m 2 m 0 m 2 m
SC9 437 54 268 11 541 163 105 35 368 79 1.18 0.15
SC10 60 85 359 17 140 120 88 69 280 19 0.4 0.1
SC11 114 54 23 20 909 139 53 80 227 317 0.26 0.12
SC12 425 30 326 7 2649 188 99 26 1641 99 1.23 0.11
SC15 54 60 17 9 138 164 69 30 207 80 0.24 0.09
SC17 104 54 33 20 158 128 94 89 336 306 0.69 0.22
SC18 59 65 18 17 232 154 75 51 207 159 0.3 0.19
SC19 49 55 17 17 378 129 66 67 206 388 0.31 0.1
SC20 80 44 23 9 259 109 101 49 299 118 0.41 0.13
SC26 59 55 20 18 207 429 71 76 227 210 0.42 0.15
SC23 55 54 14 17 363 361 65 76 199 267 0.1
SC24 119 54 36 58 633 138 75 73 257 236 0.1
SC25 101 58 574 71 237 1.51
SC8 45 54 17 13 99 74 71 39 326 326 0.15 0.26
SC27 128 59 27 58 287 162 71 55 524 524 3.08
A 50–100 30–60 100–200 50–100
B 100 100 300 150
C 3 1 3 2 2 0.01
Table 2

Variation of Pb, Cu, Zn, Cr, Mn contents and TOC percentages at level of SC1, SC2, SC4 and SC5 according to the depth

Variation des teneurs en Pb, Cu, Zn, Cr, Mn et du pourcentage du COT au niveau des sondages SC1, SC2, SC4 et SC5 en fonction de la profondeur

Depth (m) Pb (ppm) Cu (ppm) Zn (ppm) Cr (ppm) Mn (ppm) TOC (%)
SC1 1 54 17 84 52 17 0.16
2 55 18 105 78 240 0.11
3 55 17 129 165 259 0.1
4 54 18 123 71 266 0.1
5 54 18 123 71 266 0.1
6 54 18 123 71 266 0.1
7 644 694 495 198 396 0.25
SC2 1 50 18 130 78 280 0.16
2 60 18 114 76 259 0.13
3 60 18 114 76 259 0.13
4 55 9 79 35 119 0.09
SC4 0 113 92 157 71 256 0.75
1 59 18 779 71 298 0.44
2 59 18 177 64 226 0.28
3 64 1 138 52 17 0.06
4 54 20 476 78 265 0.07
5 54 20 476 78 265 0.07
6 64 1 157 68 305 0.06
SC5 1 54 20 142 88 294 0.25
2 64 20 138 92 335 0.46
3 49 18 94 54 238 0.1
4 49 18 94 54 238 0.1
5 49 18 94 54 238 0.1
6 49 18 94 54 238 0.1
7 50 13 114 47 259 0.08
A 50–100 30–60 100–200 50–100
B 100 100 300 150
C 3 1 3 2 2 0.01

As for the distribution of the different heavy metals vs. depth, it can be mentioned, first that the lowest concentrations are for Cr, Cu and Pb and the highest for Mn and Zn. For almost all the samples, the heavy metals contents are close to, or even less than the standard values proposed for non-polluted soils [25], and for the French association of normalization [2], except for some samples taken under the waste mass (as for SC9, SC10, SC12 at 0 m). It is also important to notice that some concentrations are higher (as for Zn, Pb) than the critical values given by the European norm [34].

Second, there is a clear variation of the contamination rate through the sedimentary columns.

In fact, the borings drilled in the waste deposits show usually a decrease of heavy-metal concentration and of total organic carbon (TOC) percentage from the top to the bottom. The transfer of pollutants can be considered as effective beyond the first 2 m below the waste mass; but the percentages recorded are in the major part lower than the standard values recommended (Table 1). The deep borings show also a decrease of the metallic elements from the upper part to the lower part of boring, except boring SC1, in which there is an increase of the content of trace elements at 7 m depth; this is likely due to the situation of the boring in geomorphologically higher position (Fig. 6).

Fig. 6

Geomorphological cross-section between SC1 and SC26.

Coupe géomorphologique passant par les sondages SC1 et SC26.

Third, the heavy metals concentrations recorded in the deep borings rarely exceed standard values (European one and AFNOR) [2,6,34] (Table 2), which proves that lateral migration of pollutants is less important than the vertical one.

Indeed, the contents in metals and in TOC recorded inside the wastes zone are much higher than those recorded in borings located outside the zone of wastes (Tables 1 and 2). With one exception, SC1 sample, located near the waste mass, which is affected by a lateral migration of the pollutants (Fig. 6).

5 Conclusion

The production of leachates and biogas by the Henchir El Yahoudia dumping site constitutes a source of pollution of the substratum, the groundwater and the Sebkha Sijoumi.

Based on the results of this work, the pollutants migrate beyond 2 m of depth under the mass of waste. Whereas the peripheral zones of the site present clay levels, rich on smectitic minerals, accumulating heavy metals and organic matter.

Substratum properties constitute a passive protection against the migration of the pollutants [17,27,31,36,38]. However, the high level of groundwater enhanced the direct infiltration of leachate, causing the contamination of the water table by various heavy metals and organic compounds.

To prevent further pollution we recommend rehabilitation of Henchir El Yahoudia site. Works of rehabilitation must be preceded by setting up a collection drain of leachate and an insulated extraction network routing the biogas from loss mass toward a treatment unit. The setting up of an impervious peripheral barrier, reaching the geological substrate, would be indispensable to prevent the lateral transfers of pollutants. Last, the final recovery must include an impervious protective layer in order to limit the pluvial water infiltration and an agricultural earth layer with an optimal thickness encouraging the growth of plants. In this, we integrate the site into its environment [1,37].


References

[1] ADEME, Guide méthodologique pour la remise en état des décharges d'ordures ménagères et assimilés, Agence de l'environnement et de la maîtrise de l'energie (ADEME), France 1996 (105 p.)

[2] AFNOR, Qualité des sols. Recueil des normes françaises, 3e édition, Paris, La Défense, 1996 (534 p.)

[3] F. Amer; A.A. Mahmoud; V.Z. Sabet Potential and surface area of calcium carbonate as related to phosphate sorption, Soil Sci. Soc. Am. J., Volume 49 (1985), pp. 1137-1142

[4] E.E. Angino Gale; K. Billings Atomic absorption spectrometry in geology, Methods in Geochemistry and Geophysics, Elsevier, 1967 (144 p.)

[5] ANPE, Étude de réhabilitation de la décharge de Henchir El Yahoudia en espace vert récréatif et pépinière de plantes ornementales. Phase I. Caractérisation environnementale du site de la décharge, SCET–Tunisie, Agence nationale de protection de l'environnement, Tunis, Tunisie (version finale), 2000 (64 p.)

[6] D. Baize, Teneurs totales en éléments trace métalliques dans les sols (France), Références et stratégies d'interprétation, INRA, Paris, 1997 (408 p.)

[7] A. Baun; S.D. Jensen; L. Bjerg; T.H. Christensen; N. Nyholm Toxicity of organic chemical pollution in groundwater down gradient of a landfill (Grindsted, Denmark), Environ. Technol., Volume 34 (2000), pp. 647-1652

[8] A. Ben Mammou Les effondrements au niveau des accumulations récentes à Henchir El Yahoudia, Bull. Assoc. Int. Geol. Ing., Volume 46 (1992), pp. 51-57

[9] G. Bernache The environmental impact of municipal waste management: the case of Guadalajara metro area, Resour. Conserv. Recycling, Volume 39 (2003), pp. 223-237

[10] V. Chambon; S. Comet; P. Marcus; M. Barres; H. Billard; T. Bousquet La décharge a un avenir, le centre de stockage, Techniques, Sciences et Méthodes, Volume 1 (2000), pp. 27-37

[11] A. Chofqi; A. Younsi; L. El Kbir; M. Jacky; M. Jacques; A. Veron Environmental impact of an urban landfill on a coastal aquifer (El Jadida, Morocco), J. Afr. Earth Sci., Volume 39 (2004), pp. 509-516

[12] T.H. Christensen; R. Kjeidsen; P.L. Bjerg; D.L. Jensen; J. Christensen; A. Bauna; H.J. Albrechtsen; G. Heron Biogeochemistry of landfill leachate plumes, Appl. Geochem., Volume 16 (2001), pp. 659-718

[13] C. Desachy Les déchets en 1994, Techniques, sciences et méthodes, L'Eau, Volume 11 (1994), pp. 603-609

[14] R. Dupain, R. Lanchon, J.-C. Saint-Arroman, Granulats, sols, ciments et bétons, Caractérisation des matériaux de génie civil par les essais de laboratoire, Cateilla, 1995, pp. 22–25

[15] M. El Fadhel; E. Bou-Zeid; W. Chahine; B. Alayli Temporal variation of leachate quality from pre-stored and baled municipal solid waste with high organic and moisture content, Waste Manage., Volume 22 (2002), pp. 269-282

[16] M. El Fadhel; A.N. Findikakis; J.O. Leckie Environmental impacts of solid-waste landfilling, J. Environ. Manage., Volume 50 (1997), pp. 1-25

[17] V.P. Evangelou; A.D. Karathanasis Influence of pH, sodium adsorption ratio, and salt concentration on settling kinetics of suspended solids in coalmine ponds, J. Environ. Qual., Volume 20 (1991), pp. 783-788

[18] P. Freyssinet; P. Piantone; M. Azaroual; Y. Itard; B. Clozel-Leloup; D. Guyonnet; J.-C. Baubron Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering, Waste Manage., Volume 22 (2002), pp. 159-172

[19] B. Guillet, R. Jean, C. Rougier, B. Souchier, Le cycle biogéochimique et la dynamique du comportement des éléments traces (Pb, Cu, Zn, Ni, Cd, Cr) dans la pédogenèse acide, rapport ATP n° 27 Nancy, 1980 (49 p.)

[20] L. Hernandez; A. Probst; J.-L. Probst; E. Ulrich Heavy-metal distribution in some French forest soils: evidence for atmospheric contamination, Sci. Total Environ., Volume 31 (2003), pp. 195-219

[21] A.G. Herrmann; D. Knake Coulometrisches Verfahren zur Bestimmung von Gesamt-, Carbonat- und Nichtcarbonat-Kohlenstoff in magmatischen, metamorphen und sedimentären Gesteinen, Z. Anal. Chem., Volume 266 (1973), pp. 196-201

[22] A. Jauzein Contribution à l'étude géologique des confins de la dorsale tunisienne (Tunisie septentrionale), Ann. Min. Geol., Tunis, Volume 22 (1967) (475 p.)

[23] D.L. Jensen; A. Ledin; T.H. Christensen Speciation of heavy metals in landfill-leachate polluted groundwater, Water Res., Volume 33 (1999) no. 11, pp. 2642-2650

[24] H. Jupsin, E., Praet, J.L. Vasel, Sanitary landfill characterization and modelisation of their evolution, in: Proc. Int. Symp. on Environmental Pollution Control and Waste Management, 2000, pp. 884–896

[25] A. Kabata-Pendias; H. Pendias Trace Elements in Soils and Plants, CRC Press, London, 1992 (413 p.)

[26] A.D. Karathanasis; B.F. Hajek Revised methods for rapid quantitative determination of minerals in soil clays, Soil. Sci. Soc. Am. J., Volume 46 (1982), pp. 419-425

[27] C. Magrebi, Utilisation des barrières hydrogéologiques à base de bentonite pour le stockage des déchets domestiques, thèse, École nationale des ingénieurs de Sfax, Sfax, Tunisie, 1996 (195 p.)

[28] A. Marzougui, Caractérisation environnementale de la décharge de Henchir El Yahoudia, mém. DEA, faculté des sciences de Tunis, 2001 (137 p.)

[29] A. Marzougui; A. Ben Mammou Les lixiviats de la décharge de Henchir El Yahoudia, un agent polluant et un indicateur d'évolution des déchets, Rev. Fac. Sci. Bizerte, Volume 3 (2004), pp. 26-30

[30] A. Marzougui, A. Ben Mammou, La décharge de Henchir El Yahoudia: Impacts sur l'environnement et essai de réhabilitation, 20e Colloque de géologie africaine, Résumés, BRGM, Orléans, 2004 (436 p.)

[31] P. Melis; D. Dixit; A. Prevoli; C. Gessa Describing the adsorption potential determining ions on variable charge mineral surfaces, Annali, Volume 30 (1983), pp. 137-148

[32] F. Ozanne, Les lixiviats de décharge, le point des connaissances en 1990, Techniques Sciences et Méthodes, L'Eau (juin 1990) 289–312

[33] J. Pimienta Le cycle Pliocène actuel dans les bassins paraliques de Tunis, Mem. Soc. geol. France, Volume 85 (1959) (176 p.)

[34] P. Rademacher, Atmospheric heavy metals and forest ecosystems, UN/ECE, Federal Research Centre for Forestry and Forest Products (BFH), Geneva, Switzerland, 2001 (75 p.)

[35] M.O. Rivett; D.N. Lerner; J.W. Liyod Chlorinated solvents in UK Aquifers, J. Water Manage, Volume 4 (1990), pp. 242-250

[36] A.K. Seta; A.D. Karathanasis Water-dispersible colloids and factors influencing their dispersibility from soil aggregates, Geoderma, Volume 74 (1997), pp. 255-266

[37] G. Tchobanoglous; H. Theisen; S. Vigil Integrated Solid Waste Management, Mc Graw-Hill Book Company, New York, 1993

[38] E. Tessens Clay migration in upland soil in Malaysia, J. Soil. Sci., Volume 35 (1984), pp. 615-624

[39] Usaid & Rhudo, Évaluation de la décharge de Henchir El Yahoudia et option de gestion des déchets, municipalité de Tunis, ministère de l'Intérieur, Tunis, Tunisie, 1992 (20 p.)

[40] M. Zaïri; M. Ferchichi; A. Ismaïl; M. Jenayeh; H. Hammami Rehabilitation of El Yahoudia dumping site, Tunisia, Waste Manage., Volume 24 (2004), pp. 1023-1034

[41] M. Zhang; L. Wenqing; Y. Yang; B. Chen; F. Song Effects of readily dispersible colloid on adsorption and transport of Zn, Cu, and Pb in soils, Environ. Int., Volume 31 (2005), pp. 840-844


Comments - Policy