Plan
Comptes Rendus

Tectonics
Structure of the low permeable naturally fractured geothermal reservoir at Soultz
[Structure du réseau de fractures naturelles dans le réservoir géothermique peu perméable de Soultz]
Comptes Rendus. Géoscience, Vers l'exploitation des ressources géothermiques profondes des systèmes hydrothermaux convectifs en milieux naturellement fracturés, Volume 342 (2010) no. 7-8, pp. 517-530.

Résumés

The permeability of the granite geothermal reservoir of Soultz is primarily related to major fracture zones, which, in turn, are connected to dense networks of small-scale fractures. The small-scale fractures are nearly vertical and the major direction is about N0°E. This direction differs from that of the Rhine Graben, which is about N20°E to N45°E in northern Alsace. A total of 39 fracture zones, with a general strike of N160°E, have been identified in six wells between 1400 and 5000 m depth. These fracture zones are spatially concentrated in three clusters. The upper cluster at 1800–2000 m True Vertical Depth (TVD) is highly permeable. At 3000–3400 m TVD, the intermediate cluster in composed of a dense network developed in an altered matrix and forms the upper reservoir. In the lower part of the wells, the deeper cluster appears as a fractured reservoir developed within a low permeable matrix. Fracture zones represent a key element to take into account for predicting the geothermal reservoir life time submitted to various thermo-hydromechanical and chemical processes generated by hydraulic or chemical stimulations and by hydraulic circulation tests related to long-term exploitation.

Le réservoir géothermique de Soultz est constitué de zones de fracture majeures connectées à un réseau dense de fractures secondaires. Les mésofractures sont pratiquement verticales et la direction majeure est à peu près nord-sud. Cette direction diffère de la direction régionale du fossé rhénan qui est localement à dominante N20°E à N45°E dans le Nord de l’Alsace. Un total de 39 zones de fracture a été identifié et caractérisé dans six puits entre 1400 et 5000 m de profondeur. Ces structures sont réparties en trois clusters suivant la profondeur. Le premier cluster à 1800–2000 m TVD (profondeur verticale) est très perméable naturellement. À 3000–3400 m TVD, le cluster intermédiaire apparaît comme un réseau plus dense dans un milieu plus altéré et constitue le réservoir supérieur. Dans la partie inférieure des puits, le cluster profond apparaît comme un réservoir fracturé développé dans une matrice très peu perméable. La caractérisation des zones de fracture représente un élément important à prendre en compte pour la prévision de la durée de vie du réservoir géothermique soumis à des processus thermo-hydromécaniques et chimiques engendrés par les stimulations hydrauliques ou chimiques et par les essais de circulations interpuits pendant l’exploitation.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2009.10.002
Keywords: Rhine Graben, Fractures, Fracture zones, Cores, Borehole images, Enhanced Geothermal System
Mots-clés : Fossé rhénan, Fractures, Zones de fractures, Carottes, Image de paroi, Système Géothermal Stimulé

Chrystel Dezayes 1 ; Albert Genter 2 ; Benoît Valley 3

1 BRGM, Geothermal Department, 3, avenue C.-Guillemin, BP 36009, 45060 Orléans cedex 2, France
2 GEIE exploitation minière de la chaleur, route de Soultz, BP 40038, 67250 Kutzenhausen, France
3 ETH Zürich, Engineering Geology, CH-8093 Zürich, Switzerland
@article{CRGEOS_2010__342_7-8_517_0,
     author = {Chrystel Dezayes and Albert Genter and Beno{\^\i}t Valley},
     title = {Structure of the low permeable naturally fractured geothermal reservoir at {Soultz}},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {517--530},
     publisher = {Elsevier},
     volume = {342},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crte.2009.10.002},
     language = {en},
}
TY  - JOUR
AU  - Chrystel Dezayes
AU  - Albert Genter
AU  - Benoît Valley
TI  - Structure of the low permeable naturally fractured geothermal reservoir at Soultz
JO  - Comptes Rendus. Géoscience
PY  - 2010
SP  - 517
EP  - 530
VL  - 342
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crte.2009.10.002
LA  - en
ID  - CRGEOS_2010__342_7-8_517_0
ER  - 
%0 Journal Article
%A Chrystel Dezayes
%A Albert Genter
%A Benoît Valley
%T Structure of the low permeable naturally fractured geothermal reservoir at Soultz
%J Comptes Rendus. Géoscience
%D 2010
%P 517-530
%V 342
%N 7-8
%I Elsevier
%R 10.1016/j.crte.2009.10.002
%G en
%F CRGEOS_2010__342_7-8_517_0
Chrystel Dezayes; Albert Genter; Benoît Valley. Structure of the low permeable naturally fractured geothermal reservoir at Soultz. Comptes Rendus. Géoscience, Vers l'exploitation des ressources géothermiques profondes des systèmes hydrothermaux convectifs en milieux naturellement fracturés, Volume 342 (2010) no. 7-8, pp. 517-530. doi : 10.1016/j.crte.2009.10.002. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2009.10.002/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

Since 1980 (Gérard et al., 1984; Gérard and Kappelmeyer, 1987), the EGS project at Soultz (France) goals to experiment and develop a new geothermal technology. After an initial Hot Dry Rock (HDR) concept of artificial fracture creation in a homogeneous rock by hydraulic fracturing, the concept at Soultz has progressively evolved to an Enhanced Geothermal System (EGS) where reservoir development involved the reactivation of the preexisting fractures in the granite (Evans et al., 2005; Gérard et al., 2006). Thus, a good knowledge and geometrical characterization of the rock mass and, particularly, of the fracture network are essential for many reasons, from the optimization of the borehole design to the understanding of the flow distribution at depth. At Soultz, this fracture network is structured at different scales, from major fracture zones cross-cutting the granite batholith to intracrystalline microfractures, which induce weakness in the rock mass (Dezayes et al., 2000).

The principle of the EGS technology consists in increasing the low natural hydraulic performance of the geothermal reservoir by hydraulic or/and chemical stimulations. These stimulations increase the permeability so as to allow transport of the geothermal brine. This allows circulation between the wells by using the preexisting fracture network for an efficient extraction of the geothermal fluid. The hydraulic stimulation consists in injecting water with high flow rate in order to increase the pore pressure within the rock mass which promotes the shearing of existing fractures, a mechanism accompanied partly by detectable induced microseismicity. When the injection is stopped, the shearing is irreversible and the reactivated fractures do not close totally, yielding to a new and/or enhanced permeability (Gentier et al., 2000). This mechanical effect of enhanced permeability occurs either in the well near-field or at some distance far from the well. Chemical stimulation affects permeability essentially in the direct well vicinity and consists in injecting acids to dissolve the mineral fillings within the natural fractures, like calcite, secondary silica or clay minerals (Portier et al., 2009). Both methods have to be associated to increase fluid pathways within the fracture network (Nami et al., 2008).

Several studies have shown that some fracture zones are water-bearing prior to stimulation (Vuataz et al., 1990; Genter et al., 1995) and form the main flow channeling after stimulation and during circulation (Sanjuan et al., 2006; Evans et al., 2005). These fracture zones are probably reactivated by shearing whilst in hydraulic stimulation. Moreover, other fracture zones not permeable prior stimulation have been reactivated during the stimulation and have been taking into account in this study.

Thus, fracture zones form the main potential fluid pathways connected to the dense network of mesoscale fractures to form the geothermal reservoir, which is about 1125 km3 for the upper reservoir and 8 km3 for the deeper reservoir, based on induced microseismicity study (Cuenot et al., 2006).

This article presents a characterization of the intermediate scale to large-scale fracturing, formed by fracture zones, in order to make a geometrical update of the fracture database likely to support conductive fluid flow. The goal of this study is to assess the geometry of the fracture network for a better understanding of the fluid circulation in a deep fractured granite reservoir dedicated to geothermal exploitation. The fracture zones presented in this paper correspond to the initial potential conductive network. These results are used for modeling the hydraulic stimulations and circulations of Soultz geothermal reservoir (Sausse et al., 2010; Rachez et al., 2006; Baujard and Bruel, 2005; Kohl and Megel, 2005).

2 Geological and structural context

The Soultz site is located within the Upper Rhine Graben, which is a Cenozoic rift structure belonging to the West European Rift System (Fig. 1; Ziegler, 1992). The filling sediments are marine and lacustrine limestones, marls and evaporites, including the petroleum layers of Pechelbronn, overlaying in unconformity the Jurassic limestones and the Germanic Trias (Fig. 1b). These Cenozoic and Mesozoic sediments have been deposited on the Paleozoic basement, which includes porphyritic monzogranite and two-mica granite (Genter et al., 1999; Stussi et al., 2002; Cocherie et al., 2004; Hooijkaas et al., 2006).

Fig. 1

Location of the EGS Soultz site and geology of the Upper Rhine Graben. (I) Location of the Upper Rhine Graben with the West European Rift System. (1) Hercynian basement; (2) Tertiary basins; (3) Alpine molasse. (II): West–east cross-section through the Rhine Graben border and the Soultz site. (a) Cenozoic; (b) Mesozoic; (c) Hercynian basement. (III) Geological and structural map of the Rhine Graben (1) Cenozoic sediments; (2) Cenozoic volcanics; (3) Jurassic; (4) Triassic; (5) Permo-Carbonifeous basins, (6) Hercynian basement; (7) boundary faults; (8) other faults; (9) overthrusts. Masquer

Location of the EGS Soultz site and geology of the Upper Rhine Graben. (I) Location of the Upper Rhine Graben with the West European Rift System. (1) Hercynian basement; (2) Tertiary basins; (3) Alpine molasse. (II): West–east cross-section through the ... Lire la suite

Localisation du site EGS de Soultz et géologie du Fossé rhénan supérieur. (I) Localisation du Fossé rhénan supérieur dans le Système de Rift Ouest-Européen. (1) Socle hercynien ; (2) bassins tertiaires ; (3) molasse alpine. (II) Coupe est–ouest passant par la bordure du Fossé rhénan et le site de Soultz. (a) Cénozoïque ; (b) Mésozoïque ; (c) socle hercynien. (III) Carte géologique et structurale du Fossé rhénan (1) remplissage cénozoïque ; (2) édifices volcaniques cénozoïques ; (3) Jurassique ; (4) Trias ; (5) bassins permocarbonifères ; (6) socle hercynien ; (7) failles bordières ; (8) autres failles ; (9) chevauchements. Masquer

Localisation du site EGS de Soultz et géologie du Fossé rhénan supérieur. (I) Localisation du Fossé rhénan supérieur dans le Système de Rift Ouest-Européen. (1) Socle hercynien ; (2) bassins tertiaires ; (3) molasse alpine. (II) Coupe est–ouest passant par la bordure ... Lire la suite

This granite unit is the target of the geothermal project and hosts the geothermal reservoir. This massif underwent a multiphase tectonic history including Hercynian and Alpine orogeneses. The Cenozoic tectonic history is reflected by the orientations of the current structures forming the Upper Rhine Graben (Fig. 1). The regional major border faults mapped on surface or derived from petroleum seismic reflection studies within the Upper Rhine Graben show a N0-30°E direction in relation to the three main directions of the graben (Fig. 1). In the southern part of the graben, the main direction is about N10°E. This direction rotates clockwise at the center of the graben to N30-25°E and becomes N0°E in its northern part. The Rhenish fracture orientation was formed during the Oligocene opening of the Rhine Graben (Villemin and Bergerat, 1987), reactivating probably some Hercynian structures (Illies, 1972; Illies, 1975; Rotstein et al., 2006). At the Soultz site, the Upper Rhine Graben rotates and the regional border faults are N45°E oriented. This direction is also present in the Triassic sediments in the West of the graben fault, in the Vosges area (Menillet et al., 1989).

However, the granitic basement has been affected by ante-Cenozoic tectonics, particularly the Hercynian orogen. The strike of the major dislocations delimiting the different Hercynian tectonic blocks is roughly N60°E (Fig. 1). At local scale, around the Soultz site, geological mapping, borehole data and interpretation of seismic profiles acquired during the exploration of the Pechelbronn oil field give lots of data to characterize the major fault system (Foehn, 1985; Place et al., 2010). These data were compiled to build a 3D geological model of the sedimentary cover (Renard and Courrioux, 1994; Castera et al., 2008). These studies show that in the sedimentary cover, the faults have a N20°E strike, i.e., a Rhenish direction (Fig. 1). In map view, the faults have a trace length of about 2 to 20 km and occur with a spacing range of about 800 m to 3 km (Valley and Evans, 2007). At depth, below the Soultz site, a horst structure is present and the top of the basement is at 1.4 km depth (Fig. 1b). Within this horst structure, some local faults are detected on the seismic profiles, which are mainly dipping to the west (Fig. 1b).

3 Methodology

Unwrapped borehole image logs and cores studies allow to characterise the fracturing within the Soultz granite at various scales. In the cores, all the fractures are systematically sealed by hydrothermal filling but only 20% of them are visible on the borehole images (Genter et al., 1997). However, only one borehole (EPS1) is fully cored and some spot coring are available in other wells. But the borehole images are suitable for detecting and measuring the orientation of the mesoscale fractures and fracture zones.

On the borehole images, fracture orientations are sometimes difficult to measure due to the fact that fractures are not perfectly planar as it is assumed for the dip calculation. Also, as mentioned above, fracture zones are complex and their orientation is difficult to define. Often, several individual fracture traces are visible on the log image within a given fracture zone, which include brecciated to microbrecciated zone. To determine the fracture zone overall orientation, we consider that the orientation of the border of the brecciated zone is representative of the overall orientation if this limit is well visible and defined and if it forms a well-marked planar structure. However, when several planar structures are present and roughly parallel, we assumed that the orientation of the fracture zone is well approximate with the 3D average orientation of the individual planes.

In order to better characterize low permeable fracture zones, we use the geological database based on petrographical description of cuttings, borehole image log and geophysical log analyses, as calliper, spectral gamma ray and drilling parameters (Fig. 2). The spectral gamma ray data, such as potassium, thorium and uranium contents, are used to detect radioactive element concentration due to the hydrothermal alteration of fracture zones.

Fig. 2

Examples of composite logs for two fracture zones in GPK1 (A) and GPK3 (B). UBI: acoustic borehole image; HAC: Hierarchical Ascendant Classification; Legend of facies: red crosses: porphyritic granite; green crosses: two-mica granite; green hachure: altered granite; blue hachure: cataclased granite; blue crosses: brecciated granite; black: quartz vein.

Exemples de logs composites pour deux zones de fractures dans GPK1 (A) et GPK3 (B). UBI : images de paroi acoustiques ; HAC : Classification Ascendante Hiérarchique ; Légende des faciès : croix rouges : granite porphyroïde ; croix vertes : granite à deux micas ; hachures vertes : granite altéré ; hachures bleues : granite cataclasé ; croix bleues : granite bréchifié ; noir : veine de quartz.

However, we cannot determine if there are some evidences of natural permeability in a given fracture by interpreting geological data only. Then, in addition, temperature and flow logs analysis was used to determine the zone of fluid lost in the boreholes (Evans, 2000; Dezayes et al., 2004).

In the framework of the Soultz geothermal project, several wells have been drilled for exploration and for the geothermal reservoir development and exploitation (Dezayes et al., 2005). In these wells, different data have been acquired, but these data are not homogeneous in terms of characterization and resolution. Thus, fracture zone characterization will be not strictly equivalent for all wells.

4 Mesoscale fractures

Many fracture data have been collected in the granite basement based on coring and especially borehole imaging (Genter et al., 2007). The analyses of these fracture data show that the main strike is consistent between the different imagery logs and the different wells (Fig. 3; (Genter, 1989; Genter et al., 2000; Dezayes et al., 2004)). In EPS1, the coring has begun at 920 m in the lower Muschelkalk. The fractures present in the Buntsandstein formation have been measured and oriented as in the granite. In this sedimentary cover, the fracture network is limited scattering around N175°E. Two conjugate and symmetrical major poles are present, as well as it is more scattered and asymmetrical in the granite. In the granite, the major direction varies from N160°E to north-south with steep dipping eastward and westward. However, the orientations of fractures observed in cores (EPS1) are rather scattered with various dipping values (Fig. 3). In these cores, some faults showing striations have been measured and the Oligocene paleostress states have been retrieved by inversion (Dezayes et al., 1995). Among the fractures in granite, based on borehole image interpretation, seven sets have been isolated by statistical method (Valley, 2007). 60% of fractures belong to two sets striking north–south and dipping to the west and to the east. This orientation corresponds to the Rhenish orientation described at graben and site scales. A subvertical set, striking NW–SE, appears also at large scale but outside of the Rhine Graben in Vosges and Black Forest massif and in the Triassic sediments. Another subvertical perpendicular set, striking NE–SW, is parallel to the Hercynian large-scale faults, like the Lalaye-Lubine-Baden-Baden fault. These four sets include 95% of all fractures found in granite (Valley, 2007). It appears clearly that the granite batholith has recorded a polyphased tectonic history. With depth, the strike of the main north–south sets remains roughly similar, however balance between the dominant dip orientation evolved (Fig. 3). In GPK3 and GPK4, between 1420 to 2700 m True Vertical Depth (TVD), the main fracture set dips to the east. In the middle part of the borehole sections, between 2700 m to about 4800 m depth, the two conjugate sets are equally represented with fracture sets dipping westward and eastward. In the bottom part of the wells, below 4800 to 5000 m depth, the westward set is dominant (Fig. 3). Studies of abutting relations and fracture size in GPK3 and GPK4 also support this repartition with depth (Valley, 2007).

Fig. 3

Fracture orientation in the Soultz wells based in cores and various borehole image logs. For the GPK3 and GPK4 wells, data are grouped in relation with the major petrographical sections (from Hooijkaas et al., 2006). The depths along the wells indicate the upper and the lower depth limits of the petrographical sections (in True Vertical Depth Sub Sea). Contour-density diagrams in Schmidt's projection, lower hemisphere: 10%, 30%, 50%, 70%, and 90% of the maximum frequency. Geology: (1) Sedimentary cover, (2) Standard porphyritic granite, (3) Standard granite with intense vein alteration, (4) Biotite and amphibole rich granite gradually becoming standard granite with depth, (5) Two mica granite and biotite rich granite. Masquer

Fracture orientation in the Soultz wells based in cores and various borehole image logs. For the GPK3 and GPK4 wells, data are grouped in relation with the major petrographical sections (from Hooijkaas et al., 2006). The depths along the ... Lire la suite

Orientation des fractures dans les puits de Soultz à partir de l’analyse des carottes et des images de paroi. Pour les puits GPK3 et GPK4, les données sont regroupées par faciès pétrographique majeur (Hooijkaas et al., 2006). La profondeur le long des puits indique la limite supérieure et inférieure des sections pétrographiques (altitude à partir du niveau marin de l’IGN). Diagramme de densité en projection de Schmidt, hémisphère inférieur, courbes à 10 %, 30 %, 50 %, 70 %, 90 % de la fréquence maximale. Géologie : (1) couverture sédimentaire, (2) granite standard, (3) granite standard avec une altération filonienne intensive, (4) granite riche en amphibole et en biotite évoluant progressivement vers un granite standard. (5) granite à deux micas et granite riche en biotite. Masquer

Orientation des fractures dans les puits de Soultz à partir de l’analyse des carottes et des images de paroi. Pour les puits GPK3 et GPK4, les données sont regroupées par faciès pétrographique majeur (Hooijkaas et al., 2006). La profondeur le ... Lire la suite

5 Determination of fracture zones

In the six wells of the Soultz site, we considered 39 fracture zones, which indicate some potential traces of fluid flow (Table 1, Fig. 4). This list of fracture zone is probably not exhaustive and could be completed later by further data acquisition or processing.

Table 1

Caractéristiques des zones de fracture déterminées dans les puits de Soultz.

Well Name Depth Level TVDss Dip_dir (°E) Dip (°) Thickness (m)
EPS1 EPS1-FZ1010 1012 3 836.637512 130 79
EPS1 EPS1-FZ1200 1198 1 1021.84821 247 74 30
EPS1 EPS1-FZ1640 1643 2 1466.48914 76 58 25
EPS1 EPS1-FZ2180 2179 1 1988.09058 278 53 15
GPK1 GPK1-FZ1015 1015 3 862.00885 270 45
GPK1 GPK1-FZ1220 1220 1 1066.59717 247 74
GPK1 GPK1-FZ1820 1820 1 1666.24219 27 47 10
GPK1 GPK1-FZ2815 2815 2 2657.19238 230 70 8
GPK1 GPK1-FZ3220 3223 3 3064.05273 60 75 15
GPK1 GPK1-FZ3490 3492 2 3332.64502 257 63 8
GPK2 GPK2-FZ2120 2123 1 1953.37292 65 70 15
GPK2 GPK2-FZ3240 3242 3 3069.90625 82 69 0.5
GPK2 GPK2-FZ3350 3347 3 3174.62988 231 84 3
GPK2 GPK2-FZ3515 3514 3 3341.70801 313 56 12
GPK2 GPK2-FZ3900 3900 2 3726.61133 234 64
GPK2 GPK2-FZ4760 4760 2 4544.82227 250 65 No
GPK2 GPK2-FZ4890 4890 3 4668.3252 250 65 Image
GPK2 GPK2-FZ5060 5060 2 4831.29248 250 65 Logs
GPK3 GPK3-FZ1580 1579 3 1410.36487 69 78 8
GPK3 GPK3-FZ1640 1637 3 1468.78821 46 68 8
GPK3 GPK3-FZ1820 1820 3 1651.01147 46 64 3–4
GPK3 GPK3-FZ2040 2042 3 1873.30823 72 65 8
GPK3 GPK3-FZ2045 2046 3 1876.76367 243 69 1
GPK3 GPK3-FZ2090 2092 3 1923.16223 91 76 6
GPK3 GPK3-FZ2970 2970 2 2798.43579 77 82 9
GPK3 GPK3-FZ3270 3271 2 3092.95361 345 85 15
GPK3 GPK3-FZ4090 4089 3 3856.2417 253 62 6
GPK3 GPK3-FZ4770 4775 1 4538.90137 234 64 15
GPK4 GPK4-FZ1720 1723 3 1554.30212 216 69 2
GPK4 GPK4-FZ1800 1801 3 1632.22925 26 80 12
GPK4 GPK4-FZ2820 2817 3 2762.20264 242 86 9
GPK4 GPK4-FZ3940 3940 3 3603.97852 250 68 60
GPK4 GPK4-FZ4360 4361 2 3963.29565 280 77 4
GPK4 GPK4-FZ4620 4620 3 4195.97852 285 78 40
GPK4 GPK4-FZ4710 4712 2 4279.59717 212 50 1
GPK4 GPK4-FZ4970 4973 3 4530.36914 276 81 2
GPK4 GPK4-FZ5050 5012 3 4568.51904 257 85 15
GPK4 GPK4-FZ5100 5100 3 4655.44922 255 69 10
4550 4550-FZ1265 1265 1 1107.95679 260 75 3
Fig. 4

Orientation of fracture zones in each Soultz well. Bold lines and black dots: cyclographic traces and poles of fracture zones of level 1; grey lines and grey dots: cyclographic traces and poles of fracture zones of level 2 (dotted grey line: supposed orientation); dotted line and white dot: cyclographic trace and pole of fracture zones of level 3 (Schmidt's projection, lower hemisphere).

Orientation des zones de fracture dans les différents puits de Soultz. Lignes épaisses noires et points noirs : traces cyclographiques et pôles des zones de fracture de niveau 1 ; lignes grises et points gris : traces cyclographiques et pôles des zones de fracture de niveau 2 (ligne en pointillé gris : orientation hypothétique) ; lignes pointillées noires et points blancs : traces cyclographiques et pôles des zones de fracture de niveau 3.

The fracture zones have been classified within three levels in attempting to reflect their relative scale and importance as fluid flow paths. The first level (1 in the Table 1) concerns the major fracture zones, which have been detected during drilling operations with important mud losses and then are permeable prior to any stimulation operations. The fracture zones of the second level (2 in the Table 1) show flow indication higher than 20% of water losses during stimulation and/or are characterized by the other available geological data to include at least one thick fracture accompanied with a significant halo of hydrothermal alteration. The last level (3 in the Table 1) includes the fracture zones having a poorly developed alteration halo and a flow level below 20% of water losses during stimulation. This level indicates fracture zones of smaller size than those of the two other levels previously defined.

In the three wells EPS1, GPK1 and 4550, a major fault zone intersects the Buntsandstein sediment at around 1200 m (Table 1). This zone has been cored by the EPS1 well and where it forms a large structure containing 3 subzones and presenting fractures with quartz, galena and barite fillings. In the GPK1 and 4550 wells, total drilling mud losses have occurred when drilling through this zone (Herbrich, 1988; Villeneuve and Weber, 1991). In the 4550 well, a BHTV log is available and allows the characterization of the fracture zone. This presents a series of open steeply dipping fractures. However, the orientation value is not very precise due to the rather bad quality of the image log.

In the GPK1 well, another natural brine inflow occurred during the drilling at the depth of the large fracture zone at 1820 m MD (Table 1, (Herbrich, 1988)). At this depth, a very high helium content anomaly was recorded (Vuataz et al., 1990) and other drilling anomalies were reported. This fracture zone contains geodic quartz veins, visible in a core taken at this depth as well as illite (Genter, 1989).

Also, in the upper part of the granite, in GPK2 well, a fracture zone provoking total drilling mud losses has been intersected and no cuttings have been collected below (Genter et al., 1995). The fracture zone at 2120 m MD shows a high altered zone with several open fractures (Table 1). The hydraulic testing of an open hole interval including this fracture zone showed that 95% of the flow rate was absorbed by this zone (Jung et al., 1995). This zone is also believed to be responsible for a large-scale stress perturbation, as highlighted by the analysis of borehole failure (Valley and Evans, 2007).

At greater depths, there are no major fracture zones except at the bottom of the GPK3 well, within the open hole, there is a major fracture zone located around 4770 m MD (Table 1). This zone includes several individual fractures with a cumulative apparent thickness of around 15 m along the well. The K content increases in the hanging wall of the zone and decrease in the center part indicating a high alteration halo. The flow rate shows a 70% outflow matching this zone (Dezayes et al., 2004). Analysis of borehole failure showed that this zone is inducing a major stress perturbation (Valley, 2007). This is the major flow pathway in the geothermal reservoir at lower depth. GPK4 is the only well where there is no level 1 fracture zone (Table 1). The description of the fracture zones is detailed in Dezayes and Genter (2008).

6 Fracture zones characteristics

The orientation of these fracture zones is based on borehole images as described above (Fig. 4). Most of orientations of fracture zones have been determined according to the assumptions cited above. However, some of them are more difficult to estimate and are detailed in the following text. The orientation of the fracture zone in GPK3 at 3270 m, which appears east–west striking (Fig. 4D, Table 1), is very imprecise. The image log quality is locally poor and no correct measure has been done. Moreover, in GPK2, some orientation of fracture zones could not been measured at all. This well was drilled in two times, in 1995 and 1999, and some problems occurred at 3900 m, where the first drilling stopped. At that depth, caliper log indicates the development of a large cave (Genter et al., 1999). Some altered cuttings coming from this zone have been recovered at the end of the drilling operation in 1995. After the deepening in 1999, as this large cave occurs in a significantly deviated part of the well, the UBI tool stuck and no image log has been run below that depth. Later, the borehole has been cased and now, the presence of a casing restriction is suspected due a partial casing collapse induced by the fracture zone. Using 3D visualization (Sausse et al., 2010), we suspect that this fracture zone is the same that the one cross-cutting the bottom of GPK3 well (GPK3-FZ4770 in Table 1). Thus, we assumed that this zone has the same orientation (Table 1). However, due to this GPK2 borehole wall restriction at 3900 m, no logging tools could be run below this depth now. Below 3900 m, only temperature and flow logs are available. Then, we have located three zones with outflow which match with altered zones based on cutting observation. These zones occur at 4760 m with 20% of flow, 4890 m with 17% of flow and 50% of flow below 4960 m which could correspond to a fracture zone occurring at 5060 m, based on cutting observation. As there are no oriented image logs in this section, we have assumed a generic orientation, which is realistic but not proven, N250°E–65° (N160°E–65°W), the dominant orientation of fractures in the deeper part of the Soultz granite (Fig. 4C).

At Soultz, fractures are mainly detected from acoustic borehole images. Thus, apart the location, the dip, and the dip direction of a given fracture, we cannot get any information about the fracture type (extension or shear), the nature of the hydrothermal filling and the fracture length. Moreover, it is rather difficult to derive the fracture thickness of an individual fracture from a borehole images, mainly because the physical significance of a fracture signature. From continuous core analysis done on the referential exploration well (EPS1), more than 3000 of fractures and several fracture zones have been fully characterized (Genter et al., 2007). The distribution of core fracture thickness is governed by a power law and ranges over several decades from 0.1 to 250 mm. The smallest fractures (thickness between 0.1 and 10 mm) correspond mainly to extensional fractures (Mode I) associated to shear fractures, whereas the largest correspond to shear fractures only (Mode II) (Genter et al., 2007). Even with the fine resolution scale core data, the fracture length cannot be estimated and calibration has to be done from outcrops (Gudmundsson et al., 2002).

The fracture zones considered in this paper have been interpreted as composed of shear fractures highly clustered. This results in a fracture zone organization composed of a core zone, a damage zone and hydrothermally altered granite, following the conceptual scheme for fault-related fluid flow (Genter et al., 2002; Genter et al., 2007; Caine et al., 1996; Gudmundsson et al., 2001). Some altered cataclastic shear zones showed a low natural permeability in channels characterized by the occurrence of brines (100 g/L) and were defined as Hydrothermally Altered and Fractured Zones (HAFZ) indicating both high fracture density and strong hydrothermal alteration (Genter, 1989; Genter et al., 2002). Some of those HAFZ were detected during drilling operation and showed a very low initial permeability which has been subsequently improved by hydraulic/chemical stimulations (Evans et al., 2005; Dorbath et al., 2009). Natural fluid circulation in the fractures resulted in both a strong dissolution of the primary minerals such as biotite, plagioclase, and a significant deposition of some altered minerals such as clay minerals (illite), calcite and secondary quartz. Thus, natural permeability which is mainly related to fracture zones, shows a porous damage zone and a fractured core zone (Genter et al., 2002; Evans et al., 2005). In other extensional context, fault zone architecture and permeability structure show a nearly impermeable fault core associated with a rather permeable highly fractured damage zone (Micarelli et al., 2003).

As this granite is not outcropping on surface, fracture zones characteristics have been compared with relevant hard rock analogues occurring in a normal faulting context (Bruhn et al., 1994). For both, fracturing and hydrothermal alteration are intimately linked to the natural permeability conditions. Based on borehole image log data, fracture zone thickness ranges between 0.5 and 60 m with an average value of 12 m (Table 1). Fracture thickness data estimated in volcanic paleogeothermal fields and controlled by large-scale strike-slip fault mechanism show core thickness up to several tens of meters and damage zone thickness up to several hundred meters (Gudmundsson et al., 2001). At Soultz, fracture zone thickness is five to ten times smaller than previously. That could be interpreted in terms of intermediate scale normal faults with moderate offset. In case of an active graben context, the fracture zone thickness data show the same order of magnitude than Soultz (Micarelli et al., 2003).

7 Spatial organization of the fracture zones

Most of the fracture zones characterized in the framework of this study (Table 1) can be attributed to three main concentrations or clusters of fractures zones at about 1800–2000 m, 3000–3400 m and around 4500–5000 m TVD (Fig. 5). In that regard, the borehole GPK4 is somehow untypical, presenting less clearly clustered, steeply dipping fracture (Fig. 5), while in the other wells, fracture zones more consistently correspond to these three fracture zone concentrations. This result was already mentioned previously in the upper part of the granite body, before the deepening of GPK2 and the drilling of GPK3 and GPK4 (Genter et al., 1995; Genter and Castaing, 1997). These three clusters of fracture zones are considered to reflect major fault, equivalent to the fault detected in the sedimentary cover based on seismic reflection (Genter and Castaing, 1997). If we assume that these faults are steeply dipping structures with values higher than 60°, the raw spacing between to consecutive clusters of fracture zones is around 500 m, equivalent to the fault spacing in the sedimentary cover (Valley and Evans, 2007).

Fig. 5

North–south cross-section through the Soultz wells showing all fracture zones determined in this study. Sticks represent the apparent dip of fracture zones through the north–south cross-section. (a) fracture zones level 1, (b) fracture zones level 2, (c) fracture zones level 3, (d) supposed orientation. Pole and contouring diagram of the fracture zones in each cluster (Schmidt's projection, lower hemisphere, contouring diagram: 10%, 30%, 50%, 70%, and 90% of the maximum frequency). Geology: (1) Sedimentary cover, (2) Standard porphyritic granite, (3) Standard granite with intense vein alteration, (4) Biotite and amphibole rich granite gradually becoming standard granite with depth, (5) Two mica granite and biotite rich granite. Masquer

North–south cross-section through the Soultz wells showing all fracture zones determined in this study. Sticks represent the apparent dip of fracture zones through the north–south cross-section. (a) fracture zones level 1, (b) fracture zones level 2, (c) fracture zones level ... Lire la suite

Coupe nord–sud à travers les puits de Soultz montrant les zones de fracture déterminées dans cette étude. Les bâtonnets représentent l’inclinaison apparente des zones de fracture le long de la coupe nord–sud. (a) Zones de fracture de niveau 1, (b) zones de fracture de niveau 2, (c) zones de fracture de niveau 3, (d) orientation hypothétique. Pôles et diagrammes de densité des zones de fracture pour chaque cluster (projection de Schmidt, hémisphère inférieur, courbes à %, 30 %, 50 %, 70 %, 90 % de la fréquence maximale). Géologie : (1) couverture sédimentaire, (2) granite standard, (3) granite standard avec une altération de veine intensive, (4) granite riche en amphibole et en biotite redevenant progressivement un granite standard. (5) granite à deux micas et granite riche en biotite. Masquer

Coupe nord–sud à travers les puits de Soultz montrant les zones de fracture déterminées dans cette étude. Les bâtonnets représentent l’inclinaison apparente des zones de fracture le long de la coupe nord–sud. (a) Zones de fracture de niveau 1, (b) ... Lire la suite

The upper cluster at 1800–2000 m depth (Cluster I in Fig. 5) is located in the unaltered porphyritic granite. This cluster includes major fracture zones qualified as level 1 with permeable zones. The cluster II does not include major level 1 faults. It is located within the fractured and altered granite zone (Fig. 5). This granite facies is characterized by high pervasive alteration related to numerous small-scale fractures present in this zone (Hooijkaas et al., 2006). This facies contains a high proportion of clay and hydrothermal minerals. Possibly, the high fracturing of this facies leads to a generally weaker rock mass where the strain is distributed in small increments over a dense network of smaller fractures, instead of being concentrated by a few major faults. This location corresponds to the upper reservoir stimulated in the first phase of the project in 1997 (Baumgärtner et al., 1996). In this reservoir, a four months circulation test including tracer injection has been performed with success. Then, it appears that there is a good fluid connection in this reservoir between GPK1 and GPK2. The lower cluster (Cluster III in the Fig. 5) is close to the interface between the 2 granite units at 4700 m depth TVD. The deep facies is characterized by massive granite characterized by a low pervasive alteration degree. The cluster III contains major fracture zone as the GPK3-FZ4770. Thus, it appears that the deformation in this facies tends to be localized along major isolated fracture zones. This last cluster is located in the lower reservoir, which has been stimulated previously, and is currently a part of the deep geothermal loop under testing for the electrical production test. Conceptually, this reservoir appears to behave as a fractured reservoir embedded in a low permeable matrix.

Based on this characterization of fracture zones at borehole scale, these major planes have been compared with other fracture information derived from other detection methods in order to build a 3D model (Sausse et al., 2010). These other methods are microseismicity data created within the reservoir during the stimulations of GPK2, GPK3 and GPK4 (Dorbath et al., 2009) and a Vertical Seismic Profiling (VSP) investigation (Place et al., 2010). Some of the fracture zones observed at the well scale match with microseismicity or VSP results. They correspond to fracture zones qualified by level 1 or 2 such as GPK1-FZ3490, GPK2-FZ3900 and GPK3-FZ4770, which match with microseismicity and VSP analysis. Moreover, the dip orientations of the fracture zones are very close and seem to define a large-scale fault intersecting the Soultz basement (Fig. 5). This orientation of the major fracture zone is about N230°E–70° (N140°E–70°W).

In GPK1, two fracture zones at 1820 and 2860 m appear to match with the VSP analysis (Place et al., 2010; Sausse et al., 2010).

In the lower part of the reservoir, two smaller fracture zones in GPK4 match geometrically with the microseismicity analysis at 4620 and 4970 m (Dorbath et al., 2009). These fracture zones are N10°E striking, steeply dipping to the west (Fig. 5).

8 Discussion

The average strike direction of fracture zones characterized in the Buntsandstein sandstones and the granite is N165°E ± 10° and N160°E ± 15° respectively (Fig. 6A1–6B1). A secondary fracture zone set in the Buntsandstein is N40°E striking. In the granite, two secondary sets are present with a N20°E ± 10° and N130°E ± 10° direction. The average dip is higher than 60° (Fig. 6 A1–6B1). These orientations are consistent through the granite and the Buntsandstein sedimentary cover. In both cases, fracture zones dominantly dip to the west. The orientation of mesoscale fractures measured in the Buntsandstein in the EPS1 cores (Fig. 6A2) and in the granite on the borehole images shows a N0°E ± 20° and N175°E ± 30° direction respectively (Fig. 6B2). In the Buntsandstein, dips are equally-balanced between the west and the east, whereas in the granite, more fractures dip to the west. Then, it appears that there is no mechanical decoupling between this both geological brittle units.

Fig. 6

Orientation of fractures zones and mesoscale fractures in the Buntsandstein sediments (A) and in the granite (B). (A1) Traces and poles of fracture zones in the Buntsandstein; (A2) strike rose diagram (10° class angle) of mesoscale fractures measured in EPS1 Buntsandstein cores; (B1) poles and strike rose diagram (10° class angle) of fracture zone in the granite; (B2) strike rose diagram (10° class angle) of mesoscale fractures measured on borehole images in the granite of all wells.

Orientation des zones de fractures et des mésofractures dans les sédiments du Buntsandstein (A) et dans le granite (B). (A1) Traces et pôles des zones de fracture dans le Buntsandstein ; (A2) rosace de direction (classes de 10°) des mésofractures mesurées sur les carottes de Buntsandstein du forage EPS1 ; (B1) pôles et rosace de direction (classes de 10°) des zones de fractures dans le granite ; (B2) rosace de direction (classes de 10°) des mésofractures mesurées sur les images de paroi de tous les forages dans le granite. Masquer

Orientation des zones de fractures et des mésofractures dans les sédiments du Buntsandstein (A) et dans le granite (B). (A1) Traces et pôles des zones de fracture dans le Buntsandstein ; (A2) rosace de direction (classes de 10°) des mésofractures mesurées ... Lire la suite

If we compare the orientation of fracture zones with the mesoscale fractures, we can observe a clockwise rotation of 10–15° for both fractures in the Buntsandstein and in the granite (Fig. 6). However, in all the cases, the west dipping direction is dominating.

In previous studies, these fracture zone concentrations were interpreted as the occurrence of large-scale normal fault zones related to the Rhine Graben tectonics. However, the direction of the fracture zone, as the direction of mesoscale fractures, is slightly different than the major fault orientation observed in the sedimentary cover, which have a Rhenish direction of N20°E and which corresponds to the graben opening at Oligocene. The granite contains numerous fracture orientations related to Hercynian and Alpine tectonics. It seems that the N160°E is an inherited direction, which has been reactivated during the graben tectonic. Thus, the main fracture zone orientation is rather different than those newly created in the sedimentary cover during Cenozoic. A remaining question is: what is the relationship between the major faults in the sedimentary cover and the fracture zone clusters? Ongoing work aims to tackle this question by developing a 3D large-scale geometrical model based on an exhaustive geological database (Castera et al., 2008; Place et al., 2010; Sausse et al., 2010).

Moreover, the average direction of the fracture zones is rather consistent with the present-day stress field with σH N169°E ± 14° (Klee and Rummel, 1993; Valley et al., 2007). Some fracture zones which show flow anomalies or shearing indications appear as small fractures on the borehole image logs. This seems to indicate that critically oriented fractures relatively to the stress state orientation could shear during hydraulic stimulation (Evans, 2005).

9 Conclusions

Characterization of the main fracture zones likely to bear fluid flow prior or after stimulations was achieved along the Soultz wells based on direct (cores, cuttings) and indirect (borehole images, geophysical logs, flow logs, temperature logs) methods. We have compiled and matched these different data to highlight a set of 39 fracture zones intersecting the five boreholes of the geothermal site as well as a peripheral well. This list is not exhaustive and could be completed by further data acquisition or processing.

Knowledge and in situ characterization of fracture zone along the well have to be taken into account for a better understanding of the life time of the geothermal reservoir during early stages of hydraulic or chemical stimulations followed by long-term hydraulic circulations. Due to such hydraulic tests, different thermo-hydromechanical and chemical processes occur at depth in the reservoir and could modify fluid pathways. In the vicinity of the reinjection well GPK3, dominating mechanisms will be a general cooling of the fractured rock mass associated with forced fluid flow provoking thermomechanical stresses mainly. Temperature reduction could also generate some chemical effects inducing mineral dissolution or precipitation and thus strongly modify the fluid pathway during circulation. Close to the production wells GPK2 and GPK4, the pumping due to submersible pumps could also induce some hydromechanical processes in the fractured rock mass. All these complex thermo-hydromechanical coupling will interact with the major fracture zone system and have to be seriously investigated by modeling for the reservoir life time (temperature drawdown, microseismicity risk, reservoir clogging). The fracture zone dataset studied in this paper could be used for modeling the thermohydraulic mechanical behavior of the deep geothermal granite reservoir submitted to prehydraulic or chemical stimulations followed by long-term hydraulic circulations.

Acknowledgements

This work has been carried under financial support of ADEME, Europe and BRGM (EGS3D project). B. Valley contribution was supported by the Swiss State Secretariat for Education and Research, and was performed as a contribution to the European Union's FP6 project “Soultz EGS Pilot Plant” funded by ADEME, BMU, EC and EEIG “Exploitation Minière de la Chaleur”. EHDRA working group 6 and 7 teams are kindly thankful for their contributions and for their fruitful discussion. The authors are very grateful to A. Gudmundsson and an anonymous reviewer for fruitful comments and manuscript improvements.


Bibliographie

[Baujard and Bruel, 2005] Baujard C. and Bruel D., 2005. Recent results on the impact of fluid density on the pressure distribution and stimulated area in the reservoir using a finite volume numerical code. Proceedings of the EHDRA scientific conference, 14–18 March 2005, Soultz-sous-Forêts, France.

[Baumgärtner et al., 1996] Baumgärtner J., Jung R., Gérard A., Baria R., Garnish J., 1996. The European HDR project at Soultz-sous-Forêts: stimulation of the second deep well and first circulation experiments. Twenty-first Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, California, USA, 267–274.

[Bruhn et al., 1994] Bruhn R.L., Parry W.T., Yonkee W.A., Thompson T., 1994. Fracturing and hydrothermal alteration in normal fault zones. PAGEOPH, v. 142, no. 3/4, 609–644.

[Caine et al., 1996] J.S. Caine; J.P. Evans; C.B. Forster Fault zone architecture and permeability structure, Geology, Volume 24 (1996), pp. 1025-1028

[Castera et al., 2008] Castera J., Dezayes C., Calcagno P., 2008. Large-scale 3D geological model around the Soultz site, Proceedings of the EHDRA scientific conference, 24–25 September 2008, Soultz-sous-Forêts, France.

[Cocherie et al., 2004] A. Cocherie; C. Guerrot; C.M. Fanning; A. Genter Datation U-Pb des deux faciès du granite de Soultz (Fossé Rhénan, France), C. R. Geoscience, Volume 336 (2004), pp. 775-787

[Cuenot et al., 2006] N. Cuenot; J. Charléty; L. Dorbath; H. Haessler Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France, Geothermics, Volume 35 (2006) no. 5–6, pp. 561-575

[Dezayes et al., 1995] C. Dezayes; T. Villemin; A. Genter; H. Traineau; J. Angelier Analysis of fractures in boreholes of the Hot Dry Rock project at Soultz-sous-Forêts (Rhine Graben, France), Sci. Drilling, Volume 5 (1995), pp. 31-41

[Dezayes et al., 2000] C. Dezayes; Th. Villemin; A. Pêcher Microfracture pattern compared to core scale fractures in the borehole of Soultz-sous-Forêts granite, Rhine Graben, France, J. Struct. Geol., Volume 22 (2000), pp. 723-733

[Dezayes et al., 2004] C. Dezayes; A. Genter; S. Gentier Fracture network of the EGS Geothermal Reservoir at Soultz-sous-Forêts (Rhine Graben, France), Geothermal Resources Council Transactions, Palm Springs, California, USA, Volume 28 (2004), pp. 213-218

[Dezayes et al., 2005] Dezayes C., Gentier S., Genter A., 2005. Deep Geothermal energy in Western Europe: the Soultz project. BRGM/RP-54227-FR, 48 p.

[Dezayes and Genter, 2008] Dezayes C., Genter A., 2008. Large-scale fracture network based on Soultz borehole data. EHDRA Scientific Conference, Proceedings of the EHDRA scientific conference 24–25 September 2008, Soultz-sous-Forêts, France.

[Dorbath et al., 2009] Dorbath L., Cuenot N., Genter A., Frogneux M., 2009. Seismic response of the fractured and faulted granite to massive water injection at 5 km depth at Soultz-sous-Forêts (France), Geophys. Inter. J., doi: 10.1111/j.1365-246X.2009.04030.x.

[Evans, 2000] Evans K.F., (2000). The effect of the 1993 stimulations of well GPK1 at Soultz on the surrounding rock mass: evidence for the existence of a connected network of permeable fractures. World Geothermal Congress 2000, Kyushu - Tohoku, Japan.

[Evans, 2005] K.F. Evans Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: Part 2 - Critical stress and fracture strength, J. Geophys. Res., Volume 110 (2005), p. 14 (B04204)

[Evans et al., 2005] K.F. Evans; A. Genter; J. Sausse Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: Part 1 - Borehole observations, J. Geophys. Res., Volume 110 (2005), p. 19 (B04203)

[Foehn, 1985] Foehn J.P., 1985. Interprétation des campagnes sismiques 1981 et 1984, concession de Pechelbronn, permis de Haguenau. Total Exploration internal report, October 1985.

[Genter, 1989] Genter A., 1989. Géothermie Roches Chaudes Sèches: le granite de Soultz-sous-Forêts (Bas-Rhin, France). Fracturation naturelle, altérations hydrothermales et interaction eau - roche. PhD thesis, Université d’Orléans, France, 201 p.

[Genter et al., 1995] A. Genter; H. Traineau; C. Dezayes; P. Elsass; B. Ledésert; A. Meunier; T. Villemin Fracture analysis and reservoir characterization of the granitic basement in the HDR Soultz project (France), Geothermal Sci. Technol., Volume 4 (1995) no. 3, pp. 189-214

[Genter et al., 1997] A. Genter; C. Castaing; C. Dezayes; H. Tenzer; H. Traineau; T. Villemin Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France), J. Geophys. Res., Volume 102 (1997) no. B7, pp. 15419-15431

[Genter and Castaing, 1997] A. Genter; C. Castaing Effets d’échelle dans la fracturation des granites; Scale effects in the fracturing of granite, C. R. Acad. Sci. Paris, Ser. IIa, Volume 325 (1997) no. 6, pp. 439-445

[Genter et al., 1999] Genter A., Homeier G., Chèvremont P., Tenzer H., 1999. Deepening of GPK-2 HDR borehole, 3880–5090 m (Soultz-sous-Forêts, France). Geological monitoring. Open file report BRGM/RR-40685-FR, 81 pp.

[Genter et al., 2000] Genter A., Traineau H., Bourgine B., Ledésert B., Gentier S., 2000. Over 10 years of geological investigations within the European Soultz HDR project, France. Proceedings of the World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28 – June 10, 2000, Full length paper on Cd-Rom, Editors E. Iglesias, D. Blackwell, T. Hunt, J. Lund, S. Tamanyu, 3707–3712.

[Genter et al., 2002] Genter A., Dezayes C., Gentier S., Ledésert B., Sausse J., 2002. Conceptual fracture model at Soultz based on geological data. Geologisches Jahrbuch: Sondehefte: Reihe E. Geophysik; H. SE 1, 4th International Hot Dry Rock (HDR) Forum, Strasbourg, France, Sept. 28–30 1998, 93–102.

[Genter et al., 2007] Genter A., Cuenot N., Dezayes C., Sausse J., Valley B., Baumgartner J., Fritsch D., 2007. How a better characterization of a deep crystalline reservoir can contribute to improve EGS performance at Soultz, First European Geothermal Review, Geothermal Energy for Electric Power Production, October 29–31, 2007, Mainz, Rhineland Palatinate, Germany, Abstracts and Papers, 34–40.

[Gentier et al., 2000] Gentier S., Hopkins D., Riss J., 2000. Role of fracture geometry in the evolution of flow paths under stress. In: Geophysical monograph 122: “Dynamics of fluids in fractured rocks”, 169–184.

[Gérard et al., 1984] A. Gérard; A. Menjoz; P. Schwoerer L’anomalie thermique de Soultz-sous-Forêts, Geotherm. Actualites (1984) no. 3, pp. 35-42

[Gérard and Kappelmeyer, 1987] Gérard A., Kappelmeyer O., 1987. The Soultz-sous-Forêts project: Proceedings of the first EEC/US workshop on geothermal Hot dry Rocks Technology, Geothermics, Special issue, 393–399.

[Gérard et al., 2006] A. Gérard; A. Genter; T. Kohl; P. Lutz; P. Rose; F. Rummel The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France), Geothermics, Volume 35 (2006) no. 5–6, pp. 473-483

[Gudmundsson et al., 2001] A. Gudmundsson; S.S. Berg; K.B. Lyslo; E. Skurtveit Fracture networks and fluid transport in active fault zones, J. Struct. Geol., Volume 23 (2001), pp. 343-353

[Gudmundsson et al., 2002] A. Gudmundsson; I. Fjeldskaar; S.L. Brenner Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields, J. Volc. Geoth. Res., Volume 116 (2002), pp. 257-278

[Herbrich, 1988] Herbrich B., 1988. Forage géothermique de Soultz-sous-Forêts (GPK1). Rapport de fin de sondage. Rapport CFG no 88 CFG 03, janvier 1988.

[Hooijkaas et al., 2006] G.R. Hooijkaas; A. Genter; C. Dezayes Deep-seated geology of the granite intrusions at the Soultz EGS site based on data from 5 km-deep boreholes, Geothermics, Volume 35 (2006) no. 5–6, pp. 484-506

[Illies, 1972] H. Illies The Rhine Graben rift system - plate tectonic and transform faulting, Geophys. Surv., Volume 1 (1972), pp. 27-60

[Illies, 1975] J.H. Illies Recent and paleo-intraplate tectonics in stable Europe and the Rhinegraben rift system, Tectonophysics, Volume 29 (1975), pp. 251-264

[Jung et al., 1995] Jung R., Reich W., Engelking U., Hettkamp T., Weidler R., 1995. Hydraulic tests in 1995 at the HDR Project, Soultz-sous-Forêts, France, Field Report, Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany.

[Klee and Rummel, 1993] G. Klee; F. Rummel Hydrofrac stress data for the European HDR research project test site Soultz-sous-Forêts, Int. J. Rock Mech. Mining Sci. Geomechan. Abstr., Volume 30 (1993) no. 7, pp. 973-976

[Kohl and Megel, 2005] Kohl T. and Megel T., 2005. Numerical modelling of hydraulic stimulations at Soultz-sous-Forêts. Proceedings of the EHDRA scientific conference, 17–18 March 2005, Soultz-sous-Forêts, France.

[Menillet et al., 1989] Ménillet F. et al., 1989. Carte géologique de Lembach à 1/50 000. Feuille no 168, Édition du BRGM.

[Micarelli et al., 2003] L. Micarelli; I. Moretti; J.M. Daniel Structural properties of rift-related normal faults: the case study of the Gulf of Corinth, Greece, J. Geodyn., Volume 36 (2003), pp. 275-303

[Nami et al., 2008] Nami P., Schellschmidt R., Schindler M., Tischner T., 2008. Chemical stimulation operations for reservoir development of the deep crystalline HDR/EGS system at Soultz-sous-Forêts (France), Proceedings, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, USA, January 28–30, 2008, SGP-TR-185.

[Place et al., 2010] Place J., Diraison M., Naville C., Geraud Y., Schaming M., Dezayes C., 2010. Decoupling of deformation in the Upper Rhine Graben sediments seen by seismic reflection and coupled analysis of diffraction on 3-component Vertical Seismic Profiling (Soultz-sous-Forêts area). C.R. Geoscience, this issue.

[Portier et al., 2009] Portier S., Vuataz F.-D., Nami P., Sanjuan B., Gérard A., 2009. Chemical stimulation techniques for geothermal wells: experiments on the 3-well EGS system at Soultz-sous-Forêts. Geothermics 38, 349–359.

[Rachez et al., 2006] Rachez X., Gentier S., Blaisonneau A., 2006. Hydromechanical behaviour of GPK3 and GPK4 during the hydraulic stimulation tests – Influence of the stress field. Proceedings of the EHDRA scientific conference, Soultz-sous-Forêts, France.

[Renard and Courrioux, 1994] P. Renard; G. Courrioux Three-dimensional geometric modelling of faulted domain: The Soultz horst example (Alsace, France), Comput. Geosci., Volume 20 (1994) no. 9, pp. 1379-1390

[Rotstein et al., 2006] Y. Rotstein; J.B. Edel; G. Gabriel; D. Boulanger; M. Schaming; M. Munschy Insight into the structure of the Upper Rhine Graben and its basement from a new compilation of Bouguer Gravity, Tectonophysics, Volume 425 (2006) no. 1–4, pp. 55-70

[Sanjuan et al., 2006] B. Sanjuan; J.-L. Pinault; P. Rose; A. Gérard; M. Brach; G. Braibant; C. Crouzet; J.-C. Foucher; A. Gautier; S. Touzelet Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005, Geothermics, Volume 35 (2006) no. 5–6, pp. 622-653

[Sausse et al., 2010] Sausse J., Dezayes C., Dorbath L., Genter A., Place J., 2010. 3D fracture zone network at Soultz based on geological data, Image logs, microseismic events and VSP results, C.R. Geoscience, this issue.

[Stussi et al., 2002] J.-M. Stussi; J.M. Cheilletz; J.J. Royer; P. Chèvremont; G. Féraud The hidden monzogranite of Soultz-sous-Forêts (Rhine Graben, France), Mineralogy, petrology and genesis, Geol. Fr, Volume 1 (2002), pp. 45-64

[Valley, 2007] Valley B., 2007. The relation between natural fracturing and stress heterogeneities in deep-seated crystalline rocks at Soultz-sous-Forêts (France), PhD thesis, ETH-Zürich, Switzerland, http://e-collection.ethbib.ethz.ch/view/eth:30407, 260 p.

[Valley and Evans, 2007] Valley B., Evans K.F., 2007. Stress state at Soultz-sous-Forêts to 5 km depth from wellbore failure and hydraulic observations. Thirty-Second Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, USA, January 28–30, 2008, SGP-TR-183, 329–338.

[Valley et al., 2007] Valley B., Dezayes C., Genter A., 2007. Multiscale fracturing in the Soultz-sous-Forêts basement from borehole image analyses. Proceedings EHDRA Scientific Conference, 28 & 29 June 2007, Soultz-sous-Forêts, France, 14 p.

[Villemin and Bergerat, 1987] Th. Villemin; F. Bergerat L’évolution structurale du fossé rhénan au cours du Cénozoïque : un bilan de la déformation et des effets thermiques de l’extension, Bull. Soc. geol. France, Volume III (1987) no. 2, pp. 245-255

[Villeneuve and Weber, 1991] Villeneuve B., Weber R., 1991. Forages pour observations sismiques de Soultz-sous-Forêts. Rapport de fin de forages. BRGM-CCE.

[Vuataz et al., 1990] Vuataz F.-D., Brach M., Criaud A., Fouillac C., 1990. Geochemical monitoring of drilling fluids: a powerful tool to forecast and detect formation waters. SPE, Formation Evaluation, June 1990, 177–184.

[Ziegler, 1992] P. Ziegler European Cenozoic rift system, Tectonophysics, Volume 2008 (1992), pp. 91-111


Cité par

  • O Lengliné; V Maurer; A Yorillo Intermittent induced seismicity during the multiyear operation of a geothermal reservoir, Geophysical Journal International, Volume 242 (2025) no. 1 | DOI:10.1093/gji/ggaf160
  • Dariush Javani; Jean Schmittbuhl; François Cornet Pressure propagation during hydraulic stimulation: case study of the 2000 stimulation at Soultz-sous-Forêts, Geothermal Energy, Volume 13 (2025) no. 1 | DOI:10.1186/s40517-025-00333-w
  • Song Wang; Luqing Zhang; Lin Cong; Jian Zhou; Duoxing Yang; Xiufeng Zhang; Zhenhua Han Three-Dimensional Lattice Modeling of Interaction Behavior Between Hydraulic Fractures and Natural Fractures with Varied Morphologies in Hot Dry Rock, Rock Mechanics and Rock Engineering, Volume 58 (2025) no. 3, p. 2971 | DOI:10.1007/s00603-024-04324-4
  • Yingge Li; Xin Wang; Peixian Yu; Xiangxin Zhao; Dong Wang; Dongxing Du A pore-scale numerical study on the two-phase flow characteristics in fractured porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 684 (2024), p. 133257 | DOI:10.1016/j.colsurfa.2024.133257
  • Marietta W. Mutonga; Yasuhiro Fujimitsu Identification of natural subsurface structures using borehole images, temperature logs and pertinent data: A case study of the Menengai geothermal field, Kenya, Geoenergy Science and Engineering, Volume 237 (2024), p. 212797 | DOI:10.1016/j.geoen.2024.212797
  • K. Drif; O. Lengliné; J. Kinscher; J. Schmittbuhl Induced Seismicity Controlled by Injected Hydraulic Energy: The Case Study of the EGS Soultz‐Sous‐Forêts Site, Journal of Geophysical Research: Solid Earth, Volume 129 (2024) no. 6 | DOI:10.1029/2023jb028190
  • Gaixia Cui; Shouyu Xu; Qinlian Wei; Yimeng Yang; Jin Hu; Tuoping He The influence of diagenesis on the quality of tight sandstone reservoirs in Longdong, Ordos Basin, Journal of Petroleum Exploration and Production Technology, Volume 14 (2024) no. 12, p. 3331 | DOI:10.1007/s13202-024-01883-8
  • Béatrice A. Ledésert Application of Minerals for the Characterization of Geothermal Reservoirs and Cap Rock in Intracontinental Extensional Basins and Volcanic Islands in the Context of Subduction, Minerals, Volume 14 (2024) no. 3, p. 263 | DOI:10.3390/min14030263
  • Melvin B. Diaz; Sang Seob Kim; Hanna Kim; Tae Sup Yun; Kwang Yeom Kim Roughness Characterization of Hydraulically Induced Fractures in Anisotropic Granite, Rock Mechanics and Rock Engineering, Volume 57 (2024) no. 9, p. 7691 | DOI:10.1007/s00603-024-03890-x
  • Mrityunjay Singh; Saeed Mahmoodpour; Reza Ershadnia; Mohamad Reza Soltanian; Ingo Sass Comparative study on heat extraction from Soultz-sous-Forêts geothermal field using supercritical carbon dioxide and water as the working fluid, Energy, Volume 266 (2023), p. 126388 | DOI:10.1016/j.energy.2022.126388
  • Yongzan Liu; Lijun Liu; Ge Jin; Kan Wu; Matthew Reagan; George Moridis Simulation-based evaluation of the effectiveness of fiber-optic sensing in monitoring and optimizing water circulation in next-generation enhanced geothermal systems, Geoenergy Science and Engineering, Volume 221 (2023), p. 211378 | DOI:10.1016/j.geoen.2022.211378
  • Yilong Yuan; Wei Wang; Jiawei Tang; Qiang Guo; Yulong Liu; Shuyang Liu Fracture Initiation and Propagation in the Hot Dry Rock Subject to the Cyclic Injection Hydraulic Fracturing Treatment, Geofluids, Volume 2023 (2023), p. 1 | DOI:10.1155/2023/8859177
  • Alexandra R. L. Kushnir; Michael J. Heap; Patrick Baud; Thierry Reuschlé; Jean Schmittbuhl Reactivation of variably sealed joints and permeability enhancement in geothermal reservoir rocks, Geothermal Energy, Volume 11 (2023) no. 1 | DOI:10.1186/s40517-023-00271-5
  • Warwick M. Kissling; Cécile Massiot Modelling of flow through naturally fractured geothermal reservoirs, Taupō Volcanic Zone, New Zealand, Geothermal Energy, Volume 11 (2023) no. 1 | DOI:10.1186/s40517-023-00262-6
  • Ali Dashti; Maziar Gholami Korzani; Christophe Geuzaine; Robert Egert; Thomas Kohl Impact of structural uncertainty on tracer test design in faulted geothermal reservoirs, Geothermics, Volume 107 (2023), p. 102607 | DOI:10.1016/j.geothermics.2022.102607
  • Viacheslav V. Spichak; Olga K. Zakharova Modelling of electromagnetic predicting geothermal reservoir properties while drilling exploration borehole: Soultz-sous-Forêts (France) case study, International Communications in Heat and Mass Transfer, Volume 140 (2023), p. 106563 | DOI:10.1016/j.icheatmasstransfer.2022.106563
  • Dijie Zhu; Lingfan Zhang; Xiaoxia Song; Haojie Lian; Dong Niu Propagation mechanism of the hydraulic fracture in layered-fractured-plastic formations, International Journal of Fracture, Volume 241 (2023) no. 2, p. 189 | DOI:10.1007/s10704-023-00694-y
  • V. V. Spichak; O. K. Zakharova Neural Network Modeling of Electromagnetic Prediction of Geothermal Reservoir Properties, Izvestiya, Physics of the Solid Earth, Volume 59 (2023) no. 1, p. 64 | DOI:10.1134/s1069351323010068
  • Viacheslav V. Spichak; Alexandra G. Goidina; Olga K. Zakharova Porosity and water saturation predicting beyond boreholes from electromagnetic sounding and core sample data: Soultz-sous-Forêts (France) case study, Journal of Applied Geophysics, Volume 212 (2023), p. 104991 | DOI:10.1016/j.jappgeo.2023.104991
  • Matthis Frey; Jeroen van der Vaart; Kristian Bär; Claire Bossennec; Philippe Calcagno; Chrystel Dezayes; Ingo Sass Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben, Natural Resources Research, Volume 32 (2023) no. 1, p. 213 | DOI:10.1007/s11053-022-10138-4
  • Haiyang Jiang; Liangliang Guo; Fengxin Kang; Fugang Wang; Yanling Cao; Zhe Sun; Meng Shi Geothermal Characteristics and Productivity Potential of a Super-Thick Shallow Granite-Type Enhanced Geothermal System: A Case Study in Wendeng Geothermal Field, China, Sustainability, Volume 15 (2023) no. 4, p. 3551 | DOI:10.3390/su15043551
  • V. V. Spichak; O. K. Zakharova Neural Network Modeling of Electromagnetic Prediction of Geothermal Reservoir Properties, Физика земли (2023) no. 1, p. 67 | DOI:10.31857/s0002333723010064
  • Saeed Mahmoodpour; Mrityunjay Singh; Ramin Mahyapour; Sri Kalyan Tangirala; Kristian Bär; Ingo Sass Numerical Simulation of Thermo-Hydro-Mechanical Processes at Soultz-sous-Forêts, Energies, Volume 15 (2022) no. 24, p. 9285 | DOI:10.3390/en15249285
  • Wei Wu; Marco Calò; Zhou Fang Laboratory evidence for slip evolution of granite fractures due to chemical stimulation in geothermal reservoirs, Engineering Geology, Volume 306 (2022), p. 106773 | DOI:10.1016/j.enggeo.2022.106773
  • Margaux Goupil; Michael J. Heap; Patrick Baud Permeability anisotropy in sandstones from the Soultz-sous-Forêts geothermal reservoir (France): implications for large-scale fluid flow modelling, Geothermal Energy, Volume 10 (2022) no. 1 | DOI:10.1186/s40517-022-00243-1
  • Matthis Frey; Kristian Bär; Ingrid Stober; John Reinecker; Jeroen van der Vaart; Ingo Sass Assessment of deep geothermal research and development in the Upper Rhine Graben, Geothermal Energy, Volume 10 (2022) no. 1 | DOI:10.1186/s40517-022-00226-2
  • V. Spichak; O. Zakharova Permeability estimating beyond boreholes from electrical conductivity data determined from magnetotelluric sounding: Soultz-sous-Forêts site (France) case study, Geothermics, Volume 105 (2022), p. 102513 | DOI:10.1016/j.geothermics.2022.102513
  • Mohammad Javad Afshari Moein; Keith F. Evans; Benoît Valley; Kristian Bär; Albert Genter Fractal characteristics of fractures in crystalline basement rocks: Insights from depth-dependent correlation analyses to 5 km depth, International Journal of Rock Mechanics and Mining Sciences, Volume 155 (2022), p. 105138 | DOI:10.1016/j.ijrmms.2022.105138
  • Gaosheng Wang; Xiaodong Ma; Xianzhi Song; Gensheng Li Modeling flow and heat transfer of fractured reservoir: Implications for a multi-fracture enhanced geothermal system, Journal of Cleaner Production, Volume 365 (2022), p. 132708 | DOI:10.1016/j.jclepro.2022.132708
  • Meng Meng; Luke P. Frash; Wenfeng Li; Nathan J. Welch; J. William Carey; Joseph Morris; Ghanashyam Neupane; Craig Ulrich; Timothy Kneafsey Hydro‐Mechanical Measurements of Sheared Crystalline Rock Fractures With Applications for EGS Collab Experiments 1 and 2, Journal of Geophysical Research: Solid Earth, Volume 127 (2022) no. 2 | DOI:10.1029/2021jb023000
  • Matthis Frey; Claire Bossennec; Lukas Seib; Kristian Bär; Eva Schill; Ingo Sass Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany, Solid Earth, Volume 13 (2022) no. 6, p. 935 | DOI:10.5194/se-13-935-2022
  • Jianan XU; Bo FENG; Zhenpeng CUI; Xiyao LIU; Zunsong KE; Guanhong FENG Comparative Study of Acid and Alkaline Stimulants with Granite in an Enhanced Geothermal System, Acta Geologica Sinica - English Edition, Volume 95 (2021) no. 6, p. 1926 | DOI:10.1111/1755-6724.14870
  • Elżbieta Węglińska; Andrzej Leśniak Induced Seismicity and Detailed Fracture Mapping as Tools for Evaluating HDR Reservoir Volume, Energies, Volume 14 (2021) no. 9, p. 2593 | DOI:10.3390/en14092593
  • Saeed Mahmoodpour; Mrityunjay Singh; Aysegul Turan; Kristian Bär; Ingo Sass Hydro-Thermal Modeling for Geothermal Energy Extraction from Soultz-sous-Forêts, France, Geosciences, Volume 11 (2021) no. 11, p. 464 | DOI:10.3390/geosciences11110464
  • Clément Baujard; Pauline Rolin; Éléonore Dalmais; Régis Hehn; Albert Genter Soultz-sous-Forêts Geothermal Reservoir: Structural Model Update and Thermo-Hydraulic Numerical Simulations Based on Three Years of Operation Data, Geosciences, Volume 11 (2021) no. 12, p. 502 | DOI:10.3390/geosciences11120502
  • P. Salinas; G. Regnier; C. Jacquemyn; C.C. Pain; M.D. Jackson Dynamic mesh optimisation for geothermal reservoir modelling, Geothermics, Volume 94 (2021), p. 102089 | DOI:10.1016/j.geothermics.2021.102089
  • Pengliang Yu; David Dempsey; Rosalind Archer A three-dimensional coupled thermo-hydro-mechanical numerical model with partially bridging multi-stage contact fractures in horizontal-well enhanced geothermal system, International Journal of Rock Mechanics and Mining Sciences, Volume 143 (2021), p. 104787 | DOI:10.1016/j.ijrmms.2021.104787
  • Ryan Haagenson; Harihar Rajaram Seismic Diffusivity and the Influence of Heterogeneity on Injection‐Induced Seismicity, Journal of Geophysical Research: Solid Earth, Volume 126 (2021) no. 6 | DOI:10.1029/2021jb021768
  • Carole Glaas; Jeanne Vidal; Albert Genter Structural characterization of naturally fractured geothermal reservoirs in the central Upper Rhine Graben, Journal of Structural Geology, Volume 148 (2021), p. 104370 | DOI:10.1016/j.jsg.2021.104370
  • Morgan Tranter; Marco De Lucia; Michael Kühn Barite Scaling Potential Modelled for Fractured-Porous Geothermal Reservoirs, Minerals, Volume 11 (2021) no. 11, p. 1198 | DOI:10.3390/min11111198
  • Carole Glaas; Patricia Patrier; Jeanne Vidal; Daniel Beaufort; Albert Genter Clay Mineralogy: A Signature of Granitic Geothermal Reservoirs of the Central Upper Rhine Graben, Minerals, Volume 11 (2021) no. 5, p. 479 | DOI:10.3390/min11050479
  • Rike Koepke; Emmanuel Gaucher; Thomas Kohl Pseudo-probabilistic identification of fracture network in seismic clouds driven by source parameters, Geophysical Journal International, Volume 223 (2020) no. 3, p. 2066 | DOI:10.1093/gji/ggaa441
  • L. Guglielmetti; F. Poletto; P. Corubolo; A. Bitri; C. Dezayes; B.M. Farina; F. Martin; F. Meneghini; A. Moscariello; C. Nawratil de Bono; A. Schleifer Results of a walk‐above vertical seismic profiling survey acquired at the Thônex‐01 geothermal well (Switzerland) to delineate fractured carbonate formations for geothermal development, Geophysical Prospecting, Volume 68 (2020) no. 4, p. 1139 | DOI:10.1111/1365-2478.12912
  • Béatrice A. Ledésert; Ronan L. Hébert How Can Deep Geothermal Projects Provide Information on the Temperature Distribution in the Upper Rhine Graben? The Example of the Soultz-Sous-Forêts-Enhanced Geothermal System, Geosciences, Volume 10 (2020) no. 11, p. 459 | DOI:10.3390/geosciences10110459
  • Vincent Maurer; Emmanuel Gaucher; Marc Grunberg; Rike Koepke; Romain Pestourie; Nicolas Cuenot Seismicity induced during the development of the Rittershoffen geothermal field, France, Geothermal Energy, Volume 8 (2020) no. 1 | DOI:10.1186/s40517-020-0155-2
  • Jamie I. Farquharson; Alexandra R. L. Kushnir; Bastien Wild; Patrick Baud Physical property evolution of granite during experimental chemical stimulation, Geothermal Energy, Volume 8 (2020) no. 1 | DOI:10.1186/s40517-020-00168-7
  • Robert Egert; Maziar Gholami Korzani; Sebastian Held; Thomas Kohl Implications on large-scale flow of the fractured EGS reservoir Soultz inferred from hydraulic data and tracer experiments, Geothermics, Volume 84 (2020), p. 101749 | DOI:10.1016/j.geothermics.2019.101749
  • Chao Zeng; Wen Deng; Chenglin Wu; Matt Insall Thermal effect of cold fluid injection on fracture integrity of host rock: a microscale analysis of single asperity, Geothermics, Volume 87 (2020), p. 101872 | DOI:10.1016/j.geothermics.2020.101872
  • Martin Ziegler; Keith F. Evans Comparative study of Basel EGS reservoir faults inferred from analysis of microseismic cluster datasets with fracture zones obtained from well log analysis, Journal of Structural Geology, Volume 130 (2020), p. 103923 | DOI:10.1016/j.jsg.2019.103923
  • Michael J. Heap; Darren M. Gravley; Ben M. Kennedy; H. Albert Gilg; Elisabeth Bertolett; Shaun L.L. Barker Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: The Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand), Journal of Volcanology and Geothermal Research, Volume 390 (2020), p. 106703 | DOI:10.1016/j.jvolgeores.2019.106703
  • Songcai Han; Yuanfang Cheng; Qi Gao; Chuanliang Yan; Jincheng Zhang Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System, Renewable Energy, Volume 149 (2020), p. 1214 | DOI:10.1016/j.renene.2019.10.114
  • Peng Zhao; Zi-jun Feng Thermal Deformation of Granite under Different Temperature and Pressure Pathways, Advances in Materials Science and Engineering, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/7869804
  • Philippe Duringer; Coralie Aichholzer; Sergio Orciani; Albert Genter The complete lithostratigraphic section of the geothermal wells in Rittershoffen (Upper Rhine Graben, eastern France): a key for future geothermal wells, BSGF - Earth Sciences Bulletin, Volume 190 (2019), p. 13 | DOI:10.1051/bsgf/2019012
  • Songcai Han; Yuanfang Cheng; Qi Gao; Chuanliang Yan; Zhongying Han; Jincheng Zhang Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo‐poroelastic effects, Energy Science Engineering, Volume 7 (2019) no. 5, p. 1705 | DOI:10.1002/ese3.386
  • Jian Guo; Wenjiong Cao; Yiwei Wang; Fangming Jiang A novel flow-resistor network model for characterizing enhanced geothermal system heat reservoir, Frontiers in Energy, Volume 13 (2019) no. 1, p. 99 | DOI:10.1007/s11708-018-0555-1
  • Jeanne Vidal; Régis Hehn; Carole Glaas; Albert Genter How Can Temperature Logs Help Identify Permeable Fractures and Define a Conceptual Model of Fluid Circulation? An Example from Deep Geothermal Wells in the Upper Rhine Graben, Geofluids, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/3978364
  • Jessica Freymark; Judith Bott; Mauro Cacace; Moritz Ziegler; Magdalena Scheck-Wenderoth Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben, Geofluids, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/7520714
  • Chrystel Dezayes; Catherine Lerouge Reconstructing Paleofluid Circulation at the Hercynian Basement/Mesozoic Sedimentary Cover Interface in the Upper Rhine Graben, Geofluids, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/4849860
  • Carole Glaas; Jeanne Vidal; Patricia Patrier; Jean-François Girard; Daniel Beaufort; Sabine Petit; Albert Genter How Do Secondary Minerals in Granite Help Distinguish Paleo- from Present-Day Permeable Fracture Zones? Joint Interpretation of SWIR Spectroscopy and Geophysical Logs in the Geothermal Wells of Northern Alsace, Geofluids, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/8231816
  • V. A. Petrov; M. Lespinasse; V. V. Poluektov; S. A. Ustinov; V. A. Minaev Scale Effect in a Fluid-Conducting Fault Network, Geology of Ore Deposits, Volume 61 (2019) no. 4, p. 293 | DOI:10.1134/s1075701519040056
  • Michael J. Heap; Alexandra R. L. Kushnir; H. Albert Gilg; Marie E. S. Violay; Pauline Harlé; Patrick Baud Petrophysical properties of the Muschelkalk from the Soultz-sous-Forêts geothermal site (France), an important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben, Geothermal Energy, Volume 7 (2019) no. 1 | DOI:10.1186/s40517-019-0145-4
  • Michael J. Heap; Marlène Villeneuve; Alexandra R.L. Kushnir; Jamie I. Farquharson; Patrick Baud; Thierry Reuschlé Rock mass strength and elastic modulus of the Buntsandstein: An important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben, Geothermics, Volume 77 (2019), p. 236 | DOI:10.1016/j.geothermics.2018.10.003
  • Bérénice Vallier; Vincent Magnenet; Jean Schmittbuhl; Christophe Fond Large scale hydro-thermal circulation in the deep geothermal reservoir of Soultz-sous-Forêts (France), Geothermics, Volume 78 (2019), p. 154 | DOI:10.1016/j.geothermics.2018.12.002
  • HanYi Wang Hydraulic fracture propagation in naturally fractured reservoirs: Complex fracture or fracture networks, Journal of Natural Gas Science and Engineering, Volume 68 (2019), p. 102911 | DOI:10.1016/j.jngse.2019.102911
  • Mohammad Javad Afshari Moein; Benoît Valley; Keith F. Evans Scaling of Fracture Patterns in Three Deep Boreholes and Implications for Constraining Fractal Discrete Fracture Network Models, Rock Mechanics and Rock Engineering, Volume 52 (2019) no. 6, p. 1723 | DOI:10.1007/s00603-019-1739-7
  • Mahdi BEHYARI; Javad NOURALIEE; Davar EBRAHIMI Structural Control on the Salmas Geothermal Region, Northwest Iran, from Fractal Analysis and Paleostress Data, Acta Geologica Sinica - English Edition, Volume 92 (2018) no. 5, p. 1728 | DOI:10.1111/1755-6724.13673
  • Marlène C. Villeneuve; Michael J. Heap; Alexandra R. L. Kushnir; Tao Qin; Patrick Baud; Guanglei Zhou; Tao Xu Estimating in situ rock mass strength and elastic modulus of granite from the Soultz-sous-Forêts geothermal reservoir (France), Geothermal Energy, Volume 6 (2018) no. 1 | DOI:10.1186/s40517-018-0096-1
  • C. Glaas; A. Genter; J. F. Girard; P. Patrier; J. Vidal How do the geological and geophysical signatures of permeable fractures in granitic basement evolve after long periods of natural circulation? Insights from the Rittershoffen geothermal wells (France), Geothermal Energy, Volume 6 (2018) no. 1 | DOI:10.1186/s40517-018-0100-9
  • Bérénice Vallier; Vincent Magnenet; Jean Schmittbuhl; Christophe Fond THM modeling of hydrothermal circulation at Rittershoffen geothermal site, France, Geothermal Energy, Volume 6 (2018) no. 1 | DOI:10.1186/s40517-018-0108-1
  • Alexandra R. L. Kushnir; Michael J. Heap; Patrick Baud; H. Albert Gilg; Thierry Reuschlé; Catherine Lerouge; Chrystel Dezayes; Philippe Duringer Characterizing the physical properties of rocks from the Paleozoic to Permo-Triassic transition in the Upper Rhine Graben, Geothermal Energy, Volume 6 (2018) no. 1 | DOI:10.1186/s40517-018-0103-6
  • Michael J. Heap; Thierry Reuschlé; Alexandra R. L. Kushnir; Patrick Baud The influence of hydrothermal brine on the short-term strength and elastic modulus of sandstones from exploration well EPS-1 at Soultz-sous-Forêts (France), Geothermal Energy, Volume 6 (2018) no. 1 | DOI:10.1186/s40517-018-0116-1
  • Nishant Prajapati; Michael Selzer; Britta Nestler; Benjamin Busch; Christoph Hilgers Modeling fracture cementation processes in calcite limestone: a phase-field study, Geothermal Energy, Volume 6 (2018) no. 1 | DOI:10.1186/s40517-018-0093-4
  • J. B. Edel; V. Maurer; E. Dalmais; A. Genter; A. Richard; O. Letourneau; R. Hehn Structure and nature of the Palaeozoic basement based on magnetic, gravimetric and seismic investigations in the central Upper Rhinegraben, Geothermal Energy, Volume 6 (2018) no. 1 | DOI:10.1186/s40517-018-0099-y
  • Alexandra R.L. Kushnir; Michael J. Heap; Patrick Baud Assessing the role of fractures on the permeability of the Permo-Triassic sandstones at the Soultz-sous-Forêts (France) geothermal site, Geothermics, Volume 74 (2018), p. 181 | DOI:10.1016/j.geothermics.2018.03.009
  • Jeanne Vidal; Albert Genter Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells, Geothermics, Volume 74 (2018), p. 57 | DOI:10.1016/j.geothermics.2018.02.003
  • Musa D. Aliyu; Hua-Peng Chen Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature, Energy, Volume 129 (2017), p. 101 | DOI:10.1016/j.energy.2017.04.091
  • Norihiro Watanabe; Guido Blöcher; Mauro Cacace; Sebastian Held; Thomas Kohl Case Study: Soultz-sous-Forêts, Geoenergy Modeling III (2017), p. 75 | DOI:10.1007/978-3-319-46581-4_6
  • Michael J. Heap; Alexandra R. L. Kushnir; H. Albert Gilg; Fabian B. Wadsworth; Thierry Reuschlé; Patrick Baud Microstructural and petrophysical properties of the Permo-Triassic sandstones (Buntsandstein) from the Soultz-sous-Forêts geothermal site (France), Geothermal Energy, Volume 5 (2017) no. 1 | DOI:10.1186/s40517-017-0085-9
  • C. Baujard; A. Genter; E. Dalmais; V. Maurer; R. Hehn; R. Rosillette; J. Vidal; J. Schmittbuhl Hydrothermal characterization of wells GRT-1 and GRT-2 in Rittershoffen, France: Implications on the understanding of natural flow systems in the rhine graben, Geothermics, Volume 65 (2017), p. 255 | DOI:10.1016/j.geothermics.2016.11.001
  • E. Schill; A. Genter; N. Cuenot; T. Kohl Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests, Geothermics, Volume 70 (2017), p. 110 | DOI:10.1016/j.geothermics.2017.06.003
  • Carola Meller; Béatrice Ledésert Is There a Link Between Mineralogy, Petrophysics, and the Hydraulic and Seismic Behaviors of the Soultz‐sous‐Forêts Granite During Stimulation? A Review and Reinterpretation of Petro‐Hydromechanical Data Toward a Better Understanding of Induced Seismicity and Fluid Flow, Journal of Geophysical Research: Solid Earth, Volume 122 (2017) no. 12, p. 9755 | DOI:10.1002/2017jb014648
  • J. Vidal; A. Genter; F. Chopin Permeable fracture zones in the hard rocks of the geothermal reservoir at Rittershoffen, France, Journal of Geophysical Research: Solid Earth, Volume 122 (2017) no. 7, p. 4864 | DOI:10.1002/2017jb014331
  • Y. Wang; X. Li; Y. X. Zhang; Y. S. Wu; B. Zheng Gas shale hydraulic fracturing: a numerical investigation of the fracturing network evolution in the Silurian Longmaxi formation in the southeast of Sichuan Basin, China, using a coupled FSD approach, Environmental Earth Sciences, Volume 75 (2016) no. 14 | DOI:10.1007/s12665-016-5696-0
  • Jeanne Vidal; Albert Genter; Jean Schmittbuhl Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock, Geophysical Journal International, Volume 206 (2016) no. 2, p. 845 | DOI:10.1093/gji/ggw181
  • Linmao Xie; Ki-Bok Min Initiation and propagation of fracture shearing during hydraulic stimulation in enhanced geothermal system, Geothermics, Volume 59 (2016), p. 107 | DOI:10.1016/j.geothermics.2015.10.012
  • L. Griffiths; M.J. Heap; F. Wang; D. Daval; H.A. Gilg; P. Baud; J. Schmittbuhl; A. Genter Geothermal implications for fracture-filling hydrothermal precipitation, Geothermics, Volume 64 (2016), p. 235 | DOI:10.1016/j.geothermics.2016.06.006
  • David D. McNamara; Aaron Lister; Dave J. Prior Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping, Journal of Volcanology and Geothermal Research, Volume 323 (2016), p. 38 | DOI:10.1016/j.jvolgeores.2016.04.042
  • M. Adelinet; C. Dorbath; M. Calò; L. Dorbath; M. Le Ravalec Crack Features and Shear-Wave Splitting Associated with Fracture Extension during Hydraulic Stimulation of the Geothermal Reservoir in Soultz-sous-Forêts, Oil Gas Science and Technology – Revue d’IFP Energies nouvelles, Volume 71 (2016) no. 3, p. 39 | DOI:10.2516/ogst/2015023
  • Jeanne Vidal; Albert Genter; Jean Schmittbuhl How do permeable fractures in the Triassic sediments of Northern Alsace characterize the top of hydrothermal convective cells? Evidence from Soultz geothermal boreholes (France), Geothermal Energy, Volume 3 (2015) no. 1 | DOI:10.1186/s40517-015-0026-4
  • C. Massiot; D.D. McNamara; B. Lewis Processing and analysis of high temperature geothermal acoustic borehole image logs in the Taupo Volcanic Zone, New Zealand, Geothermics, Volume 53 (2015), p. 190 | DOI:10.1016/j.geothermics.2014.05.010
  • Shike Zhang; Shunde Yin; Yanguang Yuan Estimation of Fracture Stiffness, In Situ Stresses, and Elastic Parameters of Naturally Fractured Geothermal Reservoirs, International Journal of Geomechanics, Volume 15 (2015) no. 1 | DOI:10.1061/(asce)gm.1943-5622.0000380
  • David D. McNamara; Cécile Massiot; Brandon Lewis; Irene C. Wallis Heterogeneity of structure and stress in the Rotokawa Geothermal Field, New Zealand, Journal of Geophysical Research: Solid Earth, Volume 120 (2015) no. 2, p. 1243 | DOI:10.1002/2014jb011480
  • Mark W. McClure; Roland N. Horne Correlations between formation properties and induced seismicity during high pressure injection into granitic rock, Engineering Geology, Volume 175 (2014), p. 74 | DOI:10.1016/j.enggeo.2014.03.015
  • Carola Meller; Thomas Kohl The significance of hydrothermal alteration zones for the mechanical behavior of a geothermal reservoir, Geothermal Energy, Volume 2 (2014) no. 1 | DOI:10.1186/s40517-014-0012-2
  • Paul Baillieux; Eva Schill; Yassine Abdelfettah; Chrystel Dezayes Possible natural fluid pathways from gravity pseudo-tomography in the geothermal fields of Northern Alsace (Upper Rhine Graben), Geothermal Energy, Volume 2 (2014) no. 1 | DOI:10.1186/s40517-014-0016-y
  • Sebastian Held; Albert Genter; Thomas Kohl; Thomas Kölbel; Judith Sausse; Martin Schoenball Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts, Geothermics, Volume 51 (2014), p. 270 | DOI:10.1016/j.geothermics.2014.01.016
  • B.B.T. Wassing; J.D. van Wees; P.A. Fokker Coupled continuum modeling of fracture reactivation and induced seismicity during enhanced geothermal operations, Geothermics, Volume 52 (2014), p. 153 | DOI:10.1016/j.geothermics.2014.05.001
  • Marco Calò; Catherine Dorbath; Michel Frogneux Injection tests at the EGS reservoir of Soultz-sous-Forêts. Seismic response of the GPK4 stimulations, Geothermics, Volume 52 (2014), p. 50 | DOI:10.1016/j.geothermics.2013.10.007
  • D.P. Sahara; M. Schoenball; T. Kohl; B.I.R. Müller Impact of fracture networks on borehole breakout heterogeneities in crystalline rock, International Journal of Rock Mechanics and Mining Sciences, Volume 71 (2014), p. 301 | DOI:10.1016/j.ijrmms.2014.07.001
  • Mark W. McClure; Roland N. Horne An investigation of stimulation mechanisms in Enhanced Geothermal Systems, International Journal of Rock Mechanics and Mining Sciences, Volume 72 (2014), p. 242 | DOI:10.1016/j.ijrmms.2014.07.011
  • T. H. Sandve; E. Keilegavlen; J. M. Nordbotten Physics-based preconditioners for flow in fractured porous media, Water Resources Research, Volume 50 (2014) no. 2, p. 1357 | DOI:10.1002/2012wr013034
  • M. W. McClure; R. N. Horne Introduction, Discrete Fracture Network Modeling of Hydraulic Stimulation (2013), p. 1 | DOI:10.1007/978-3-319-00383-2_1
  • Lena Eggeling; Albert Genter; Thomas Kölbel; Wolfram Münch Impact of natural radionuclides on geothermal exploitation in the Upper Rhine Graben, Geothermics, Volume 47 (2013), p. 80 | DOI:10.1016/j.geothermics.2013.03.002
  • Christian Vogt; Christian Kosack; Gabriele Marquart Stochastic inversion of the tracer experiment of the enhanced geothermal system demonstration reservoir in Soultz-sous-Forêts — Revealing pathways and estimating permeability distribution, Geothermics, Volume 42 (2012), p. 1 | DOI:10.1016/j.geothermics.2011.11.001
  • Giovanni Radilla; Judith Sausse; Bernard Sanjuan; Mostafa Fourar Interpreting tracer tests in the enhanced geothermal system (EGS) of Soultz-sous-Forêts using the equivalent stratified medium approach, Geothermics, Volume 44 (2012), p. 43 | DOI:10.1016/j.geothermics.2012.07.001
  • C. Vogt; G. Marquart; C. Kosack; A. Wolf; C. Clauser Estimating the permeability distribution and its uncertainty at the EGS demonstration reservoir Soultz‐sous‐Forêts using the ensemble Kalman filter, Water Resources Research, Volume 48 (2012) no. 8 | DOI:10.1029/2011wr011673
  • Mark W. McClure; Roland N. Horne Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model, GEOPHYSICS, Volume 76 (2011) no. 6, p. WC181 | DOI:10.1190/geo2011-0064.1
  • Joachim Place; Judith Sausse; Jean-Michel Marthelot; Marc Diraison; Yves Géraud; Charles Naville 3-D mapping of permeable structures affecting a deep granite basement using isotropic 3C VSP data, Geophysical Journal International, Volume 186 (2011) no. 1, p. 245 | DOI:10.1111/j.1365-246x.2011.05012.x
  • Amélie Neuville; Renaud Toussaint; Jean Schmittbuhl Hydraulic transmissivity and heat exchange efficiency of open fractures: a model based on lowpass filtered apertures, Geophysical Journal International, Volume 186 (2011) no. 3, p. 1064 | DOI:10.1111/j.1365-246x.2011.05126.x
  • M. Calò; C. Dorbath; F.H. Cornet; N. Cuenot Large-scale aseismic motion identified through 4-D P-wave tomography, Geophysical Journal International, Volume 186 (2011) no. 3, p. 1295 | DOI:10.1111/j.1365-246x.2011.05108.x
  • Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS), Comptes Rendus. Géoscience, Volume 342 (2010) no. 7-8 | DOI:10.1016/j.crte.2010.01.006
  • Bertrand Fritz; André Gérard On the way to the exploitation of deep geothermal resources in naturally fractured environments, Comptes Rendus. Géoscience, Volume 342 (2010) no. 7-8, p. 493 | DOI:10.1016/j.crte.2010.03.002
  • Ronan L. Hébert; Béatrice Ledésert; Danièle Bartier; Chrystel Dezayes; Albert Genter; Céline Grall The Enhanced Geothermal System of Soultz-sous-Forêts: A study of the relationships between fracture zones and calcite content, Journal of Volcanology and Geothermal Research, Volume 196 (2010) no. 1-2, p. 126 | DOI:10.1016/j.jvolgeores.2010.07.001

Cité par 113 documents. Sources : Crossref


Commentaires - Politique