Plan
Comptes Rendus

Surface geosciences (Hydrology–hydrogeology)
Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change
[Analyse des variables précipitation, température et évapotranspiration en région méditerranéenne française dans un contexte de changement climatique]
Comptes Rendus. Géoscience, Volume 342 (2010) no. 3, pp. 234-243.

Résumés

This study is focused on the western part of the French Mediterranean area, namely the Pyrénées-Orientales and Aude administrative departments. The water resources (surface and groundwater) in the region are sensitive to climate change. The study addresses the question of whether any trend in the annual and monthly series of temperature, rainfall and potential evapotranspiration (PET) already appears at the scale of this region. Two data sources have been used: (a) direct local measurements using the meteorological network; and (b) spatially interpolated data from the French weather service model SAFRAN for the period 1970–2006. The non-parametric Mann–Kendall test was applied to identify significant trends at the local scale and, because of the natural spatial variability of the Mediterranean climate, regional interpretation was also performed. The trends observed in the 13 catchments of interest are consistent with those observed at a larger scale. An increase in annual mean temperature and annual PET was observed throughout the study area, whereas annual precipitation has not exhibited any trend. The monthly scale has revealed strong seasonal variability in trend. The trend for an increase in monthly PET has been observed mainly in the spring, and has not been seen in the coastal areas. A trend for an increase in monthly temperature has been observed in June and in the spring throughout the entire area. Monthly rainfall has been found to decrease in June and increase in November throughout the area. The significant trends observed in rainfall and temperature seem to be consistent between the different data sources.

Ce travail concerne la façade ouest de l’arc méditerranéen français, sur les départements des Pyrénées-Orientales et de l’Aude. Dans un contexte de changement climatique global, l’objectif de cette communication est de rechercher, dans des séries de mesures de température, de pluie et d’évapotranspiration à des échelles annuelles à mensuelles, si des tendances à la hausse ou à la baisse peuvent d’ores et déjà être mises en évidence sur cette zone. Diverses sources de données sont utilisées : des mesures directes à partir du réseau sol et des mesures spatialisées sur 13 bassins versants issues du système d’analyse SAFRAN de Météo-France, sur la période 1970–2006. Le test non paramétrique de Mann-Kendall est appliqué localement à chaque série pour détecter un changement local significatif. La variabilité spatiale « naturelle » du climat méditerranéen a conduit à mettre en œuvre une version régionale de ce test pour juger de la significativité régionale des changements identifiés localement. Les changements détectés sur les 13 bassins sont en général cohérents avec ceux observés à une échelle géographique plus étendue. L’augmentation des températures moyennes annuelles et de l’ETP annuelle affecte l’ensemble de la zone d’étude, alors que les précipitations annuelles ne montrent pas de changement. L’analyse à l’échelle mensuelle révèle une forte variabilité saisonnière des changements. L’augmentation de l’ETP concerne surtout le printemps, avec une variabilité spatiale qui semble épargner la frange littorale ; l’augmentation des températures mensuelles est généralisée sur tous les bassins en juin et au printemps. En automne, et notamment en novembre, les précipitations mensuelles enregistrent une augmentation elle aussi généralisée sur tout le secteur et une baisse en juin. Les changements identifiés sur les pluies et températures sont relativement cohérents, suivant les différentes sources des séries, mesures directes au sol ou interpolées spatialement avec SAFRAN.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2010.02.001
Keywords: Trend detection, Rainfall, Temperature, Evapotranspiration, Climate change, Mediterranean region, France
Mots-clés : Détection de tendance, Précipitation, Température, Evapotranspiration, Changement climatique, Région méditerranéenne, France

Keltoum Chaouche 1 ; Luc Neppel 1 ; Claudine Dieulin 1 ; Nicolas Pujol 1 ; Bernard Ladouche 2 ; Eric Martin 3 ; Dallas Salas 3 ; Yvan Caballero 2

1 UMR HydroSciences Montpellier, maison des sciences de l’eau, cc MSE, université de Montpellier II, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
2 BRGM, unité EAU-RMD, service géologique régional Languedoc–Roussillon, 1039, rue de Pinville, 34000 Montpellier, France
3 Météo-France CNRM-GAME, 42, avenue de Coriolis, 31057 Toulouse, France
@article{CRGEOS_2010__342_3_234_0,
     author = {Keltoum Chaouche and Luc Neppel and Claudine Dieulin and Nicolas Pujol and Bernard Ladouche and Eric Martin and Dallas Salas and Yvan Caballero},
     title = {Analyses of precipitation, temperature and evapotranspiration in a {French} {Mediterranean} region in the context of climate change},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {234--243},
     publisher = {Elsevier},
     volume = {342},
     number = {3},
     year = {2010},
     doi = {10.1016/j.crte.2010.02.001},
     language = {en},
}
TY  - JOUR
AU  - Keltoum Chaouche
AU  - Luc Neppel
AU  - Claudine Dieulin
AU  - Nicolas Pujol
AU  - Bernard Ladouche
AU  - Eric Martin
AU  - Dallas Salas
AU  - Yvan Caballero
TI  - Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change
JO  - Comptes Rendus. Géoscience
PY  - 2010
SP  - 234
EP  - 243
VL  - 342
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crte.2010.02.001
LA  - en
ID  - CRGEOS_2010__342_3_234_0
ER  - 
%0 Journal Article
%A Keltoum Chaouche
%A Luc Neppel
%A Claudine Dieulin
%A Nicolas Pujol
%A Bernard Ladouche
%A Eric Martin
%A Dallas Salas
%A Yvan Caballero
%T Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change
%J Comptes Rendus. Géoscience
%D 2010
%P 234-243
%V 342
%N 3
%I Elsevier
%R 10.1016/j.crte.2010.02.001
%G en
%F CRGEOS_2010__342_3_234_0
Keltoum Chaouche; Luc Neppel; Claudine Dieulin; Nicolas Pujol; Bernard Ladouche; Eric Martin; Dallas Salas; Yvan Caballero. Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus. Géoscience, Volume 342 (2010) no. 3, pp. 234-243. doi : 10.1016/j.crte.2010.02.001. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2010.02.001/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The conclusions of the last Intergovernmental Panel on Climate Change (IPCC) report confirm an increase in world temperature since the beginning of the industrial period and an acceleration of warming since 1975 (IPCC, 2007). Furthermore, the report stresses the now extremely probable anthropic cause of this warming. Although warming affects the whole world, regional contrasts are shown, with more marked warming in the northern hemisphere and faster warming of continents than seas, for example. One can therefore wonder about the consequences of this warming on the water cycle in general and in the Mediterranean region in particular. Indeed, this region is probably more susceptible to climate change as, geographically, it lies in a transition area between the hot, dry climate of Africa and the cold, humid air masses arriving from northern Europe (Goubanova and Li, 2007). With considerable coherence between models, climate simulations for the future display an intensification of the hydrological cycle at the scale of the planet (Planton et al., 2005). They thus forecast an increase in seasonal climatic variability (Diodato, 2004; Haas, 2002), with: (a) hotter, drier summers in the semi-arid regions (Planton et al., 2005); and (b) an increase in the duration and severity of low-flow periods and a decrease in groundwater recharge (Booij, 2005; Zhang et al., 2004). These climatic changes should be accompanied not only by a change in the average figures for the water cycle variables mentioned above but also by an increase in their variability in time. Extreme events should occur more frequently and with greater intensity (Jentsch and Beierkuhnlein, 2008). However, it is reminded that the forecasts mentioned here are subject to strong uncertainty, the reduction of which can be attempted only through a combined improvement of the spatial resolution of climate models and of their physical formulations (Le Treut et al., 2008).

The consequences of these possible changes in climate are all the more worrying in the Mediterranean region as socioeconomic scenarios indicate an increase in population and hence growing human pressure on water resources. Alcamo and Doll, 2003 and Arnel et al., 2004 consider that the consequences of increased pressure by man could be at least as great as those of climate change, at least in the short term.

The sensitivity of water resources in this region in a context of climate change and the diversity of the scenarios envisaged lead to asking questions about the already perceptible effects of modification of the climate. Our work addressing the Mediterranean zone of the South of France is focused on the Pyrénées-Orientales and Aude departments where water resources – consisting mainly of karstic and alluvial groundwater – are already a major concern today. The aim of this article is to examine if there are any signs of a change in the precipitation, temperature and potential evapotranspiration (PET) regime at different spatial scales. For brevity, these are referred to hereafter simply as climate variables. They are obtained from several types of measurements.

The study zone and the data are described in the next section. The procedure used is described in Section 3 and is followed by discussion of the results.

2 Study zone and data

2.1 Study zone

The Pyrénées-Orientales and Aude departments form a study zone of some 10, 000 km2 on the western façade of the French Mediterranean arc. The Pyrenees, culminating at an elevation of 2900 m, border them to the north and west, where the range marks the frontier with Spain. The climate is typically Mediterranean in the plain and on the coast and of a Mediterranean mountain type further west. Thirteen catchments and sub-catchments of interest have been selected (Fig. 1) on the main rivers draining the region, the Têt (1350 km2), the Tech (750 km2) and the Agly (1120 km2).

Fig. 1

Presentation (a) of the study zone, the SAFRAN grid, the measurement stations and (b) the 13 analysed catchments.

The Têt at Mont Louis - 2 The Têt at Serdynia - 3 The Têt at Marquixanes - 4 The Têt at Rodes - 5 The Têt at St Féliu - 6 The Têt at the outlet - 7 The Tech at St Paul - 8 The Tech at the outlet - 9 Fontestramar - 10 The Verdouble at Tautavel - 11 Upstream of Caramany - 12 Downstream of Caramany - 13 Agly.

Présentation (a) de la zone d’étude, du maillage SAFRAN, des stations de mesure et (b) des 13 bassins versants analysés.

1 La Têt à Mont Louis - 2 La Têt à Serdynia - 3 La Têt à Marquixanes - 4 La Têt à Rodes - 5 La Têt à St Féliu - 6 La Têt à l’exutoire - 7 Le Tech à St Paul - 8 Le Tech à l’exutoire - 9 Bassin d’alimentation de Fontestramar - 10 Le Verdouble à Tautavel - 11 Amont de Caramany - 12 Aval de Caramany - 13 Agly

2.2 Data analysed

The climate variables are defined at time scales that are relevant as regards their influence on water resources. These are cumulated values at the monthly, seasonal and annual time step.

Two sets of data were used according to the different spatial scales considered. The first consists of direct, local measurements of precipitation and temperature at meteorological stations in the Météo-France network. The series were taken from BDCLIM, the Météo-France database. The second consists of indirect, spatialised measurements produced by spatial interpolation using the SAFRAN analysis system.

2.2.1 Data from the meteorological network

The selection of ground network weather stations was made with the requirement of a minimum of 36 years of data until 2006. Functioning periods were chosen that were common to all the stations. The latter criterion was imposed to be able to perform a regional interpretation of trend detection tests; this is described in the next paragraph. This led to choosing 44 stations for precipitation and 18 for temperature. The proportion of missing data varies with the time scale and climate variable and is at most of 2.7%. Météo-France first checked these series for spatial coherence before they were entered in the BDCLIM database. The monthly series were then checked for this study, with a search for breaks resulting from a change in metrological conditions (Mestre, 2002). Buishand's break test, Petitt's break test and Hubert's segmentation test (Lubès-Niel et al., 1998) led to discarding 4 temperature measurement stations where the breaks corresponded to metrological change. The ground data used were thus from 44 rainfall stations and 14 temperature stations.

2.2.2 Data from the SAFRAN analysis system

Indirect, spatialised data for precipitation, temperature and PET were provided by SAFRAN. The latter is a system for the analysis of the following meteorological parameters: the wind speed and direction, the air temperature, the relative humidity, the cloud covering, the global radiation, the rainfall and snowfall (Habets et al., 2008; Soubeyroux et al., 2008). It is based on an interpolation method of variables measured at ground level in homogeneous climatic zones, starting with atmospheric analyses. The various outputs are interpolated on an 8 × 8 km2 grid covering France. SAFRAN output was recently validated (Quintana-segui et al., 2008) and showed that precipitation and air temperatures did not display any climatological bias. The Penman-Monteith formula was used to calculate PET for each square of the grid using SAFRAN climatological variables. For the requirements of this study, calculated PET figures were compared and recalibrated using data from the Perpignan weather station. The entire study zone is covered by 160 squares (Fig. 1). For each of them, rainfall, snow, temperature and daily PET are available for the period 1970–2006. The SAFRAN climatic data were used to spatialise the climatic variables in the 13 catchments. With Xi representing one of the climatic variables of square i and λi, the proportion of the area of the square belonging to the catchment, the spatialised variable LBV for the catchment is given by:

LBV=1ni=1nλiXi(1)
in which n is the number of squares intercepting the catchment contour.

3 Methodology

The aim is to determine whether or not the chosen climatic variables evolved during the analysis period. Statistical tests of stationarity were used for this purpose. Lemaitre, 2002; Renard et al., 2006; Zhang et al., 2004 review the various tests used in hydrology. The choice of a test depends among other things on: (a) the nature of the expected change – a trend, a break or multiple breaks; (b) the distribution of the analysed variable; (c) the size of the sample. Renard, 2006 and Renard et al., 2006 propose a methodology for choosing the most appropriate test for the characteristics of the variable of interest based on studies of the power and robustness of the tests when applied to simulated data. The non-parametric Mann–Kendall (MK) test (Kendall, 1975) was chosen here. It does not require any hypotheses on the variables and is more powerful than parametric tests, especially for non-Gaussian series (Lubès-Niel et al., 1998; Renard, 2006). However, it is based on the hypothesis that the expected change in the series is a monotonic trend and not a break. However, if there is a break in the data series, no loss of power is observed in the MK test in comparison with Pettitt's break test (Lemaitre, 2002). Furthermore, if a climatic change affects a given series, a gradual change can be expected rather than a break that would result more from a metrological change. These various features of the MK test show why this test is used in numerous studies on hydrological variables, including, for example, (Lespinas, 2008; Ludwig et al., 2004; Norrant and Douguedroit, 2006).

The test is applied at the local scale and also at the regional scale to judge the regional significance of the changes detected.

3.1 Local Mann–Kendall test

Let H0 be the “the series is stationary” null hypothesis to be tested against alternative hypothesis H1 “the series displays change”. Let X1,…,XN be a series of N independent observations derived from a continuous random variable X. The principle of the test consists in counting, for all pairs of values, the cases in which the first is larger than the second and the cases in which the first is smaller than the second. The test statistic, S, is the difference between these two cases and is written

S=j=1N1k=j+1Nsign(XkXj)where sign   (x)=1ifx>00ifx=01ifx<0(2)

With the H0, hypothesis, S approaches zero. Trends for an increase or a decrease result respectively in S being negative or positive. The expected value and variance of S are given by:

E[S]=0V(S)=N(N1)(2N+5)18(3)

Furthermore, with H0, the variable Z defined below follows a reduced centred normal distribution for N > 10:

Z=S1V(S)ifS>00ifS=0S+1V(S)ifS<0(4)

When several samples are drawn from a population with no trends, that is to say following the H0 hypothesis, the values of S differ for each sample. However, the Z variables, transformed from S by (4), will have a reduced centred normal distribution.

Zobs is calculated for a given series of observations using (4), under the H0 hypothesis. The first type of risk (or the probability of rejecting H0 when it is true) is α: H0 is rejected if the probability of observing Zobs is too rare. The p-value of the test is given by:

p=21Φ(Zobs)(5)

in which ϕ(x) is the reduced centred normal distribution function.

Hypothesis H0 is rejected if probability p is smaller than α. In this case, reference is made to a statistically significant trend at the threshold α; it is upward or downward depending on the sign of S.

Local application of this test to M stations does not make it possible to judge whether each series displays a significant change or not. For example, let us suppose there is a network of 100 stations and a risk α of 10%. In local application of the test to the 100 stations, it is expected that H0 will be rejected 10 times as a result of randomness alone. Thus, interpreting a result that would give 10 rejections of H0 in 100 samples is a problem: is hypothesis H0 rejected simply as a result of randomness or is it the result of a real change in the analysed series? The aim of the regional MK test is the regional interpretation of local tests and the indication for a group of stations whether the changes detected locally are significant with regard to all the other series analysed.

3.2 Mann–Kendall regional test

We take a group of M stations with records (Xi)i=1,…, N of length N. A method proposed by (Diodato, 2004) consists of calculating the variance of the M local statistics S, allowing for the spatial dependence of the values of S. Here, correlation between the M statistics for S is assumed to be the same as for Xi (Yue and Wang, 2002). An alternative that can be used to avoid this strong hypothesis consists of constructing a regional statistical test, SM, and determining its sampling distribution by the bootstrap re-sampling technique. The observations are grouped in a matrix D in which the rows are for years and the columns for stations. A fresh series of observations is assembled under hypothesis H0 by choosing at random from the rows in D. The spatial correlation between the stations is thus conserved. A local MK test is applied to the generated new series and the empirical sampling of SM can be constructed by repeating the operation many times. The five stages of the method are summarised below. S¯Mo is the average of the M local statistics:

  • (i) A new data matrix D’ is created by re-sampling rows of D;
  • (ii) The M local tests are applied to the M new series created in (i); S¯M, the average of these M statistics, is calculated;
  • (iii) Steps (i) and (ii) are repeated K times to give K + 1 regional statistics S¯Mk;
  • (iv) The distribution function of S¯M is calculated;
  • (v) The null hypothesis H0 of the regional test ‘the trends detected locally are not significant regionally’ is tested against the alternative hypothesis in which is ‘the trends detected locally are significant regionally’. With the risk threshold being α’, hypothesis H0 is rejected if:
    P[S¯M<S¯M0]<α/2orP[S¯M<S¯M0]<1α/2(6)

3.3 Estimation of the trend

When a significant regional trend was detected in one of the (Xi)i=1,…,N analysed series, we estimated the rate of increase or decrease of the series. This estimate is based on the assumption that the trend is a linear function of time. The rate of change is the regression slope of Xi and time. This hypothesis is frequently put forward in trend analyses, for example in (Burford et al., 2009; Norrant and Douguedroit, 2006; Pal and Al-Tabbaa, 2009; Tayanç et al., 2009), and makes it possible to describe the evolution of the series during the study period and provides an estimate of average change. However, it cannot be used to extrapolate the evolution of the series beyond the study period, as the linear model does not have any theoretical justification.

4 Results

4.1 Verification of the hypotheses of the temporal independence of the series

The hypotheses of temporal independence were verified before application of the MK tests to the climate variables described. The autocorrelation coefficients were calculated for each series and a conformity test applied to detect autocorrelation significantly different to zero. The results shown are for variables at the annual scale and are representative of the shorter monthly and seasonal durations. Indeed, using monthly series further reduces the likelihood of a link between monthly values observed in successive years. The data series for annual precipitation, temperature and PET in each of the 160 SAFRAN squares were analysed to find out whether possible autocorrelations were depending on the measurement site in the study zone. The results are shown in Table 1. A maximum of 20% of the squares displayed significant autocorrelation in annual PET. Autocorrelation of the other variables was significant in less than 10% of the squares. The significant autocorrelation coefficients were smaller than 0.4 in all cases. It is noted that the squares with significant autocorrelation appear to be spatially structured (Fig. 2); they are concentrated on the Pyrenees mountain range for temperature and PET and in the Albères range for precipitation. As there were very few cases of significant autocorrelation in the studied structure and as the coefficients were small, we applied the MK tests to the raw, untransformed data. This is preferable in so far as Hamed and Rao, 1998 showed that such a transformation reduces the power of the tests.

Table 1

Nombre de mailles Safran présentant une autocorrélation significative au seuil de 10 %.

Lag: Annual precipitation Annual temperature Annual PET
1 0 15 35
2 20 0 16
3 0 0 0
4 6 0 30
5 9 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 12 17 0
10 0 0 0
Fig. 2

SAFRAN grid squares with significant autocorrelation at a threshold of 10% for (a) annual temperature (b) annual PET and (c) cumulated annual rainfall.

Cartographie des mailles SAFRAN présentant une autocorrélation significative au seuil de 10 % pour (a) température annuelle (b) ETP annuelle (c) Cumul de pluie annuel.

4.2 Results at the annual scale

The results obtained at the annual scale are shown in Tables 2 and 3. No trends in annual precipitation were observed in the study zone – in any of the 13 catchments.

Table 2

Résultats des test MK locaux et régionaux appliqués à l’échelle annuelle. Le tableau indique les nombres de séries où le test local MK conclut à un changement significatif à α=5 %, les signes + et – représentent respectivement une tendance à la hausse ou à la baisse. SR(α’) indique que le changement est significatif à l’échelle régionale, au seuil α’ de 1 %, 5 % ou 10 %, NSR s’il ne l’est pas. NA signifie une absence de données ; les cases sont vides si aucun changement n’est détecté dans la série.

Data Ground readings SAFRAN by catchment
Annual rainfall 2 (+)/44 NSR
Annual rainfall + snow NA
Number of dry days
Mean annual temperature 13 (+)/14 SR(10%) 13(+)/13 BV SR(10%)
Annual PET NA 7(+)/13 SR(10%)
Table 3

Tendance linéaire entre 1970 et 2006, ajustée sur chaque série annuelle SAFRAN où des changements significatifs ont été détectés sur cette période. Chaque colonne correspond à un bassin versant, la numérotation est la même qu’en Fig. 1.

CT1 CT2 CT3 CT4 CT5 CT6 CT7 CT8 CT9 CT10 CT11 CT12 CT13
Température moyenne annuelle (°C/an) 0.026 0.027 0.02 0.035 0.0320 0.0320 0.041 0.031 0.034 0.02 0.024 0.026 0.025
ETP annuelle (mm/an) 3.1 2.4 1.6 1.8 4.0 2.0 3.2

The average annual temperature displays significant changes, with an upward trend identified in temperatures spatialised by catchment by SAFRAN and at 13 out of the 14 ground weather stations. The average trend calculated for the studied catchments using SAFRAN spatial averages is +0.3 °C per decade, that is to say +1.1 °C from 1970 to 2006. With +1.5 °C, the increase in annual temperature in the zone is greater in the ground network. SAFRAN uses other, shorter temperature series and gives a spatial smoothing effect that can account for the difference. A certain spatial variability is observed in the annual temperature trend; it seems more marked in the catchments at the coast than in the upstream ones.

Like temperature, annual PET displays an upward trend that is significant in 7 out of the 13 catchments and significant at the regional scale. From 1970 to 2006, the trend varied from +1 to +4 mm per year depending on the catchment, that is to say an average increase in PET of between 34 mm and 150 mm in 36 years. The spatial organisation of the trends emerges fairly clearly, with the catchments in the northern and northwestern parts of the zone displaying the greatest increases in annual PET, and no significant trend in the southern and southeastern parts. This is illustrated in Fig. 3 by two annual PET series with the most and least marked trends.

Fig. 3

Annual potential evapotraspiration (PET) calculated for catchment 10, from Verdouble to Tautavel (black crosses) and catchment 3, the Têt at Marquixanes (grey circles), between 1970 and 2006, from the SAFRAN data.

The dotted line represents the linear trend fitted to the series.

Évapotranspiration potentielle annuelle calculée pour le bassin 10 du Verdouble à Tautavel (croix noires) et le bassin 3 de la Têt à Marquixanes (ronds gris) entre 1970 et 2006 à partir des données SAFRAN. La ligne en tiretés représente la tendance linéaire ajustée à la série.

No significant change was observed in annual rainfall and the number of consecutive days with no rain, whatever the source of the series. No trend for dry periods to become longer was observed if a dry period is defined as the number of consecutive days with precipitation of less than 0.1 mm per day.

4.3 Results at the monthly scale

The results at the monthly scale are shown in Tables 4 and 5. The changes detected in monthly precipitation shown by the various ground measurements and SAFRAN agree. A significant decrease is observed in the cumulated figures for June, except in the upstream catchments of the Têt at Mont-Louis and Serdynia. In contrast, an increasing trend is seen in November in all of the catchments. The averages of these trends in the concerned catchments are estimated to be –0.8 mm per year in June and +2 mm per year in November, with marked spatial variability, as they seem more marked in the coastal subcatchments (Fontestramar, the Tech and the downstream part of the Têt).

Table 4

Résultats des tests MK locaux et régionaux, appliqués à l’échelle mensuelle. Le tableau indique le nombre de séries où le test local MK conclut à un changement significatif à α=5 %, les signes + et – représentent respectivement une tendance à la hausse ou à la baisse. SR(α’) indique que le changement est significatif à l’échelle régionale au seuil α’ de 1 %, 5 % ou 10 %, NSR s’il ne l’est pas. NA signifie une absence de donnée, les cases sont vides si aucun changement n’est détecté dans la série.

Data Ground readings SAFRAN by catchment
Monthly rainfall June: 14 (-) /44 – SR(5%)
Nov.: 27 (+) /44 – SR(5%)
June: 11 (-) /13 - SR (5%)
Nov.: 13 (+)/13 - SR (1%)
Monthly rainfall + snow NA June: 11 (-) /13 - SR (5%)
Nov.: 13 (+)/13 - SR (1%)
Number of dry days March:10 (+) /13 - SR (1%)
Nov.: 7 (-) /13 - SR (5%)
Dec.: 3 (-) /13 - SR (10%)
Mean monthly temperature March: 13 (+)/14 – SR(5%)
April and May:
12 (+)/14 – SR(5%)
June: 16 (+) / 14 – SR(5%)
March, April, May, June:
13 (+) /13 – SR(5%)
July: 1 (+)/13 – NSR
Aug.: 10 (+)/13 – SR(5%)
Oct.: 7 (+)/13 – SR (10%)
Monthly PET NA Feb. and March: 10 (+)/13 – SR (5%)
April: 4 (+)/13 – NSR
May: 8 (+)/13 – SR (5%)
June: 11 (+)/13 – SR (5%)
July: 1 (+)/13 – NSR
Aug.: 3(+)/13 – NSR
Sept. and Oct.:1 (+)/13 – NSR
Table 5

Tendance linéaire entre 1970 et 2006, ajustée sur chaque série mensuelle SAFRAN où des changements significatifs ont été détectés sur cette période. Chaque colonne correspond à un bassin versant, la légende des bassins versants est la même qu’en Fig. 1.

BV1 BV2 BV3 BV4 BV5 BV6 BV7 BV8 BV9 BV10 BV11 BV12 BV13
Pluie mensuelle (mm/an) Juin –0.56 –1.01 –0.94 –0.76 –1.45 –0.7 –0.69 –0.72 –0.57 –0.56 –0.60
Novembre 1.32 1.75 1.89 2.43 1.91 2.17 2.64 2.59 1.78 1.62 1.91
Nombre de jours secs/mois/an Mars 0.16 0.18 0.15 0.14 0.16 0.05 0.13 0.16 0.17 0.11 0.15
Novembre –0.14 –0.15 –0.17 –0.16 –0.18 –0.16 -0.14 –0.22 –0.11 –0.16
Décembre –0.09 –0.11–0 –0.09 –0.11–0 –0.16 –0.07 –0.07 -0.07 –0.11 –0.14
Mars 0.08 0.08 0.08 0.08 0.06 0.05 0.09 0.06 0.06 0.06 0.06 0.05 0.05
Température moyenne mensuelle (̊C/an) Avril 0.04 0.05 0.06 0.06 0.05 0.04 0.06 0.05 0.04 0.04 0.04 0.04 0.03
Mai 0.07 0.08 0.08 0.08 0.07 0.06 0.08 0.07 0.06 0.06 0.06 0.06 0.06
Juin 0.09 0.09 0 09 0 09 0 08 0 07 0.070 0 08 0.07 0.07 0.07 0.07 0 07
Aout 0.04 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.04 0.04
Octobre 0.04 0.04 0.04 0.05 0.04 0.05 0.05
ETP mensuelle (mm/an) Février 0.20 0.20 0.18 0.14 0.16 0.16 0.17 0.30 0.14 0.21
Mars 0.44 0.38 0.32 0.28 0.310 0.27 0.27 0.51 0.31 0.38
Mai 0.54 0.48 0.540 0.45 0.86 0.53 0.52 0.68
Juin 0.73 0.59 0.45 0.43 0.53 0.44 0.51 0.90 0.58 0.59 0.76

In parallel, the number of days per month without precipitation has decreased significantly by 5 to 6 days in November in the 36 years. This suggests that the increase in monthly rainfall in November might be associated with an increase in rainfall events rather than in their intensity, as no change is observed in extreme daily precipitation during the concerned month (Pujol et al., 2007). Considering precipitation in snow and liquid form, the two trends remain unchanged; this is obvious for June and also applies to November. Precipitation occurrence displays a significant decrease in March but the trends in cumulated monthly figures are not significant.

The increase in temperatures is seen above all in the spring and early summer, from March to June, and is not detectable in the winter months. The mean trend in the zone in the spring is +0.7 °C to +0.8 °C per decade. As for precipitation, the trends identified in the various types of measurement are consistent and concern all 13 catchments. The SAFRAN measurements also display an upward trend extending in summer until August, except in the upstream part of the Têt at Serdynia, where the trend is less marked at some +0.5 °C per decade. A significant increase in temperature is noted in October. This is an average of +0.4 °C per decade in the concerned catchments but only affects the southern and eastern part of the zone; the Têt at Marquixanes and the Agly upstream of Caramany are not affected.

Significant changes in monthly PET are observed above all in February, March, May and June, with the increase observed in 8 to 10 out of the 13 catchments. The trend in average monthly PET in the concerned catchments varies from +0.2 mm per year in February to +0.6 mm per year in June. In summer, the increase in PET in July and August is not significant at the regional scale and remains very local in the upstream Têt at Mont-Louis and in the Verdouble at Tautavel. Overall, the spatial organisation of monthly trends agrees with that observed at the annual scale.

5 Discussion - conclusion

This work is aimed at seeking the existence of changes in the data series of climatic variables that might affect water resources in a Mediterranean region whose present and future development depends very strongly on these resources. Precipitation, temperature and PET were analysed at the annual and monthly scales using a sample of direct ground measurements and spatialized indirect data from the SAFRAN analysis system. The MK test was applied locally to each data series and also at a regional scale to evaluate the regional significance of the detected local changes. The test can detect a monotonic change in a series, but not breaks, a hypothesis which seems acceptable for this study on climate change.

Significant changes at the annual scale were observed in average annual temperatures and PET, whereas no change in precipitation was observed at this scale. The changes in temperature detected are consistent between data sources and with observations made at the French national scale (Moisselin et al., 2002) and that generally also apply to the whole planet (IPCC, 2007). The +1.1 °C to +1.5 °C amplitude in trends in annual temperatures from 1970 to 2006 in the study area is consistent with (Lespinas, 2008) who observed an increase of 1.4 °C from 1965 to 2004 in Languedoc-Roussillon using ground measurements spatialised by catchments. He also highlighted an increase in warming from 1970 onwards. It is noted that annual warming seems more marked in this zone than for the average of the northern hemisphere, where Brohan et al., (2006) report a trend of +0.33 °C per decade from 1979 to 2005.

The absence of trend in annual precipitation agrees with the conclusions of (Pal and Al-Tabbaa, 2009), who did not observe any significant trend in annual totals for the whole Mediterranean area from 1950 to 2000, and those of (Lespinas, 2008) who focused on the main coastal catchments in Languedoc-Roussillon.

However, analysis of the changes in annual series hides different behaviours at the monthly scale. For precipitation, this results above all in a decrease in monthly-cumulated figures in the summer, especially in June, and an increase in the autumn, especially in November. These results are in agreement with those of Lespinas, 2008; Moisselin and Dubuisson, 2006; Moisselin et al., 2002. It is also noted that the most significant changes in monthly temperatures are observed in the spring and affect the whole study zone.

The seasonal variability in temperatures shown by Ludwig et al., 2004 for the Têt seems less visible here. The decrease that they detected in the autumn from 1980 to 2000 is not a strong feature. In contrast, an increase in average temperature in November was observed in this study, concentred in the downstream part of the catchments, whereas no significant trend was observed upstream or during the other autumn months.

Similarly, the variability in precipitation reported by Ludwig et al., 2004 in the Têt catchment was not observed in the present work. Indeed, the decrease in precipitation depths in the upstream part of the catchment and the increase in the central part were not observed in any of the catchments. However, monthly precipitation has decreased practically everywhere in June and is significant at the regional scale, except in the upstream part of the Têt, and the increase in cumulated figures for November also seems particularly significant and applies to the whole zone.

The trends observed in monthly PET do not seem to be related to those for temperatures. At the annual scale, the coastal subcatchments are more affected by a rise in annual average temperature but are little or not affected by an increase in annual PET. Significant upward trends in monthly temperatures in April, August and October are observed at the monthly scale whereas no trend is seen in monthly PET for the same months. Likewise, a small but significant trend in February is estimated to be an average of +0.2 mm per year in the studied area. It concerns 10 out of the 13 catchments whereas no significant trend was detected in monthly temperatures. One explanation is that PET is calculated using the Penman–Monteith formula and is based not only on temperature but also on relative humidity, solar radiation and wind speed. Our observations are probably related to changes in large-scale atmospheric movements, dominated essentially by the North Atlantic Oscillation (Yiou and Masson-Delmotte, 2005), even though it would seem that other factors such as variation in solar forcing should not be ruled out (Le Mouël et al., 2008).

Finally, it is difficult to quantify the influence of the detected changes on the water resources in the region, and especially ground water (used in priority for drinking water supply in the region). The increase in PET and temperature and the decrease in rainfall, especially in May and June, tend to cause soils to dry and can therefore have a negative impact on groundwater resources. However, rainfall volumes peak in the autumn in the Mediterranean region, when rainfall increases and PET changes little. This would tend to increase aquifer recharge, compensating for the observed summer drying. It is therefore necessary to model the aquifers behaviour in order to understand the possible impacts of the observed changes and of future climate change on groundwater resources.

This study shows the significant regional changes in time series of temperature, PET and precipitation data available for the last 36 years at the annual and monthly scales. However, a descriptive approach has been used and the observed trends cannot be extrapolated beyond the observation period for the construction of future climate scenarios. This requires the use of climate models as these are the only tools that can propose scenarios of future changes to study the impact of climate change on the region water resources, with the incorporation of various hypotheses on socio-economic evolution (this is the aim of the ongoing VULCAIN project of which this work is part). However, the observed trends show that the warming observed at the global scale displays marked seasonality (in our study site, visible above all in the spring and summer as regards temperature and PET and in the autumn for precipitation). Using these trends to gain understanding on the way in which ecosystems have reacted to these changes could help the design of more robust adaptation strategies to climate change.

Acknowledgements

The VULCAIN project to which this study belongs is funded by the Agence nationale de la recherche (ANR, French National Research Agency) within the framework of its VMC (Vulnérabilité: Milieux et Climat) project.

The authors thank Météo-France for providing the meteorological data and the three reviewers (Pr. P. O’Kane, P. Hubert and one anonymous) for their constructive comments.


Bibliographie

[Alcamo and Doll, 2003] J. Alcamo; P. Doll Development and testing of the WaterGAP 2 global model of water use and availability, Hydrol. Sci. J., Volume 48 (2003), pp. 317-337

[Arnel et al., 2004] N.W. Arnel; M.J.L. Livermore; S. Kovats; P.E. Levy; R. Nicholls; M.L. Parry; S.R. Gaffin Climate and socio-economic scenarios for global-scale climate change impact assessments: characterising the SRES storylines, Glob. Environ. Change, Volume 14 (2004), pp. 3-20 (doi:101016/j.gloenvcha.2003.10.004)

[Booij, 2005] M.J. Booij Impact of climate change on river flooding assessed with different spatial model resolution, J.Hydrol., Volume 303 (2005) no. 1–4, pp. 176-198

[Brohan et al., 2006] P. Brohan; J. Kennedy; I. Harris; S.F.B. Tett; P.D. Jones Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850, J. Geophys. Res., Volume 111 (2006), p. D12106 | DOI

[Burford et al., 2009] J.E. Burford; S.J. Dery; R.D. Holmes Some aspects of the hydroclimatology of the Quesnel River Basin, British Columbia, Canada, Hydrol. Process., Volume 23 (2009), pp. 1529-1536

[Diodato, 2004] N. Diodato Local models for rainstorm induced hazard analysis on Mediterranean river torrential geomorphological systems, Nat. Haz. Earth Syst. Sci., Volume 4 (2004) no. 0, pp. 389-397

[Goubanova and Li, 2007] K. Goubanova; L. Li Extremes in temperatures and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations, Glob. Planet. Change, Volume 57 (2007), pp. 27-42

[Haas, 2002] Haas.,L., 2002. Mediterranean water resource planning and climate change adaptation. Water, wetlands and climate change. Building linkages for their integrated management. Mediterranean Regional Roundtable. Athens, Greece, December 10-11 Draft for Discussion, 62 p.

[Habets et al., 2008] F. Habets; A. Boone; J.L. Champeaux; P. Etchevers; L. Franchisteguy; E. Leblois; E. Ledoux; P. Le Moigne; E. Martin; S. Morel; J. Noilhan; P. Segui; F. Rousset-Regimbeau; P. Viennot The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, J. Geophys. Res. Atmosph., Volume 113 (2008), pp. 31145-31172

[Hamed and Rao, 1998] K.H. Hamed; A.R. Rao A modified Mann–Kendall trend test for autocorrelated data, J. Hydrol., Volume 204 (1998), pp. 182-196

[IPCC, 2007] IPCC. Climate Change 2007: Synthesis Report. An Assessment of Intergovernmental Panel on Climate Change. (2007) Geneva, Switzerland, http://ipcc.ch/index.html.

[Jentsch and Beierkuhnlein, 2008] A. Jentsch; C. Beierkuhnlein Research frontiers in climate change: Effects of extreme meteorological events on ecosystems, C. R. Geoscience, Volume 340 (2008), pp. 621-628

[Kendall, 1975] M.G. Kendall Rank correlation methods, Griffin, London, 1975 (202 p.)

[Lemaitre, 2002] F. Lemaitre Recensement des tests de détection de tendances ou de ruptures adaptés à l’analyse de stationnarité des régimes de crues en France. Travail de fin d’étude, ENTPE, Cemagref Lyon, 2002 (94 p.)

[Le Mouël et al., 2008] J.L. Le Mouël; V. Courtillot; E. Blanter; M. Shnirman Evidence for a solar signature in 20th century temperature data from the USA and Europe, C. R. Geoscience, Volume 340 (2008), pp. 421-430

[Le Treut et al., 2008] H. Le Treut; G. Gastineau; L. Li Uncertainties attached to global or local climate changes, C. R. Geoscience, Volume 340 (2008), pp. 584-590

[Lespinas, 2008] Lespinas., V., 2008. Impact du changement climatique sur l’hydrologie des fleuves côtiers en région Languedoc-Roussillon. Thèse, université de Perpignan, 332 p.

[Lubès-Niel et al., 1998] H. Lubès-Niel; J.M. Masson; J.E. Paturel; E. Servat Variabilité climatique et statistique. Étude par simulation de la puissance et de la robustesse de quelques tests utilisés pour vérifier l’homogénéité de chroniques, Rev. Sci. Eau, Volume 3 (1998), pp. 383-408

[Ludwig et al., 2004] W. Ludwig; P. Serrat; L. Cesmat; J. Garcia-Esteves Evaluating the impact of the recent temperature increase on the hydrology of the Têt River (Southern France), J. Hydrol., Volume 289 (2004), pp. 204-221

[Mestre, 2002] Mestre., O., 2002. Méthodes statistiques pour l’homogénéisation de longues séries climatiques. PhD Thesis, université Paul-Sabatier, Toulouse, France, 229 pp.

[Moisselin and Dubuisson, 2006] J.M. Moisselin; A. Dubuisson Evolution des valeurs extrêmes de températures et précipitations au cours du XXe siècle en France, La Météorologie, Volume 54 (2006), pp. 32-42

[Moisselin et al., 2002] J.M. Moisselin; M. Schneider; C. Canellas; O. Mestre Changements climatiques en France au XXe siècle. Étude des longues séries de données homogénéisées françaises de précipitations et de températures, La Météorologie, Volume 38 (2002), pp. 45-56

[Norrant and Douguedroit, 2006] C. Norrant; A. Douguedroit Monthly and daily precipitation trends in the Mediterranean (1950–2000), Theoret. Appl. Climatol., Volume 83 (2006), pp. 89-106

[Pal and Al-Tabbaa, 2009] I.I. Pal; A. Al-Tabbaa Trends in seasonal precipitation extremes - An indicator of climate change in Kerala, India, J. Hydrol., Volume 367 (2009), pp. 62-69

[Planton et al., 2005] S. Planton; M. Deque; H. Douville; B. Spagnolli Impact du réchauffement climatique sur le cycle hydrologique, C. R. Geoscience, Volume 337 (2005), pp. 193-202

[Pujol et al., 2007] N. Pujol; L. Neppel; R. Sabatier Approche régionale pour la détection de tendances dans des séries de précipitations de la région méditerranéenne française, C. R. Geoscience, Volume 339 (2007), pp. 651-658

[Quintana-segui et al., 2008] P. Quintana-segui; E. Martin; F. Habets Analysis of Near-Surface Atmospheric Variables. Validation of the SAFRAN Analysis over France, J. Appl. Meteorol. Climatol., Volume 47 (2008), pp. 92-107

[Renard, 2006] Renard., B., 2006. Détection et prise en compte d’éventuels impacts du changement climatique sur les extrêmes hydrologiques en France. PhD Thesis, Institut National Polytechnique de Grenoble et Cemagref.

[Renard et al., 2006] B. Renard; M. Lang; P. Bois; A. Dupeyrat; O. Mestre; H. Niel; J. Gailhard; C. Laurent; L. Neppel; E. Sauquet Evolution des extrêmes hydrométriques en France à partir de données observées, La Houille Blanche, Volume 6 (2006), pp. 46-54

[Soubeyroux et al., 2008] J.M. Soubeyroux; E. Martin; L. Franchisteguy; F. Habets; J. Noilhan; M. Baillon; F. Regimbeau; J.P. Vidal; P. LeMoigne; S. Morel Safran_Isba_Modcou: un outil pour le suivi hydrométéorologique opérationnel et les études, La Météorologie (2008), pp. 40-45

[Tayanç et al., 2009] M. Tayanç; U. Im; M. Doguel; M. Karaca Climate change in Turkey for the last half century, Climat. Change, Volume 94 (2009), pp. 483-502

[Yiou and Masson-Delmotte, 2005] P. Yiou; V. Masson-Delmotte Trends in sub-annual climate variability since the Little Ice Age in western Europe, C. R. Geoscience., Volume 337 (2005), pp. 1001-1012

[Yue and Wang, 2002] S. Yue; C.Y. Wang Regional streamflow trend detection with consideration of both temporal and spatial correlation, Int. J. Climatol., Volume 22 (2002), pp. 933-946

[Zhang et al., 2004] X.B. Zhang; F.W. Zwiers; G.L. Li Monte Carlo experiments on the detection of trends in extreme values, J. Climate, Volume 17 (2004), pp. 1945-1952


Cité par

  • Basma Latrech; Taoufik Hermassi; Samir Yacoubi; Adel Slatni; Fathia Jarray; Laurent Pouget; Mohamed Ali Ben Abdallah Comparative Analysis of Climate Change Impacts on Climatic Variables and Reference Evapotranspiration in Tunisian Semi-Arid Region, Agriculture, Volume 14 (2024) no. 1, p. 160 | DOI:10.3390/agriculture14010160
  • Ramazan Acar A comparison of the performance of different innovative trend assessment approaches for air temperature and precipitation data: an application to Elazığ Province (Turkey), Journal of Water and Climate Change, Volume 15 (2024) no. 3, p. 1417 | DOI:10.2166/wcc.2024.685
  • Tarek Bouregaa Spatiotemporal trends of reference evapotranspiration in Algeria, Theoretical and Applied Climatology, Volume 155 (2024) no. 1, p. 581 | DOI:10.1007/s00704-023-04651-6
  • Sarah Kabli; Ayoub Zeroual; Mohamed Meddi Spatiotemporal sensitivity analysis of surface soil moisture to precipitation and temperature variations: a case study of the Cheliff Basin in Algeria, Theoretical and Applied Climatology, Volume 155 (2024) no. 5, p. 4189 | DOI:10.1007/s00704-024-04875-0
  • Basma Latrech; Samir Yacoubi; Taoufik Hermassi; Adel Slatni; Fathia Jarray; Laurent Pouget Homogeneity and Trend Analysis of Climatic Variables in Cap-Bon Region of Tunisia, Applied Sciences, Volume 13 (2023) no. 19, p. 10593 | DOI:10.3390/app131910593
  • Gholamabbas Fallah-Ghalhari; Fahimeh Shakeri Assessing the consequences of climate change on potential evapotranspiration in Iran in the coming decades, Arabian Journal of Geosciences, Volume 16 (2023) no. 4 | DOI:10.1007/s12517-023-11230-6
  • Debapriya Poddar; Tapash Mandal; Jayanta Das Spatio-Temporal Changes of Rainfall Pattern Under Changing Climate in West Bengal, India, Climate Change, Agriculture and Society (2023), p. 15 | DOI:10.1007/978-3-031-28251-5_2
  • Takeo Tsuchihara; Shuhei Yoshimoto; Katsushi Shirahata; Hiroomi Nakazato; Satoshi Ishida Analysis of groundwater-level fluctuation and linear regression modeling for prediction of initial groundwater level during irrigation of rice paddies in the Nasunogahara alluvial fan, central Japan, Environmental Earth Sciences, Volume 82 (2023) no. 20 | DOI:10.1007/s12665-023-11174-w
  • Emilie Lavie; Pepita Ould Ahmed; Philippe Cadène; Ismail Chiab; Vassili Kypreos Challenging global changes in a post-revolutionary context: the case of irrigated olive growing in central Tunisia, Geographica Helvetica, Volume 78 (2023) no. 3, p. 417 | DOI:10.5194/gh-78-417-2023
  • Tao Bai; Pejman Tahmasebi Graph neural network for groundwater level forecasting, Journal of Hydrology, Volume 616 (2023), p. 128792 | DOI:10.1016/j.jhydrol.2022.128792
  • José Luis Cruz Maceín; Ignacio Gonzalez-Fernandez; Alba Barrutieta; Victoria Bermejo-Bermejo; José Pablo Zamorano Rodríguez Adaptation strategies for dealing with global atmospheric change in Mediterranean agriculture: a triple helix approach to the Spanish case study, Regional Environmental Change, Volume 23 (2023) no. 4 | DOI:10.1007/s10113-023-02131-1
  • Fabio Di Nunno; Marco De Matteo; Giovanni Izzo; Francesco Granata A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto, Sustainability, Volume 15 (2023) no. 14, p. 11091 | DOI:10.3390/su151411091
  • Léa Laurent; Albin Ullmann; Thierry Castel How abrupt changes in surface temperature impacts water cycle over France? The case study of winter bread wheat area., Total Environment Research Themes, Volume 8 (2023), p. 100079 | DOI:10.1016/j.totert.2023.100079
  • Tagele Mossie Aschale; Nunziarita Palazzolo; David J. Peres; Guido Sciuto; Antonino Cancelliere An Assessment of Trends of Potential Evapotranspiration at Multiple Timescales and Locations in Sicily from 2002 to 2022, Water, Volume 15 (2023) no. 7, p. 1273 | DOI:10.3390/w15071273
  • J.J. Pardo; A. Sánchez-Virosta; B.C. Léllis; A. Domínguez; A. Martínez-Romero Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL), Agricultural Water Management, Volume 274 (2022), p. 107917 | DOI:10.1016/j.agwat.2022.107917
  • Jacob Kofi Mensah; Eric A. Ofosu; Sandow Mark Yidana; Komlavi Akpoti; Amos T. Kabo-bah Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review, Environmental Advances, Volume 8 (2022), p. 100224 | DOI:10.1016/j.envadv.2022.100224
  • Zhen Ling; Zhengtao Shi; Shixiang Gu; Tao Wang; Weiwei Zhu; Guojian Feng Impact of Climate Change and Rubber (Hevea brasiliensis) Plantation Expansion on Reference Evapotranspiration in Xishuangbanna, Southwest China, Frontiers in Plant Science, Volume 13 (2022) | DOI:10.3389/fpls.2022.830519
  • Emilie Lavie La diffusion du modèle de l’oasis mondialisée : réflexions à partir du maillon Minervois du Projet Hydraulique Régional d’Occitanie, Géocarrefour, Volume 96 (2022) no. 2 | DOI:10.4000/geocarrefour.20134
  • Fatemeh Yaghoubi; Mohammad Bannayan; Ghorban-Ali Asadi Changes in spatio-temporal distribution of AgMERRA-derived agro-climatic indices and agro-climatic zones for wheat crops in the northeast Iran, International Journal of Biometeorology, Volume 66 (2022) no. 3, p. 431 | DOI:10.1007/s00484-021-02156-3
  • Youness Hrour; Zahra Thomas; Ophélie Fovet; Karima Sebari; Pauline Rousseau-Gueutin Changes in precipitation and discharge in a Mediterranean catchment as a response to climate change and human activities, Journal of Water and Climate Change, Volume 13 (2022) no. 9, p. 3253 | DOI:10.2166/wcc.2022.074
  • Sabrina Taïbi; Ayoub Zeroual; Mohamed Meddi Effect of autocorrelation on temporal trends in air-temperature in Northern Algeria and links with teleconnections patterns, Theoretical and Applied Climatology, Volume 147 (2022) no. 3-4, p. 959 | DOI:10.1007/s00704-021-03862-z
  • Fatemeh Hajiabadi; Farzad Hassanpour; Mostafa Yaghoobzadeh; Hossein Hammami; Mahdi Amirabadizadeh Evaluation of drought characterization using SPI and SC-PDSI drought indices in baseline and upcoming periods in Birjand region, Arabian Journal of Geosciences, Volume 14 (2021) no. 11 | DOI:10.1007/s12517-021-07031-4
  • Rosa Duarte; Vicente Pinilla; Ana Serrano The globalization of Mediterranean agriculture: A long-term view of the impact on water consumption, Ecological Economics, Volume 183 (2021), p. 106964 | DOI:10.1016/j.ecolecon.2021.106964
  • Tao Sun; Ranhao Sun; Muhammad Sadiq Khan; Liding Chen Urbanization increased annual precipitation in temperate climate zone: A case in Beijing-Tianjin-Hebei region of North China, Ecological Indicators, Volume 126 (2021), p. 107621 | DOI:10.1016/j.ecolind.2021.107621
  • D. Treppiedi; G. Cipolla; A. Francipane; L.V. Noto Detecting precipitation trend using a multiscale approach based on quantile regression over a Mediterranean area, International Journal of Climatology, Volume 41 (2021) no. 13, p. 5938 | DOI:10.1002/joc.7161
  • Miquel Tomas‐Burguera; Santiago Beguería; Sergio M. Vicente‐Serrano Climatology and trends of reference evapotranspiration in Spain, International Journal of Climatology, Volume 41 (2021) no. S1 | DOI:10.1002/joc.6817
  • Salima Charifi Bellabas; Saadia Benmamar; Abdellatif Dehni Study and analysis of the streamflow decline in North Algeria, Journal of Applied Water Engineering and Research, Volume 9 (2021) no. 1, p. 20 | DOI:10.1080/23249676.2020.1831974
  • Rebekah A. Stein; Nathan D. Sheldon; Selena Y. Smith Pacific Northwest Plants Record Multiannual Atmosphere–Ocean Circulation Patterns, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 19 | DOI:10.1029/2021jd035454
  • Hui Li; Yanyan Gao; Enke Hou Spatial and temporal variation of precipitation during 1960–2015 in Northwestern China, Natural Hazards, Volume 109 (2021) no. 3, p. 2173 | DOI:10.1007/s11069-021-04915-2
  • Emmanuel Nyadzi; Enoch Bessah; Gordana Kranjac-Berisavljevic; Fulco Ludwig Hydro-climatic and land use/cover changes in Nasia catchment of the White Volta basin in Ghana, Theoretical and Applied Climatology, Volume 146 (2021) no. 3-4, p. 1297 | DOI:10.1007/s00704-021-03772-0
  • Guangli Fan; Amjad Sarabandi; Mostafa Yaghoobzadeh Evaluating the climate change effects on temperature, precipitation and evapotranspiration in eastern Iran using CMPI5, Water Supply, Volume 21 (2021) no. 8, p. 4316 | DOI:10.2166/ws.2021.179
  • Yao Wang; Nengwang Chen Recent progress in coupled surface–ground water models and their potential in watershed hydro-biogeochemical studies: A review, Watershed Ecology and the Environment, Volume 3 (2021), p. 17 | DOI:10.1016/j.wsee.2021.04.001
  • Ziyang Zhao; Hongrui Wang; Cheng Wang; Wangcheng Li; Hao Chen; Shuxin Gong Impacts of Climatic Change on Reference Crop Evapotranspiration across Different Climatic Zones of Ningxia at Multi-Time Scales from 1957 to 2018, Advances in Meteorology, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/3156460
  • Abderrahmane Khedimallah; Mohamed Meddi; Gil Mahé Characterization of the interannual variability of precipitation and runoff in the Cheliff and Medjerda basins (Algeria), Journal of Earth System Science, Volume 129 (2020) no. 1 | DOI:10.1007/s12040-020-01385-1
  • Nathalie Folton; Éric Martin; Patrick Arnaud; Mathieu Tolsa Cinquante ans de processus hydrologiques observés dans des petits bassins versants méditerranéens : vers une raréfaction de la ressource en eau ?, La Houille Blanche, Volume 106 (2020) no. 5, p. 17 | DOI:10.1051/lhb/2020048
  • Manuela Lasagna; Susanna Mancini; Domenico Antonio De Luca Groundwater hydrodynamic behaviours based on water table levels to identify natural and anthropic controlling factors in the Piedmont Plain (Italy), Science of The Total Environment, Volume 716 (2020), p. 137051 | DOI:10.1016/j.scitotenv.2020.137051
  • Zainab Naeem; Shaheen Begum Impact of seasonal variations on soil electrical conductivity as an earthquake precursor along the Margalla Fault Line, Islamabad, Soil Dynamics and Earthquake Engineering, Volume 137 (2020), p. 106233 | DOI:10.1016/j.soildyn.2020.106233
  • Erum Aamir; Ishtiaq Hassan The impact of climate indices on precipitation variability in Baluchistan, Pakistan, Tellus A: Dynamic Meteorology and Oceanography, Volume 72 (2020) no. 1, p. 1833584 | DOI:10.1080/16000870.2020.1833584
  • Sarita Gajbhiye Meshram; Ercan Kahya; Chandrashekhar Meshram; Mohammad Ali Ghorbani; Balram Ambade; Rasoul Mirabbasi Long-term temperature trend analysis associated with agriculture crops, Theoretical and Applied Climatology, Volume 140 (2020) no. 3-4, p. 1139 | DOI:10.1007/s00704-020-03137-z
  • Antoine Allam; Roger Moussa; Wajdi Najem; Claude Bocquillon Hydrological cycle, Mediterranean basins hydrology, Water Resources in the Mediterranean Region (2020), p. 1 | DOI:10.1016/b978-0-12-818086-0.00001-7
  • Vassili Kypréos; Guillaume Lacquement; Félix Authier; Wolfgang Ludwig Changement climatique et diminution de la ressource en eau, Études rurales (2020) no. 206, p. 176 | DOI:10.4000/etudesrurales.24123
  • Mingxuan Du; Olivier Fouché; Elodie Zavattero; Qiang Ma; Olivier Delestre; Philippe Gourbesville Water planning in a mixed land use Mediterranean area: point-source abstraction and pollution scenarios by a numerical model of varying stream-aquifer regime, Environmental Science and Pollution Research, Volume 26 (2019) no. 3, p. 2145 | DOI:10.1007/s11356-018-1437-0
  • Nathalie Folton; Eric Martin; Patrick Arnaud; Pierre L'Hermite; Mathieu Tolsa A 50-year analysis of hydrological trends and processes in a Mediterranean catchment, Hydrology and Earth System Sciences, Volume 23 (2019) no. 6, p. 2699 | DOI:10.5194/hess-23-2699-2019
  • Vishal Chandole; Geeta S. Joshi; Shilpesh C. Rana Spatio -temporal trend detection of hydro -meteorological parameters for climate change assessment in Lower Tapi river basin of Gujarat state, India, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 195 (2019), p. 105130 | DOI:10.1016/j.jastp.2019.105130
  • Faiza Hallouz; Mohamed Meddi; Gil Mahe; Hafsa Karahacane; Salah Eddine Ali Rahmani Tendance des précipitations et évolution des écoulements dans un cadre de changement climatique : bassin versant de l’oued Mina en Algérie, Revue des sciences de l’eau, Volume 32 (2019) no. 2, p. 83 | DOI:10.7202/1065202ar
  • Olawale E. Abiye; Olaniran J. Matthew; Lukman A. Sunmonu; Oladimeji A. Babatunde Potential evapotranspiration trends in West Africa from 1906 to 2015, SN Applied Sciences, Volume 1 (2019) no. 11 | DOI:10.1007/s42452-019-1456-6
  • Mehdi Bahrami; Abdol Rassoul Zarei; Mohammad Mehdi Moghimi; Mohammad Reza Mahmoudi Trend analysis of evapotranspiration applying parametric and non-parametric techniques (case study: arid regions of southern Iran), Sustainable Water Resources Management, Volume 5 (2019) no. 4, p. 1981 | DOI:10.1007/s40899-019-00352-z
  • Jório Bezerra Cabral Júnior; Cláudio Moisés Santos e Silva; Hermes Alves de Almeida; Bergson Guedes Bezerra; Maria Helena Constantino Spyrides Detecting linear trend of reference evapotranspiration in irrigated farming areas in Brazil’s semiarid region, Theoretical and Applied Climatology, Volume 138 (2019) no. 1-2, p. 215 | DOI:10.1007/s00704-019-02816-w
  • Urška Maček; Nejc Bezak; Mojca Šraj Reference evapotranspiration changes in Slovenia, Europe, Agricultural and Forest Meteorology, Volume 260-261 (2018), p. 183 | DOI:10.1016/j.agrformet.2018.06.014
  • Hossein Asakereh; Mohammad Darand; Mehdi Doostkamian Analysis of pervasive precipitation in similar gradient areas of Iran, Arabian Journal of Geosciences, Volume 11 (2018) no. 17 | DOI:10.1007/s12517-018-3873-z
  • Z Y Lv; J X Mu; D H Yan; T L Qin Spatial and temporal variability of precipitation in the context of climate change: A case study of the Upper Yellow River Basin, China, IOP Conference Series: Earth and Environmental Science, Volume 191 (2018), p. 012141 | DOI:10.1088/1755-1315/191/1/012141
  • Erum Aamir; Ishitaq Hassan Trend analysis in precipitation at individual and regional levels in Baluchistan, Pakistan., IOP Conference Series: Materials Science and Engineering, Volume 414 (2018), p. 012042 | DOI:10.1088/1757-899x/414/1/012042
  • Pengfei Lin; Zhibin He; Jun Du; Longfei Chen; Xi Zhu; Jing Li Impacts of climate change on reference evapotranspiration in the Qilian Mountains of China: Historical trends and projected changes, International Journal of Climatology, Volume 38 (2018) no. 7, p. 2980 | DOI:10.1002/joc.5477
  • Pascal Marrot; Anne Charmantier; Jacques Blondel; Dany Garant; Sonya Clegg Current spring warming as a driver of selection on reproductive timing in a wild passerine, Journal of Animal Ecology, Volume 87 (2018) no. 3, p. 754 | DOI:10.1111/1365-2656.12794
  • Armağan Aloe Karabulut; Eleonora Crenna; Serenella Sala; Angel Udias A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security, Journal of Cleaner Production, Volume 172 (2018), p. 3874 | DOI:10.1016/j.jclepro.2017.05.092
  • Keyvan Malek; Jennifer C Adam; Claudio O Stöckle; R. Troy Peters Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses, Journal of Hydrology, Volume 561 (2018), p. 444 | DOI:10.1016/j.jhydrol.2017.11.046
  • Weimin Wang; Xue Dong; Yanyun Lu; Xunliang Liu; Ruining Zhang; Meng Li; Linjing Tian; Yue Ding; Xiao Pu; X. Lei; S. Cai; Y. Yu; H. Li Soil Water Balance and Water Use Efficiency of Rain-fed Maize under a Cool Temperate Climate as Modeled by the AquaCrop, MATEC Web of Conferences, Volume 246 (2018), p. 01059 | DOI:10.1051/matecconf/201824601059
  • Rahul Verma; Ganesh D. Kale Trend Detection Analysis of Gridded PET Data over the Tapi Basin, Water Conservation Science and Engineering, Volume 3 (2018) no. 2, p. 99 | DOI:10.1007/s41101-018-0044-8
  • Hadush K. Meresa; Renata J. Romanowicz; Jaroslaw J. Napiorkowski Understanding changes and trends in projected hydroclimatic indices in selected Norwegian and Polish catchments, Acta Geophysica, Volume 65 (2017) no. 4, p. 829 | DOI:10.1007/s11600-017-0062-5
  • Xiaowan Liu; Dingzhi Peng; Zongxue Xu Identification of the Impacts of Climate Changes and Human Activities on Runoff in the Jinsha River Basin, China, Advances in Meteorology, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/4631831
  • Zhendong Gao; Junshi He; Kebao Dong; Xiang Li Trends in reference evapotranspiration and their causative factors in the West Liao River basin, China, Agricultural and Forest Meteorology, Volume 232 (2017), p. 106 | DOI:10.1016/j.agrformet.2016.08.006
  • Jorge Ruiz; Nicolás Molano-González Dinámica de la precipitación, la temperatura y la razón de aridez (1973-2011) en un escenario de cambio global en la isla de la vieja Providencia, Colombia: ¿qué está cambiando?, Cuadernos de Geografía: Revista Colombiana de Geografía, Volume 26 (2017) no. 1, p. 25 | DOI:10.15446/rcdg.v26n1.56019
  • Yanlong Kong; Zhonghe Pang What is the primary factor controlling trend of Glacier No. 1 runoff in the Tianshan Mountains: temperature or precipitation change?, Hydrology Research, Volume 48 (2017) no. 1, p. 231 | DOI:10.2166/nh.2016.190
  • Hao Wu; Hui Qian Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s, International Journal of Climatology, Volume 37 (2017) no. 5, p. 2582 | DOI:10.1002/joc.4866
  • Masoud Irannezhad; Behzad Ahmadi; Bjørn Kløve; Hamid Moradkhani Atmospheric circulation patterns explaining climatological drought dynamics in the boreal environment of Finland, 1962–2011, International Journal of Climatology, Volume 37 (2017) no. S1, p. 801 | DOI:10.1002/joc.5039
  • Hussein Wazneh; M. Altaf Arain; Paulin Coulibaly Historical Spatial and Temporal Climate Trends in Southern Ontario, Canada, Journal of Applied Meteorology and Climatology, Volume 56 (2017) no. 10, p. 2767 | DOI:10.1175/jamc-d-16-0290.1
  • S. Taibi; M. Meddi; G. Mahé; A. Assani Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall, Theoretical and Applied Climatology, Volume 127 (2017) no. 1-2, p. 241 | DOI:10.1007/s00704-015-1626-4
  • R. Moratiel; B. Soriano; A. Centeno; D. Spano; R.L. Snyder Wet-bulb, dew point, and air temperature trends in Spain, Theoretical and Applied Climatology, Volume 130 (2017) no. 1-2, p. 419 | DOI:10.1007/s00704-016-1891-x
  • Kexin Zhang; Xiaoqing Qian; Puxing Liu; Yihong Xu; Liguo Cao; Yongpei Hao; Shengpei Dai Variation characteristics and influences of climate factors on aridity index and its association with AO and ENSO in northern China from 1961 to 2012, Theoretical and Applied Climatology, Volume 130 (2017) no. 1-2, p. 523 | DOI:10.1007/s00704-016-1887-6
  • Seungwoo Chang; Wendy D. Graham; Syewoon Hwang; Rafael Muñoz-Carpena Sensitivity of future continental United States water deficit projections to general circulation models, the evapotranspiration estimation method, and the greenhouse gas emission scenario, Hydrology and Earth System Sciences, Volume 20 (2016) no. 8, p. 3245 | DOI:10.5194/hess-20-3245-2016
  • Sergio M. Vicente-Serrano; Cesar Azorin-Molina; Arturo Sanchez-Lorenzo; Ahmed El Kenawy; Natalia Martín-Hernández; Marina Peña-Gallardo; Santiago Beguería; Miquel Tomas-Burguera Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands, Hydrology and Earth System Sciences, Volume 20 (2016) no. 8, p. 3393 | DOI:10.5194/hess-20-3393-2016
  • Abayomi A. Abatan; Babatunde J. Abiodun; Kamoru A. Lawal; William J. Gutowski Trends in extreme temperature over Nigeria from percentile‐based threshold indices, International Journal of Climatology, Volume 36 (2016) no. 6, p. 2527 | DOI:10.1002/joc.4510
  • Abdelaziz Hirich; Hicham Fatnassi; Ragab Ragab; Redouane Choukr‐Allah Prediction of Climate Change Impact on Corn Grown in the South of Morocco Using the Saltmed Model, Irrigation and Drainage, Volume 65 (2016) no. 1, p. 9 | DOI:10.1002/ird.2002
  • Xiaodong Ren; Diogo S. Martins; Zhongyi Qu; Paula Paredes; Luis S. Pereira Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns, Water Resources Management, Volume 30 (2016) no. 11, p. 3793 | DOI:10.1007/s11269-016-1385-8
  • Mahdi Amirabadizadeh; Yuk Feng Huang; Teang Shui Lee Recent Trends in Temperature and Precipitation in the Langat River Basin, Malaysia, Advances in Meteorology, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/579437
  • Haijun Liu; Xian Zhang; Liwei Zhang; Xuming Wang Changing Trends in Meteorological Elements and Reference Evapotranspiration in a Mega City: A Case Study in Shenzhen City, China, Advances in Meteorology, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/324502
  • Masoud Irannezhad; Anna-Kaisa Ronkanen; Bjørn Kløve Effects of climate variability and change on snowpack hydrological processes in Finland, Cold Regions Science and Technology, Volume 118 (2015), p. 14 | DOI:10.1016/j.coldregions.2015.06.009
  • M. Pulido-Velazquez; S. Peña-Haro; A. García-Prats; A. F. Mocholi-Almudever; L. Henriquez-Dole; H. Macian-Sorribes; A. Lopez-Nicolas Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain), Hydrology and Earth System Sciences, Volume 19 (2015) no. 4, p. 1677 | DOI:10.5194/hess-19-1677-2015
  • M. Irannezhad; D. Chen; B. Kløve Interannual variations and trends in surface air temperature in Finland in relation to atmospheric circulation patterns, 1961–2011, International Journal of Climatology, Volume 35 (2015) no. 10, p. 3078 | DOI:10.1002/joc.4193
  • Lingpeng Guo; Lanhai Li Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China, International Journal of Climatology, Volume 35 (2015) no. 7, p. 1379 | DOI:10.1002/joc.4063
  • Narges Palizdan; Yashar Falamarzi; Yuk Feng Huang; Teang Shui Lee; Abdul Halim Ghazali Temporal precipitation trend analysis at the Langat River Basin, Selangor, Malaysia, Journal of Earth System Science, Volume 124 (2015) no. 8, p. 1623 | DOI:10.1007/s12040-015-0636-z
  • Mohammad Amin Asadi Zarch; Bellie Sivakumar; Ashish Sharma Assessment of global aridity change, Journal of Hydrology, Volume 520 (2015), p. 300 | DOI:10.1016/j.jhydrol.2014.11.033
  • Cesar Azorin-Molina; Sergio M. Vicente-Serrano; Arturo Sanchez-Lorenzo; Tim R. McVicar; Enrique Morán-Tejeda; Jesús Revuelto; Ahmed El Kenawy; Natalia Martín-Hernández; Miquel Tomas-Burguera Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961–2011), Journal of Hydrology, Volume 523 (2015), p. 262 | DOI:10.1016/j.jhydrol.2015.01.046
  • S. Taibi; M. Meddi; G. Mahé Evolution des pluies extrêmes dans le bassin du Chéliff (Algérie) au cours des 40 dernières années 1971–2010, Proceedings of the International Association of Hydrological Sciences, Volume 369 (2015), p. 175 | DOI:10.5194/piahs-369-175-2015
  • Ke-xin Zhang; Shao-ming Pan; Wei Zhang; Yi-hong Xu; Li-guo Cao; Yong-pei Hao; Yun Wang Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012, Quaternary International, Volume 380-381 (2015), p. 75 | DOI:10.1016/j.quaint.2014.12.037
  • ChangBin Li; XueLei Zhang; JiaGuo Qi; ShuaiBing Wang; LinShan Yang; WenJin Yang; GaoFeng Zhu; Qiang Hao A case study of regional eco-hydrological characteristics in the Tao River Basin, northwestern China, based on evapotranspiration estimated by a coupled Budyko Equation-crop coefficient approach, Science China Earth Sciences, Volume 58 (2015) no. 11, p. 2103 | DOI:10.1007/s11430-015-5087-5
  • G. Lobera; P. Besné; D. Vericat; J.A. López-Tarazón; A. Tena; I. Aristi; J.R. Díez; A. Ibisate; A. Larrañaga; A. Elosegi; R.J. Batalla Geomorphic status of regulated rivers in the Iberian Peninsula, Science of The Total Environment, Volume 508 (2015), p. 101 | DOI:10.1016/j.scitotenv.2014.10.058
  • Jing Zhou; Zhongyao Liang; Yong Liu; Huaicheng Guo; Dan He; Lei Zhao Six-decade temporal change and seasonal decomposition of climate variables in Lake Dianchi watershed (China): stable trend or abrupt shift?, Theoretical and Applied Climatology, Volume 119 (2015) no. 1-2, p. 181 | DOI:10.1007/s00704-014-1098-y
  • M. Irannezhad; A. Torabi Haghighi; D. Chen; B. Kløve Variability in dryness and wetness in central Finland and the role of teleconnection patterns, Theoretical and Applied Climatology, Volume 122 (2015) no. 3-4, p. 471 | DOI:10.1007/s00704-014-1305-x
  • Sergio M. Vicente-Serrano; Cesar Azorin-Molina; Arturo Sanchez-Lorenzo; Jesús Revuelto; Juan I. López-Moreno; José C. González-Hidalgo; Enrique Moran-Tejeda; Francisco Espejo Reference evapotranspiration variability and trends in Spain, 1961–2011, Global and Planetary Change, Volume 121 (2014), p. 26 | DOI:10.1016/j.gloplacha.2014.06.005
  • Milan Gocic; Slavisa Trajkovic Analysis of trends in reference evapotranspiration data in a humid climate, Hydrological Sciences Journal, Volume 59 (2014) no. 1, p. 165 | DOI:10.1080/02626667.2013.798659
  • Lila Collet; Denis Ruelland; Valerie Borrell-Estupina; Eric Servat Assessing the long-term impact of climatic variability and human activities on the water resources of a meso-scale Mediterranean catchment, Hydrological Sciences Journal, Volume 59 (2014) no. 8, p. 1457 | DOI:10.1080/02626667.2013.842073
  • M. Irannezhad; H. Marttila; B. Kløve Long-term variations and trends in precipitation in Finland, International Journal of Climatology, Volume 34 (2014) no. 10, p. 3139 | DOI:10.1002/joc.3902
  • Haijun Liu; Yan Li; Tanny Josef; Ruihao Zhang; Guanhua Huang Quantitative estimation of climate change effects on potential evapotranspiration in Beijing during 1951–2010, Journal of Geographical Sciences, Volume 24 (2014) no. 1, p. 93 | DOI:10.1007/s11442-014-1075-5
  • Yanlong Kong; Zhonghe Pang Statistical analysis of stream discharge in response to climate change for Urumqi River catchment, Tianshan Mountains, central Asia, Quaternary International, Volume 336 (2014), p. 44 | DOI:10.1016/j.quaint.2013.05.002
  • Jing Feng; Denghua Yan; Chuanzhe Li; Fuliang Yu; Cheng Zhang Assessing the impact of climatic factors on potential evapotranspiration in droughts in North China, Quaternary International, Volume 336 (2014), p. 6 | DOI:10.1016/j.quaint.2013.06.011
  • N. Faysse; J.-D. Rinaudo; S. Bento; A. Richard-Ferroudji; M. Errahj; M. Varanda; A. Imache; M. Dionnet; D. Rollin; P. Garin; M. Kuper; L. Maton; M. Montginoul Participatory analysis for adaptation to climate change in Mediterranean agricultural systems: possible choices in process design, Regional Environmental Change, Volume 14 (2014) no. S1, p. 57 | DOI:10.1007/s10113-012-0362-x
  • Sergio M. Vicente‐Serrano; Cesar Azorin‐Molina; Arturo Sanchez‐Lorenzo; Jesús Revuelto; Enrique Morán‐Tejeda; Juan I. López‐Moreno; Francisco Espejo Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011), Water Resources Research, Volume 50 (2014) no. 11, p. 8458 | DOI:10.1002/2014wr015427
  • I. Rodes; J. Inglada; O. Hagolle; J.F. Dejoux; G. Dedieu, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS (2013), p. 3463 | DOI:10.1109/igarss.2013.6723574
  • D. Nalley; J. Adamowski; B. Khalil; B. Ozga-Zielinski Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform, Atmospheric Research, Volume 132-133 (2013), p. 375 | DOI:10.1016/j.atmosres.2013.06.011
  • Julien Ruffault; Nicolas K. Martin-StPaul; Serge Rambal; Florent Mouillot Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem, Climatic Change, Volume 117 (2013) no. 1-2, p. 103 | DOI:10.1007/s10584-012-0559-5
  • Adina-Eliza Croitoru; Adrian Piticar; Carmen Sofia Dragotă; Doina Cristina Burada Recent changes in reference evapotranspiration in Romania, Global and Planetary Change, Volume 111 (2013), p. 127 | DOI:10.1016/j.gloplacha.2013.09.004
  • María Isabel Arce; Rosa Gómez; María Luisa Suárez; María Rosario Vidal-Abarca Denitrification rates and controlling factors in two agriculturally influenced temporary Mediterranean saline streams, Hydrobiologia, Volume 700 (2013) no. 1, p. 169 | DOI:10.1007/s10750-012-1228-4
  • LiQiao Liang; LiJuan Li; ChangMing Liu; Lan Cuo Climate change in the Tibetan Plateau Three Rivers Source Region: 1960-2009, International Journal of Climatology, Volume 33 (2013) no. 13, p. 2900 | DOI:10.1002/joc.3642
  • Peng Shi; Xinxin Ma; Xi Chen; Simin Qu; Zhicai Zhang Analysis of Variation Trends in Precipitation in an Upstream Catchment of Huai River, Mathematical Problems in Engineering, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/929383
  • Leila Hamlaoui-Moulai; Mohammed Mesbah; Doudja Souag-Gamane; Abderrahmane Medjerab Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria, Natural Hazards, Volume 65 (2013) no. 3, p. 1293 | DOI:10.1007/s11069-012-0411-2
  • Lila Collet; Denis Ruelland; Valérie Borrell-Estupina; Alain Dezetter; Eric Servat Integrated modelling to assess long-term water supply capacity of a meso-scale Mediterranean catchment, Science of The Total Environment, Volume 461-462 (2013), p. 528 | DOI:10.1016/j.scitotenv.2013.05.036
  • Jaime Ribalaygua; Mª Rosa Pino; Javier Pórtoles; Esther Roldán; Emma Gaitán; David Chinarro; Luis Torres Climate change scenarios for temperature and precipitation in Aragón (Spain), Science of The Total Environment, Volume 463-464 (2013), p. 1015 | DOI:10.1016/j.scitotenv.2013.06.089
  • Xiaolin Song; Xianguo Lu; Zhengmao Liu; Yonghe Sun Runoff change of Naoli River in Northeast China in 1955–2009 and its influencing factors, Chinese Geographical Science, Volume 22 (2012) no. 2, p. 144 | DOI:10.1007/s11769-012-0525-1
  • Jagadish P. Patra; A. Mishra; R. Singh; N. S. Raghuwanshi Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India, Climatic Change, Volume 111 (2012) no. 3-4, p. 801 | DOI:10.1007/s10584-011-0215-5
  • Buchun Liu; Xurong Mei; Guohua Lv; Youlu Yang; Meilan Bai; Yongfeng Wu; Jiqing Song; Wenbo Bai The maize evapotranspiration in the background of climate change: a case study in arid area, Hydrological Processes, Volume 26 (2012) no. 5, p. 633 | DOI:10.1002/hyp.8161
  • C. Galdies Temperature trends in Malta (central Mediterranean) from 1951 to 2010, Meteorology and Atmospheric Physics, Volume 117 (2012) no. 3-4, p. 135 | DOI:10.1007/s00703-012-0187-7
  • R. Saboohi; S. Soltani; M. Khodagholi Trend analysis of temperature parameters in Iran, Theoretical and Applied Climatology, Volume 109 (2012) no. 3-4, p. 529 | DOI:10.1007/s00704-012-0590-5
  • M. Espadafor; I.J. Lorite; P. Gavilán; J. Berengena An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain, Agricultural Water Management, Volume 98 (2011) no. 6, p. 1045 | DOI:10.1016/j.agwat.2011.01.015
  • Kei Nukazawa; Jun-ichi Shiraiwa; So Kazama Evaluations of seasonal habitat variations of freshwater fishes, fireflies, and frogs using a habitat suitability index model that includes river water temperature, Ecological Modelling, Volume 222 (2011) no. 20-22, p. 3718 | DOI:10.1016/j.ecolmodel.2011.09.005
  • S. del Río; L. Herrero; C. Pinto-Gomes; A. Penas Spatial analysis of mean temperature trends in Spain over the period 1961–2006, Global and Planetary Change, Volume 78 (2011) no. 1-2, p. 65 | DOI:10.1016/j.gloplacha.2011.05.012
  • Shouhong Zhang; Suxia Liu; Xingguo Mo; Chang Shu; Yang Sun; Chun Zhang Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin, Journal of Geographical Sciences, Volume 21 (2011) no. 4, p. 609 | DOI:10.1007/s11442-011-0867-0
  • Liqiao Liang; Lijuan Li; Qiang Liu Precipitation variability in Northeast China from 1961 to 2008, Journal of Hydrology, Volume 404 (2011) no. 1-2, p. 67 | DOI:10.1016/j.jhydrol.2011.04.020
  • Kei NUKAZAWA; Jun-ichi SHIRAIWA; So KAZAMA HABITAT EVALUATIONS OF AQUATIC CREATURES USING HSI MODEL CONSIDERING THE RIVER WATER TEMPERATURE, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Volume 67 (2011) no. 4, p. I_1255 | DOI:10.2208/jscejhe.67.i_1255

Cité par 119 documents. Sources : Crossref


Commentaires - Politique