Plan
Comptes Rendus

Internal geophysics (Physics of Earth's interior)
Monitoring volcanoes using seismic noise correlations
[Surveillance des volcans à partir du bruit de fond sismique]
Comptes Rendus. Géoscience, Nouveaux développements de l’imagerie et du suivi temporel à partir du bruit sismique, Volume 343 (2011) no. 8-9, pp. 633-638.

Résumés

In this article, we summarize some recent results of measurements of temporal changes of active volcanoes using seismic noise cross-correlations. We first present a novel approach to estimate volcano interior temporal seismic velocity changes. The proposed method allows to measure very small velocity changes (≈ 0.1%) with a time resolution as small as one day. The application of that method to Piton de la Fournaise Volcano (La Réunion Island) shows velocity decreases preceding eruptions. Moreover, velocity changes from noise cross-correlations over 10 years allow to detect transient velocity changes that could be due to long-lasting intrusions of magma without eruptive activity or to pressure buildup associated to the replenishing of the magma reservoir. We also present preliminary results of noise cross-correlation waveform perturbation associated with the occurrence of dike injection and volcanic eruption. We show that such an analysis leads us to locate the areas of dike injection and eruptive fissures at Piton de la Fournaise Volcano. These recent results suggest that monitoring volcanoes using seismic noise correlations should improve our ability to forecast eruptions, their intensity and thus potential environmental impact.

Dans cet article sont résumés quelques résultats récents de changements temporels observés sur un volcan actif, par utilisation de corrélations du bruit de fond sismique. On présente d’abord une nouvelle approche pour estimer les variations temporelles de vitesse sismique à l’intérieur du volcan. La méthode proposée permet de mesurer de très faibles variations de vitesse (≈ 0,1 %), avec une résolution d’une journée. L’application de cette méthode au volcan du Piton de la Fournaise (Île de la Réunion) montre une diminution de la vitesse avant les éruptions. En outre, les variations de vitesse obtenues à partir de corrélations de bruit de fond sur une durée de 10 ans permettent de détecter des variations de vitesse transitoires qui pourraient être dues à des intrusions de magma de longue durée, sans activité éruptive, ou à des augmentations de pression associées au remplissage du réservoir de magma. Sont aussi présentés des résultats préliminaires sur les variations de forme d’onde des corrélations, associées à l’injection de dykes et aux éruptions. Il est montré qu’une telle analyse permet de localiser les zones d’injection de dykes et de fissures éruptives. Ces résultats suggèrent que la surveillance des volcans par utilisation de corrélations de bruit de fond sismique pourrait améliorer notre capacité à prédire les éruptions, leur intensité et leur impact potentiel sur l’environnement.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crte.2010.12.010
Keywords: Volcano monitoring, Seismic noise, Volcanic eruption forecast
Mots-clés : Surveillance des volcans, Bruit de fond sismique, Prévision d’éruption volcanique

Florent Brenguier 1 ; Daniel Clarke 2 ; Yosuke Aoki 3 ; Nikolai M. Shapiro 2 ; Michel Campillo 4 ; Valérie Ferrazzini 1

1 Piton de la Fournaise volcano observatory, institut de physique du globe de Paris, 1, place Jussieu, 75005 Paris, France
2 CNRS (UMR 7154), institut de physique du globe de Paris, Sorbonne-Paris-Diderot, 1, rue Jussieu, 75238 Paris cedex 05, France
3 Earthquake research institute, university of Tokyo, Tokyo, Japan
4 Institut des sciences de la Terre, université Joseph-Fourier, 38041 Grenoble cedex 9, France
@article{CRGEOS_2011__343_8-9_633_0,
     author = {Florent Brenguier and Daniel Clarke and Yosuke Aoki and Nikolai M. Shapiro and Michel Campillo and Val\'erie Ferrazzini},
     title = {Monitoring volcanoes using seismic noise correlations},
     journal = {Comptes Rendus. G\'eoscience},
     pages = {633--638},
     publisher = {Elsevier},
     volume = {343},
     number = {8-9},
     year = {2011},
     doi = {10.1016/j.crte.2010.12.010},
     language = {en},
}
TY  - JOUR
AU  - Florent Brenguier
AU  - Daniel Clarke
AU  - Yosuke Aoki
AU  - Nikolai M. Shapiro
AU  - Michel Campillo
AU  - Valérie Ferrazzini
TI  - Monitoring volcanoes using seismic noise correlations
JO  - Comptes Rendus. Géoscience
PY  - 2011
SP  - 633
EP  - 638
VL  - 343
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crte.2010.12.010
LA  - en
ID  - CRGEOS_2011__343_8-9_633_0
ER  - 
%0 Journal Article
%A Florent Brenguier
%A Daniel Clarke
%A Yosuke Aoki
%A Nikolai M. Shapiro
%A Michel Campillo
%A Valérie Ferrazzini
%T Monitoring volcanoes using seismic noise correlations
%J Comptes Rendus. Géoscience
%D 2011
%P 633-638
%V 343
%N 8-9
%I Elsevier
%R 10.1016/j.crte.2010.12.010
%G en
%F CRGEOS_2011__343_8-9_633_0
Florent Brenguier; Daniel Clarke; Yosuke Aoki; Nikolai M. Shapiro; Michel Campillo; Valérie Ferrazzini. Monitoring volcanoes using seismic noise correlations. Comptes Rendus. Géoscience, Nouveaux développements de l’imagerie et du suivi temporel à partir du bruit sismique, Volume 343 (2011) no. 8-9, pp. 633-638. doi : 10.1016/j.crte.2010.12.010. https://comptes-rendus.academie-sciences.fr/geoscience/articles/10.1016/j.crte.2010.12.010/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The early detection of volcanic unrest mainly relies on the monitoring of volcanic seismicity and ground deformation. These methods provide insights into the dynamics of magma pressurization and transport. However, despite considerable effort, the precise forecasting of eruptions and their intensity has proven to be difficult. Therefore, there is a constant need for novel observational methods to obtain information about the ongoing volcanic processes. Pressurized volcanic fluids (magma, water) or gas induce deformation and thus perturbations of the elastic properties of volcanic edifices. These small perturbations can be detected as changes of seismic wave properties using repetitive seismic sources (Grêt et al. (2005), Ratdomopurbo and Poupinet (1995), Wegler et al. (2006)). However, none of these approaches were apt to provide a continuous monitoring of volcano elastic properties.

Our work relies on both theoretical and applied results, which show that the Green's function between two sensors can be reconstructed from the correlation of seismic noise (see Campillo (2006) for a review). This property has been extensively used to image the Earth's Interior at a global (Nishida et al. (2009)), regional (Shapiro et al. (2005)), or local scale (Brenguier et al. (2007)). In a pioneering work, Sens-Schoenfelder and Wegler (2006) proposed to use the repetitive waveforms of seismic noise cross-correlations to track for subsurface volcanic edifice velocity changes. In this manner, the continuous recording of ambient seismic noise allows continuous monitoring of volcano interiors.

As in any monitoring technique, the time resolution, fixed by the time between two independent measurements, should be as short as possible. This requirement points to a major limitation of the method of monitoring using seismic noise correlations. More precisely, cross-correlations computed from short time series of ambient seismic noise may not have converged to stable functions. The cross-correlation fluctuations spoil measurements of waveform perturbations linked to volcano interior changes. There are two main origins for residual fluctuations observed for successive noise cross-correlation functions:

  • • the first is the inadequate intrinsic length of seismic noise record used to converge to a stable cross-correlation function. The length of the seismic noise record required to converge to a stable correlation function is controlled by the nature of the noise, the distance between sensors and by the intrinsic attenuation and scattering properties of the studied medium (Larose et al. (2008));
  • • the second is the non-stationarity of ambient seismic noise (e.g., Hadziioannou et al. (2009)). The temporal fluctuations of ambient seismic noise varies depending on the dominant noise sources. These can be seasonal for ocean generated noise sources (e.g., Stehly et al. (2006)) or daily, or weekly for anthropic noise sources (e.g., Bonnefoy-Claudet et al. (2006)).

In the the following, we will describe recent results of temporal monitoring using cross-correlations of ambient seismic noise at Piton de la Fournaise Volcano. We will present techniques that rely on:

  • • the estimate of travel time perturbations of coda waves of noise cross-correlations;
  • • the measure of decorrelation of cross-correlation functions. These results suggest that monitoring volcanoes using seismic noise should improve our ability to forecast eruptions, their intensity and thus potential environmental impact.

2 Piton de la Fournaise Volcano

Piton de la Fournaise Volcano (PdF) is a hot spot, shield volcano located on La Réunion island in the Indian Ocean (Fig. 1). It erupted more than 30 times between 2000 and 2010. These eruptions lasted from a few hours to a few months and were associated with the emission of mainly basaltic lava with volume ranging from less than one to tens of million cubic meters (Peltier et al. (2009)). The time period we consider (1999–2008) started and ended with 2 major eruptions, namely the March 1998 eruption (60 million of cubic meter of lava emitted) and the April 2007 eruption associated to the 300 m high collapse of the main Dolomieu crater (130 million of cubic meter of lava emitted) (Staudacher et al. (2009)). The intense eruptive activity together with a weak tectonic activity makes Piton de la Fournaise Volcano well suited for studies focused on the processes of magma pressurization and injection and for the development of innovative monitoring methods.

Fig. 1

Geographical location of a) La Réunion island, b) Piton de la Fournaise Volcano, and c) the seismic network (inverted triangles) and extensometer (star) used in our analysis.

Localisation : (a) de l’Île de la Réunion, (b) du volcan du Piton de la Fournaise ; du réseau sismique (triangles inversés) et de l’extensomètre (étoile) utilisés dans cette étude.

3 Seismic velocity changes revealed from noise cross-correlations: application to Piton de la Fournaise Volcano

The method we use consists in measurements of very small waveform time delays in the coda of noise cross-correlations. This method is described as the so-called Moving Window Cross Spectrum (Ratdomopurbo and Poupinet (1995), Clarke et al. (2010)) or Coda Wave Interferometry (Snieder et al. (2002)) techniques. Coda waves (late part of seismograms) are scattered waves that travel long distances and thus accumulate time delays as a consequence, for example, of a uniform seismic velocity change in the propagating medium. Measuring travel time perturbations in the coda thus allows detecting very small velocity changes that would not be detectable by a classical measure of first arrival time delays. The drawback of that approach is that it is difficult to estimate the travel path of the scattered waves constituting the coda. However, recent promising results suggest it may be possible to produce refined 3D maps of small changes in a near future (Larose et al. (2010)).

In a previous work (Brenguier et al. (2008)), we analyzed 18 months (July 1999–December 2000) of continuous seismic records from the Piton de la Fournaise (PdF) Volcano Observatory. During the period of study, 5 eruptions occurred lasting on average 26 days each. We applied the Moving Window Cross Spectrum technique between a reference Cross Correlation Function (CCF, stack of 18 months of cross-correlations) and current cross-correlation functions (ten-day-stacks of CCFs, see Brenguier et al. (2008) for details). As a result, we estimate average (for different receiver pairs) relative travel time shifts (Δτ/τ), which is equivalent to the opposite of the medium uniform relative velocity change (Δv/v = −Δτ/τ).

As described by Stehly et al. (2007) and Sens-Schoenfelder (2008), it is important to correct noise records from eventual timing discrepancy because these will perturb the relative travel time shift estimates. Fig. 2a shows the continuous estimates of relative velocity changes. This curve has been obtained by removing the long-term trend (see Brenguier et al. (2008) for details). This plot clearly shows that the volcanic edifice average seismic velocity decreases by ≈ 0.1% before each eruption of PdF Volcano. At the same time, extensometer data (star on Fig. 1 and blue line in Fig. 2 a) only show a precursory opening for the fourth eruption in the series shown in the figure (Peltier et al. (2006)). Fig. 2b shows inter-eruptive volcano-tectonic seismicity (pre-eruptive swarms are excluded). Seismicity is also clearly a precursor of PdF volcanic eruptions but is more diffuse in time than the precursory velocity changes. We interpret precursory velocity decrease as due to the opening of cracks, which is a consequence of the edifice inflation associated with magma pressurization. A similar observation and interpretation has been proposed by Mordret et al. (2010) for the 2006 eruption of Mt Ruapehu (New-Zealand). Following this approach, Duputel et al. (2009) compared the estimates of seismic velocity changes to deformation recorded by GPS for recent eruptions of PdF Volcano.

Fig. 2

a) Relative velocity changes compared to extensometer (FORX). The travel time shifts are measured in the frequency range 0.1-0.9 Hz. For details, see Brenguier et al. (2008) b) Inter-eruptive seismicity (pre-eruptive swarms are excluded).

(a) Variations relatives de vitesse, comparées à l’extensomètre (FORX). Les décalages de temps de parcours sont mesurés dans la gamme de fréquence 0,1-0,9 Hz. Pour plus de détails, voir Brenguier et al. (2008). (b) Sismicité inter-éruptive (les essaims sismiques pré-éruptifs sont exclus).

Furthermore, to improve the accuracy and thus time resolution of velocity measurements, Baig et al. (2009) developed a cross-correlation filtering method based on time-frequency transforms and phase coherence filtering. This method allowed the detection of a clear decrease in velocity before the June eruption of PdF Volcano (fourth eruption in Fig. 2) with a time resolution as small as one day.

Recently, we computed the velocity change time series for 10 years (1999–2008) during which 28 eruptions occurred at PdF Volcano. The entire time series of velocity change will be presented in a joint paper (in preparation). However, as a preliminary result, we observe velocity decreases that are not associated with eruptions (Fig. 3). These periods are also associated with elevated seismicity. It is interesting to note that these transients last longer (1 or 2 months) than the previously reported pre-eruptive velocity decreases (few days). We thus propose that these transient velocity changes are due to long-lasting intrusions of magma not accompanied by eruptive activity or to pressure buildup associated with the replenishing of the magma reservoir.

Fig. 3

Seismic velocity changes at PdF Volcano not associated with eruptions. Seismicity is given as the number of summit volcano-tectonic events per day excluding seismic swarms.

Variations de vitesse sismique au volcan du Piton de la Fournaise, non associées aux éruptions. La sismicité est donnée en tant que nombre d’évènements volcano-tectoniques sommitaux par jour, à l’exclusion des essaims sismiques.

4 Shallow changes of PdF Volcano detected by decrease of coherence of noise cross-correlation waveforms

As a complementary approach to the Moving Window Cross Spectrum analysis, the estimate of waveform decorrelation has been used to detect subtle changes within Mount Erebus Volcano (Grêt et al. (2005)), to image the time dependence of single scaterrers on the San-Andreas fault (Taira et al. (2008)), or to locate small changes in a medium (Larose et al. (2010)).

At PdF Volcano, we test the waveform changes of noise Cross-Correlation Functions (CCFs) induced by changes in the near-surface medium properties associated with dike intrusion and volcanic eruptions (Aoki and Ferrazzini (2009)). We focus on the time period between March 29 and April 02 2007. During this period, two eruptions occurred, the first on March 30–31, with duration of 10 hours and location on the south-eastern flank, and the second on April 2nd located about 8 km from the summit with duration of 30 days (Fig. 4a). We compute hourly noise cross-correlation functions for 2 receiver pairs in the frequency range of 0.5–3 Hz and then average the causal and acausal parts of the signal (Fig. 4b). We then compute, for each receiver pair, the correlation coefficients between all possible hourly cross-correlation functions (Fig. 4c). Either for the March 30–31 or April 2nd eruption, correlation coefficients computed between before and during these eruptive periods are low (Fig. 4b and c). This means that noise cross correlations for receiver pairs fer-NTR and NTR-tkr are significantly perturbed during the March 30–31 and April 2nd eruptions. A possible explanation is that the volcanic tremor signal associated with the eruptions dominates the ambient noise signal and thus strongly perturbs the noise CCFs. Cross-correlation functions computed between fer and NTR exhibit a strong decorrelation between before and after the March 30–31 eruption, which cannot be explained by a change in the ambient noise properties because NTR-tkr CCFs do not exhibit a similar decorrelation. This is confirmed by the observation that fer-NTR CCFs are stable after the March 30–31 and before the April 2nd eruptions (Fig. 4c). We thus conclude that the fer-NTR cross-correlation function decorrelation is caused by the change in the near-surface edifice properties associated with the intrusion of a dike and occurrence of the eruption. This preliminary study shows that monitoring noise cross-correlation waveform decorrelation is a promising tool for locating the areas of magma injection and the eruptive fissures.

Fig. 4

a) Position of March 30 and April 2nd eruptive fissures and of seismic stations used in this study. b) Hourly Cross-Correlation Functions (CCFs). Grey transparent rectangles illustrate periods of eruption c) Correlation coefficients computed between the hourly cross-correlation functions shown in b).

(a) Positions des fissures éruptives du 30 mars et du 2 avril et des stations sismiques utilisées dans cette étude. (b) Fonctions de corrélations horaires (CCFs). Les rectangles transparents gris illustrent les périodes d’éruption (c). Coefficients de corrélation, calculés entre les fonctions de corrélation horaires, présentées en (b).

5 Conclusions

Monitoring the active Earth and in particular volcanoes using seismic noise correlations is a new topic and promising area of investigation. Future methodological challenges concern:

  • • the reduction of the time resolution. As described previously, filtering techniques using, for example, phase coherence may yield a great improvement;
  • • the spatial localization of subtle changes detected. This problem will probably require a better understanding of the nature of waves that compose the coda of noise cross-correlations.

Finally it is important to emphasize that these methods are based on the massive processing of continuous seismic records using dense arrays and that future developments will require dense high-quality seismic networks with continuous recording.

Acknowledgments

All the data used in this study were collected at the Piton de la Fournaise Volcano Observatory. We are grateful to Elodie Rivemale for providing information about inter-eruptive seismicity, Aline Peltier for providing extensometer data, and Thomas Staudacher for fruitful discussions. We are also grateful to Bernard Chouet for a detailed review of the manuscript. This work has been supported by ANR (France) under contracts 05-CATT-010-01 (PRECORSIS), ANR-06-CEXC-005 (COHERSIS), ANR-08-RISK-011 (UNDERVOLC) and by a FP7 European Research Council advanced grant 227507 (WHISPER). This is IPGP contribution number 3105.


Bibliographie

[Aoki and Ferrazzini, 2009] Y. Aoki; V. Ferrazzini Temporal changes of seismic wavefield during the 2007 eruptions of Piton de la Fournaise, La Réunion island, AGU Fall Meeting Abstracts, 2009, p. 03

[Baig et al., 2009] A. Baig; M. Campillo; F. Brenguier Denoising seismic noise cross correlations, J. Geophys. Res. (2009), p. 114

[Bonnefoy-Claudet et al., 2006] S. Bonnefoy-Claudet; F. Cotton; P. Bard The nature of noise wave field and its applications for site effects studies: a literature review, Earth Science Reviews, Volume 79 (2006) no. 3–4, pp. 205-227

[Brenguier et al., 2007] F. Brenguier; N. Shapiro; M. Campillo; A. Nercessian; V. Ferrazzini 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations, Geophys. Res. Lett., Volume 34 (2007) no. 2, p. 2305

[Brenguier et al., 2008] F. Brenguier; N. Shapiro; M. Campillo; V. Ferrazzini; Z. Duputel; O. Coutant; A. Nercessian Towards forecasting volcanic eruptions using seismic noise, Nature Geoscience, Volume 1 (2008) no. 2, pp. 126-130

[Campillo, 2006] M. Campillo Phase and Correlation in Random Seismic Fields and the Reconstruction of the Green Function, Pageoph., Volume 163 (2006) no. 2, pp. 475-502

[Clarke et al., 2010] D. Clarke; L. Zaccarelli; N. Shapiro; F. Brenguier Monitoring crustal temporal variations from correlations of ambient seismic noise: assessment of resolution and accuracy, Geophys. J. Int. (2010) ([in press])

[Duputel et al., 2009] Z. Duputel; V. Ferrazzini; F. Brenguier; N. Shapiro; M. Campillo; A. Nercessian Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007, J.Volcanol. Geotherm. Res., Volume 184 (2009) no. 1–2, pp. 164-173

[Grêt et al., 2005] A. Grêt; R. Snieder; R. Aster; P. Kyle Monitoring rapid temporal changes in a volcano with coda wave interferometry, Geophys. Res. Lett., Volume 32 (2005), pp. 1-4

[Hadziioannou et al., 2009] C. Hadziioannou; E. Larose; O. Coutant; P. Roux; M. Campillo Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: laboratory experiments, JASA., Volume 125 (2009), p. 3688

[Larose et al., 2008] E. Larose; P. Roux; M. Campillo; A. Derode Fluctuations of correlations and Green's function reconstruction: role of scattering, J. Appl. Phys., Volume 103 (2008) no. 11, pp. 114907-1114907

[Larose et al., 2010] E. Larose; T. Planes; V. Rossetto; L. Margerin Locating a small change in a multiple scattering environment, Appl. Phys. Lett., Volume 96 (2010), p. 204101

[Mordret et al., 2010] A. Mordret; A. Jolly; Z. Duputel; N. Fournier Monitoring of phreatic eruptions using Interferometry on Retrieved Cross-Correlation Function from Ambient Seismic Noise: results from Mt. Ruapehu, New Zealand, J. Volcanol. Geotherm. Res., Volume 191 (2010) no. 1–2, pp. 46-59

[Nishida et al., 2009] K. Nishida; J. Montagner; H. Kawakatsu Global surface wave tomography using seismic hum, Science, Volume 326 (2009) no. 5949, p. 112

[Peltier et al., 2009] A. Peltier; P. Bachèlery; T. Staudacher Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data, J. Volcanol. Geotherm. Res., Volume 184 (2009) no. 1–2, pp. 93-108

[Peltier et al., 2006] A. Peltier; T. Staudacher; P. Catherine; L. Ricard; P. Kowalski; P. Bachèlery Subtle precursors of volcanic eruptions at Piton de la Fournaise detected by extensometers, Geophys. Res. Lett., Volume 33 (2006) no. 6

[Ratdomopurbo and Poupinet, 1995] A. Ratdomopurbo; G. Poupinet Monitoring a temporal change of seismic velocity in a volcano: application to the 1992 eruption of Mt Merapi (Indonesia), Geophys. Res. Lett., Volume 22 (1995) no. 7, pp. 775-778

[Sens-Schoenfelder, 2008] C. Sens-Schoenfelder Synchronizing seismic networks with ambient noise, Geophys. J. Intern., Volume 174 (2008) no. 3, pp. 966-970

[Sens-Schoenfelder and Wegler, 2006] C. Sens-Schoenfelder; U. Wegler Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia, Geophys. Res. Lett., Volume 33 (2006), pp. 1-5

[Shapiro et al., 2005] N. Shapiro; M. Campillo; L. Stehly; M. Ritzwoller High-resolution surface-wave tomography from ambient seismic noise, Science, Volume 307 (2005) no. 5715, p. 1615

[Snieder et al., 2002] R. Snieder; A. Grêt; H. Douma; J. Scales Coda wave interferometry for estimating nonlinear behavior in seismic velocity, Science, Volume 295 (2002) no. 5563, p. 2253

[Staudacher et al., 2009] T. Staudacher; V. Ferrazzini; A. Peltier; P. Kowalski; P. Boissier; P. Catherine; F. Lauret; F. Massin The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island Indian Ocean), J. Volcanol. Geotherm. Res., Volume 184 (2009) no. 1–2, pp. 126-137

[Stehly et al., 2006] L. Stehly; M. Campillo; N. Shapiro A study of the seismic noise from its long-range correlation properties, J. geophys. Res., Volume 111 (2006), pp. 1-12

[Stehly et al., 2007] L. Stehly; M. Campillo; N. Shapiro Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts, Geophys. J. Intern., Volume 171 (2007) no. 1, pp. 223-230

[Taira et al., 2008] T. Taira; P. Silver; F. Niu; R. Nadeau Detecting seismogenic stress evolution and constraining fault zone rheology in the San Andreas Fault following the 2004 Parkfield earthquake, J. Geophys. Res., Volume 113 (2008), p. B03303

[Wegler et al., 2006] U. Wegler; B. Lühr; R. Snieder; A. Ratdomopurbo Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia), Geophys. Res. Lett., Volume 33 (2006), pp. 1-4


Cité par

  • Lise Firode; Zacharie Duputel; Valérie Ferrazzini; Olivier Lengliné Seismicity under a Dormant Volcano: Unveiling Active Crustal Faulting beneath Piton des Neiges, La Réunion, Bulletin of the Seismological Society of America, Volume 114 (2024) no. 3, p. 1626 | DOI:10.1785/0120230284
  • Helena Seivane; Martin Schimmel; David Martí; Pilar Sánchez-Pastor Rayleigh wave ellipticity from ambient noise: A practical method for monitoring seismic velocity variations in the near-surface, Engineering Geology, Volume 343 (2024), p. 107768 | DOI:10.1016/j.enggeo.2024.107768
  • Y. Wang; J. Schmittbuhl; J. Azzola; F. Mattern; D. Zigone; O. Lengliné; V. Magnenet; J. Vergne Modeling the Impact of Seasonal Water Table Fluctuations on Ambient Noise Interferometry Using Acousto‐Elastic Effect, Geophysical Research Letters, Volume 51 (2024) no. 18 | DOI:10.1029/2024gl110239
  • T. Clements; M. A. Denolle The Seismic Signature of California's Earthquakes, Droughts, and Floods, Journal of Geophysical Research: Solid Earth, Volume 128 (2023) no. 1 | DOI:10.1029/2022jb025553
  • E. Delouche; L. Stehly Seasonal Seismic Velocity Variations Measured Using Seismic Noise Autocorrelations to Monitor the Dynamic of Aquifers in Greece, Journal of Geophysical Research: Solid Earth, Volume 128 (2023) no. 12 | DOI:10.1029/2023jb026759
  • Peter Makus; Christoph Sens‐Schönfelder; Luc Illien; Thomas R. Walter; Alexander Yates; Frederik Tilmann Deciphering the Whisper of Volcanoes: Monitoring Velocity Changes at Kamchatka's Klyuchevskoy Group With Fluctuating Noise Fields, Journal of Geophysical Research: Solid Earth, Volume 128 (2023) no. 4 | DOI:10.1029/2022jb025738
  • Iván Cabrera-Pérez; Luca D’Auria; Jean Soubestre; Monika Przeor; José Barrancos; Rubén García-Hernández; Jesús M. Ibáñez; Ivan Koulakov; David Martínez van Dorth; Víctor Ortega; Germán D. Padilla; Takeshi Sagiya; Nemesio Pérez Spatio-temporal velocity variations observed during the pre-eruptive episode of La Palma 2021 eruption inferred from ambient noise interferometry, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-39237-9
  • B. M. Glinskiy; V. V. Kovalevsky; M. S. Khairetdinov; A. G. Fatyanov; V. N. Martynov; D. A. Karavaev; A. F. Sapetina; A. L. Sobisevich; L. E. Sobisevich; L. P. Braginskaya; A. P. Grigoryuk The Experimental Study and Simulation of Volcanic Structures Using Active Vibroseismic Methods, Journal of Volcanology and Seismology, Volume 16 (2022) no. 4, p. 280 | DOI:10.1134/s0742046322040030
  • T. Gaubert‐Bastide; S. Garambois; C. Bordes; C. Voisin; L. Oxarango; D. Brito; P. Roux High‐Resolution Monitoring of Controlled Water Table Variations From Dense Seismic‐Noise Acquisitions, Water Resources Research, Volume 58 (2022) no. 8 | DOI:10.1029/2021wr030680
  • Dongwoo Kil; Tae‐Kyung Hong; Dongchan Chung; Byeongwoo Kim; Junhyung Lee; Seongjun Park Ambient Noise Tomography of Upper Crustal Structures and Quaternary Faults in the Seoul Metropolitan Area and Its Geological Implications, Earth and Space Science, Volume 8 (2021) no. 11 | DOI:10.1029/2021ea001983
  • Mathieu Le Breton; Noélie Bontemps; Antoine Guillemot; Laurent Baillet; Éric Larose Landslide monitoring using seismic ambient noise correlation: challenges and applications, Earth-Science Reviews, Volume 216 (2021), p. 103518 | DOI:10.1016/j.earscirev.2021.103518
  • Ivan Koulakov; Nikolay Shapiro Seismic Tomography of Volcanoes, Encyclopedia of Earthquake Engineering (2021), p. 1 | DOI:10.1007/978-3-642-36197-5_51-1
  • Stéphane Garambois; Thomas Gaubert-Bastide; Clarisse Bordes; Camila Sanchez Trujillo; Christophe Voisin; Daniel Brito; Philippe Roux, First International Meeting for Applied Geoscience Energy Expanded Abstracts (2021), p. 3110 | DOI:10.1190/segam2021-3582759.1
  • Congcong Yuan; Jared Bryan; Marine Denolle Numerical comparison of time-, frequency- and wavelet-domain methods for coda wave interferometry, Geophysical Journal International, Volume 226 (2021) no. 2, p. 828 | DOI:10.1093/gji/ggab140
  • Hongyu Zhang; Binbin Mi; Ya Liu; Chaoqiang Xi; Kouao Laurent Kouadio A pitfall of applying one-bit normalization in passive surface-wave imaging from ultra-short roadside noise, Journal of Applied Geophysics, Volume 187 (2021), p. 104285 | DOI:10.1016/j.jappgeo.2021.104285
  • Martín Cárdenas-Soto; Thalía Alfonsina Reyes-Pimentel; Josué Tago; Thulasiraman Natarajan Ambient noise tomography of the Popocatépetl volcano using the principal Green tensor components, Journal of Seismology, Volume 25 (2021) no. 4, p. 1089 | DOI:10.1007/s10950-021-10021-4
  • Reinoud Sleeman; Elske de Zeeuw-van Dalfsen Cross-Correlation Analysis of Long-Term Ambient Seismic-Noise Recordings in the Caribbean Netherlands to Monitor the Volcanoes on Saba and St. Eustatius, Bulletin of the Seismological Society of America, Volume 110 (2020) no. 5, p. 2541 | DOI:10.1785/0120200011
  • K. Muhumuza A Feasibility Study on Monitoring Crustal Structure Variations by Direct Comparison of Surface Wave Dispersion Curves from Ambient Seismic Noise, International Journal of Geophysics, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/5269537
  • A. L. Trifonov; I. Yu. Koulakov Identification of changes in the activity of Kambalny volcano (South Kamchatka) based on correlation of seismic noise, Russian Journal of geophysical technologies (2020) no. 2, p. 30 | DOI:10.18303/2619-1563-2020-2-30
  • Amandine Sergeant; Małgorzata Chmiel; Fabian Lindner; Fabian Walter; Philippe Roux; Julien Chaput; Florent Gimbert; Aurélien Mordret On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring, The Cryosphere, Volume 14 (2020) no. 3, p. 1139 | DOI:10.5194/tc-14-1139-2020
  • Francesco Panzera; Sebastiano D’Amico; Emanuele Colica; Marco Viccaro Ambient vibration measurements to support morphometric analysis of a pyroclastic cone, Bulletin of Volcanology, Volume 81 (2019) no. 12 | DOI:10.1007/s00445-019-1338-1
  • Raphael S. M. De Plaen; Andrea Cannata; Flavio Cannavo'; Corentin Caudron; Thomas Lecocq; Olivier Francis Temporal Changes of Seismic Velocity Caused by Volcanic Activity at Mt. Etna Revealed by the Autocorrelation of Ambient Seismic Noise, Frontiers in Earth Science, Volume 6 (2019) | DOI:10.3389/feart.2018.00251
  • M Chmiel; A Mordret; P Boué; F Brenguier; T Lecocq; R Courbis; D Hollis; X Campman; R Romijn; W Van der Veen Ambient noise multimode Rayleigh and Love wave tomography to determine the shear velocity structure above the Groningen gas field, Geophysical Journal International, Volume 218 (2019) no. 3, p. 1781 | DOI:10.1093/gji/ggz237
  • Yoones Vaezi; Mirko Van der Baan Interferometric time-lapse velocity analysis: application to a salt-water disposal well in British Columbia, Canada, Geophysical Journal International, Volume 219 (2019) no. 2, p. 834 | DOI:10.1093/gji/ggz324
  • Gaia Soldati; Lucia Zaccarelli; Licia Faenza Spatio-temporal seismic velocity variations associated to the 2016–2017 central Italy seismic sequence from noise cross-correlation, Geophysical Journal International, Volume 219 (2019) no. 3, p. 2165 | DOI:10.1093/gji/ggz429
  • A. S. Yates; M. K. Savage; A. D. Jolly; C. Caudron; I. J. Hamling Volcanic, Coseismic, and Seasonal Changes Detected at White Island (Whakaari) Volcano, New Zealand, Using Seismic Ambient Noise, Geophysical Research Letters, Volume 46 (2019) no. 1, p. 99 | DOI:10.1029/2018gl080580
  • Pilar Sánchez‐Pastor; Anne Obermann; Martin Schimmel; Cornelis Weemstra; Arie Verdel; Philippe Jousset Short‐ and Long‐Term Variations in the Reykjanes Geothermal Reservoir From Seismic Noise Interferometry, Geophysical Research Letters, Volume 46 (2019) no. 11, p. 5788 | DOI:10.1029/2019gl082352
  • Y. Miao; Y. Shi; H. Y. Zhuang; S. Y. Wang; H. B. Liu; X. B. Yu Influence of Seasonal Frozen Soil on Near‐Surface Shear Wave Velocity in Eastern Hokkaido, Japan, Geophysical Research Letters, Volume 46 (2019) no. 16, p. 9497 | DOI:10.1029/2019gl082282
  • S. R. James; H. A. Knox; R. E. Abbott; M. P. Panning; E. J. Screaton Insights Into Permafrost and Seasonal Active‐Layer Dynamics From Ambient Seismic Noise Monitoring, Journal of Geophysical Research: Earth Surface, Volume 124 (2019) no. 7, p. 1798 | DOI:10.1029/2019jf005051
  • Fang Ye; Jun Lin; Xiaopu Zhang; Xiaoxue Jiang On estimating time offsets in the ambient noise correlation function caused by instrument response errors, Acta Geophysica, Volume 66 (2018) no. 6, p. 1291 | DOI:10.1007/s11600-018-0218-y
  • Mengkui Li; Shuangxi Zhang; Tengfei Wu; Yujin Hua; Bo Zhang Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution, Bulletin of Volcanology, Volume 80 (2018) no. 3 | DOI:10.1007/s00445-018-1197-1
  • Yu Miao; Yang Shi; Su-Yang Wang Temporal change of near-surface shear wave velocity associated with rainfall in Northeast Honshu, Japan, Earth, Planets and Space, Volume 70 (2018) no. 1 | DOI:10.1186/s40623-018-0969-3
  • C. L. Kelly; J. F. Lawrence Back‐Projection Imaging of Extended, Diffuse Sources of Volcano‐Tectonic Seismicity During June 2010 at Sierra Negra Volcano, Galápagos, Geochemistry, Geophysics, Geosystems, Volume 19 (2018) no. 9, p. 3019 | DOI:10.1029/2018gc007522
  • Fang Ye; Jun Lin; Zhaomin Shi; Shixue Lyu Monitoring temporal variations in instrument responses in regional broadband seismic network using ambient seismic noise, Geophysical Prospecting, Volume 66 (2018) no. 5, p. 1019 | DOI:10.1111/1365-2478.12621
  • J. Azzola; J. Schmittbuhl; D. Zigone; V. Magnenet; F. Masson Direct Modeling of the Mechanical Strain Influence on Coda Wave Interferometry, Journal of Geophysical Research: Solid Earth, Volume 123 (2018) no. 4, p. 3160 | DOI:10.1002/2017jb015162
  • I. Koulakov; S. Z. Smirnov; V. Gladkov; E. Kasatkina; M. West; S. El Khrepy; N. Al-Arifi Causes of volcanic unrest at Mt. Spurr in 2004–2005 inferred from repeated tomography, Scientific Reports, Volume 8 (2018) no. 1 | DOI:10.1038/s41598-018-35453-w
  • Stephanie R. James; Elizabeth J. Screaton; Raymond M. Russo; Mark P. Panning; Paul M. Bremner; A. Christian Stanciu; Megan E. Torpey; Sutatcha Hongsresawat; Matthew E. Farrell Hydrostratigraphy characterization of the Floridan aquifer system using ambient seismic noise, Geophysical Journal International, Volume 209 (2017) no. 2, p. 876 | DOI:10.1093/gji/ggx064
  • Sandra Barbouteau; Patrick Rasolofosaon; Noalwenn Dubos‐Sallée; Virginie Vassil; Jean‐François Nauroy Monitoring fluid substitution in rock samples from noise correlation, Geophysical Prospecting, Volume 65 (2017) no. 1, p. 240 | DOI:10.1111/1365-2478.12372
  • S. R. James; H. A. Knox; R. E. Abbott; E. J. Screaton Improved moving window cross‐spectral analysis for resolving large temporal seismic velocity changes in permafrost, Geophysical Research Letters, Volume 44 (2017) no. 9, p. 4018 | DOI:10.1002/2016gl072468
  • Qing‐Yu Wang; Florent Brenguier; Michel Campillo; Albanne Lecointre; Tetsuya Takeda; Yosuke Aoki Seasonal Crustal Seismic Velocity Changes Throughout Japan, Journal of Geophysical Research: Solid Earth, Volume 122 (2017) no. 10, p. 7987 | DOI:10.1002/2017jb014307
  • Luis Fabian Bonilla; Philippe Guéguen; Fernando Lopez-Caballero; E. Diego Mercerat; Céline Gélis Prediction of non-linear site response using downhole array data and numerical modeling: The Belleplaine (Guadeloupe) case study, Physics and Chemistry of the Earth, Parts A/B/C, Volume 98 (2017), p. 107 | DOI:10.1016/j.pce.2017.02.017
  • Marcello Serra; Gaetano Festa; Maurizio Vassallo; Aldo Zollo; Antonino Quattrone; Rosario Ceravolo Damage detection in elastic properties of masonry bridges using coda wave interferometry, Structural Control and Health Monitoring, Volume 24 (2017) no. 10, p. e1976 | DOI:10.1002/stc.1976
  • Stephanie R. James; Hunter A. Knox; Leiph Preston; James M. Knox; Mark C. Grubelich; Dennis K. King; Jonathan B. Ajo-Franklin; Tim C. Johnson; Joseph P. Morris Fracture detection and imaging through relative seismic velocity changes using distributed acoustic sensing and ambient seismic noise, The Leading Edge, Volume 36 (2017) no. 12, p. 1009 | DOI:10.1190/tle36121009.1
  • Gilles Chazot; Jean-François Lénat; René Maury; Arnaud Agranier; Olivier Roche Références bibliographiques, Volcanologie (2017), p. 311 | DOI:10.3917/dbu.chazo.2017.01.0311
  • Jean Battaglia; Florent Brenguier Static and Dynamic Seismic Imaging of Piton de la Fournaise, Active Volcanoes of the Southwest Indian Ocean (2016), p. 243 | DOI:10.1007/978-3-642-31395-0_14
  • Taka’aki Taira; Florent Brenguier Response of hydrothermal system to stress transients at Lassen Volcanic Center, California, inferred from seismic interferometry with ambient noise, Earth, Planets and Space, Volume 68 (2016) no. 1 | DOI:10.1186/s40623-016-0538-6
  • Ludovic Margerin; Thomas Planès; Jessie Mayor; Marie Calvet Sensitivity kernels for coda-wave interferometry and scattering tomography: theory and numerical evaluation in two-dimensional anisotropically scattering media, Geophysical Journal International, Volume 204 (2016) no. 1, p. 650 | DOI:10.1093/gji/ggv470
  • Raphael S. M. De Plaen; Thomas Lecocq; Corentin Caudron; Valérie Ferrazzini; Olivier Francis Single‐station monitoring of volcanoes using seismic ambient noise, Geophysical Research Letters, Volume 43 (2016) no. 16, p. 8511 | DOI:10.1002/2016gl070078
  • Gerrit Olivier; Florent Brenguier Interpreting seismic velocity changes observed with ambient seismic noise correlations, Interpretation, Volume 4 (2016) no. 3, p. SJ77 | DOI:10.1190/int-2015-0203.1
  • Florent Brenguier; Diane Rivet; Anne Obermann; Nori Nakata; Pierre Boué; Thomas Lecocq; Michel Campillo; Nikolai Shapiro 4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives, Journal of Volcanology and Geothermal Research, Volume 321 (2016), p. 182 | DOI:10.1016/j.jvolgeores.2016.04.036
  • Ivan Koulakov; Nikolay Shapiro Seismic Tomography of Volcanoes, Encyclopedia of Earthquake Engineering (2015), p. 3117 | DOI:10.1007/978-3-642-35344-4_51
  • Diane Rivet; Florent Brenguier; Frédéric Cappa Improved detection of preeruptive seismic velocity drops at the Piton de La Fournaise volcano, Geophysical Research Letters, Volume 42 (2015) no. 15, p. 6332 | DOI:10.1002/2015gl064835
  • Maximilien Lehujeur; Jérôme Vergne; Jean Schmittbuhl; Alessia Maggi Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern Alsace, France, Geothermal Energy, Volume 3 (2015) no. 1 | DOI:10.1186/s40517-014-0020-2
  • M. K. Savage; V. Ferrazzini; A. Peltier; E. Rivemale; J. Mayor; A. Schmid; F. Brenguier; F. Massin; J.‐L. Got; J. Battaglia; A. DiMuro; T. Staudacher; D. Rivet; B. Taisne; A. Shelley Seismic anisotropy and its precursory change before eruptions at Piton de la Fournaise volcano, La Réunion, Journal of Geophysical Research: Solid Earth, Volume 120 (2015) no. 5, p. 3430 | DOI:10.1002/2014jb011665
  • Corentin Caudron; Thomas Lecocq; Devy K. Syahbana; Wendy McCausland; Arnaud Watlet; Thierry Camelbeeck; Alain Bernard; Surono Stress and mass changes at a “wet” volcano: Example during the 2011–2012 volcanic unrest at Kawah Ijen volcano (Indonesia), Journal of Geophysical Research: Solid Earth, Volume 120 (2015) no. 7, p. 5117 | DOI:10.1002/2014jb011590
  • A. A. Lyubushin Wavelet-based coherence measures of global seismic noise properties, Journal of Seismology, Volume 19 (2015) no. 2, p. 329 | DOI:10.1007/s10950-014-9468-6
  • Lapo Boschi; Cornelis Weemstra Stationary‐phase integrals in the cross correlation of ambient noise, Reviews of Geophysics, Volume 53 (2015) no. 2, p. 411 | DOI:10.1002/2014rg000455
  • Andrew A. Delorey; Kevin Chao; Kazushige Obara; Paul A. Johnson Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake, Science Advances, Volume 1 (2015) no. 9 | DOI:10.1126/sciadv.1500468
  • Diğdem Acarel; Fatih Bulut; Marco Bohnhoff; Recai Kartal Coseismic velocity change associated with the 2011 Van earthquake (M7.1): Crustal response to a major event, Geophysical Research Letters, Volume 41 (2014) no. 13, p. 4519 | DOI:10.1002/2014gl060624
  • Aurélien Mordret; Nikolaï M. Shapiro; Satish Singh Seismic noise‐based time‐lapse monitoring of the Valhall overburden, Geophysical Research Letters, Volume 41 (2014) no. 14, p. 4945 | DOI:10.1002/2014gl060602
  • Lynda Chehami; Emmanuel Moulin; Julien de Rosny; Claire Prada; Olivier Bou Matar; Farouk Benmeddour; Jamal Assaad Detection and localization of a defect in a reverberant plate using acoustic field correlation, Journal of Applied Physics, Volume 115 (2014) no. 10 | DOI:10.1063/1.4867522
  • Diane Rivet; Florent Brenguier; Daniel Clarke; Nikolaï M. Shapiro; Aline Peltier Long‐term dynamics of Piton de la Fournaise volcano from 13 years of seismic velocity change measurements and GPS observations, Journal of Geophysical Research: Solid Earth, Volume 119 (2014) no. 10, p. 7654 | DOI:10.1002/2014jb011307
  • Philippe Lesage; Gabriel Reyes‐Dávila; Raúl Arámbula‐Mendoza Large tectonic earthquakes induce sharp temporary decreases in seismic velocity in Volcán de Colima, Mexico, Journal of Geophysical Research: Solid Earth, Volume 119 (2014) no. 5, p. 4360 | DOI:10.1002/2013jb010884
  • Christoph Sens-Schönfelder; Eraldo Pomponi; Aline Peltier Dynamics of Piton de la Fournaise volcano observed by passive image interferometry with multiple references, Journal of Volcanology and Geothermal Research, Volume 276 (2014), p. 32 | DOI:10.1016/j.jvolgeores.2014.02.012
  • M. Calo; X. Kinnaert; C. Dorbath Procedure to construct three-dimensional models of geothermal areas using seismic noise cross-correlations: application to the Soultz-sous-Forets enhanced geothermal site, Geophysical Journal International, Volume 194 (2013) no. 3, p. 1893 | DOI:10.1093/gji/ggt205
  • Xin Liu; Yehuda Ben-Zion Theoretical and numerical results on effects of attenuation on correlation functions of ambient seismic noise, Geophysical Journal International, Volume 194 (2013) no. 3, p. 1966 | DOI:10.1093/gji/ggt215
  • A. Obermann; T. Planès; E. Larose; M. Campillo Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise, Journal of Geophysical Research: Solid Earth, Volume 118 (2013) no. 12, p. 6285 | DOI:10.1002/2013jb010399
  • Eric Rohrbach; Lanbo Liu; Linying Wang Variations in seismic velocity and attenuation associated with seismogenesis: A numerical verification using ambient noise, Tectonophysics, Volume 584 (2013), p. 54 | DOI:10.1016/j.tecto.2012.09.004
  • Margherita Corciulo; Philippe Roux; Michel Campillo; Dominique Dubucq Instantaneous phase variation for seismic velocity monitoring from ambient noise at the exploration scale, GEOPHYSICS, Volume 77 (2012) no. 4, p. Q37 | DOI:10.1190/geo2011-0363.1

Cité par 69 documents. Sources : Crossref


Commentaires - Politique