[Formule de Clark et inégalités de Sobolev logarithmiques pour les mesures de Bernoulli]
A l'aide d'une formule de Clark pour la représentation prévisible de variables aléatoire en temps discret et en adaptant la preuve présentée dans [Electron. Commun. Probab. 2 (1997) 71–81] dans le cas brownien, nous obtenons une preuve des inégalités de Sobolev logarithmiques (inégalité modifiée et inégalité L1) pour les mesures de Bernoulli. Nous présentons aussi une borne qui améliore ces inégalités ainsi que l'inégalité de constante optimale de [J. Funct. Anal. 156 (2) (1998) 347–365].
Using a Clark formula for the predictable representation of random variables in discrete time and adapting the method presented in [Electron. Commun. Probab. 2 (1997) 71–81] in the Brownian case, we obtain a proof of modified and L1 logarithmic Sobolev inequalities for Bernoulli measures. We also prove a bound that improves these inequalities as well as the optimal constant inequality of [J. Funct. Anal. 156 (2) (1998) 347–365].
Accepté le :
Publié le :
Fuqing Gao 1 ; Nicolas Privault 2
@article{CRMATH_2003__336_1_51_0, author = {Fuqing Gao and Nicolas Privault}, title = {Clark formula and logarithmic {Sobolev} inequalities for {Bernoulli} measures}, journal = {Comptes Rendus. Math\'ematique}, pages = {51--56}, publisher = {Elsevier}, volume = {336}, number = {1}, year = {2003}, doi = {10.1016/S1631-073X(02)00014-6}, language = {en}, }
Fuqing Gao; Nicolas Privault. Clark formula and logarithmic Sobolev inequalities for Bernoulli measures. Comptes Rendus. Mathématique, Volume 336 (2003) no. 1, pp. 51-56. doi : 10.1016/S1631-073X(02)00014-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00014-6/
[1] On logarithmic Sobolev inequalities for continuous time random walks on graphs, Probab. Theory Related Fields, Volume 116 (2000) no. 4, pp. 573-602
[2] On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures, J. Funct. Anal., Volume 156 (1998) no. 2, pp. 347-365
[3] Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces, Electron. Comm. Probab., Volume 2 (1997), pp. 71-81 (electronic)
[4] Entropy inequalities for unbounded spin systems, Ann. Probab., Volume 30 (2002) no. 4, pp. 1959-1976
[5] F. Gao, J. Quastel. Exponential decay of entropy in the random transposition and Bernoulli–Laplace models, Preprint, 2002
[6] Discrete Wick calculus and stochastic functional equations, Potential Anal., Volume 1 (1992) no. 3, pp. 291-306
[7] M. Leitz-Martini, A discrete Clark–Ocone formula, Maphysto Research Report No 29, 2000
[8] Quantum Probability for Probabilists, Lecture Notes in Math., 1538, Springer-Verlag, 1993
[9] Discrete chaotic calculus and covariance identities, Stochastics Stochastics Rep., Volume 72 (2002), pp. 289-315 (Eurandom Report 006, 2000)
[10] A new modified logarithmic Sobolev inequality for Poisson point processes and several applications, Probab. Theory Related Fields, Volume 118 (2000) no. 3, pp. 427-438
Cité par Sources :
☆ This research was supported by the National Natural Science Foundation of China under grant No. 19971025.
Commentaires - Politique