[Gerbes equivariantes sur les groupes de Lie simples compacts]
Using groupoid S1-central extensions, we present, for a compact simple Lie group G, an infinite dimensional model of S1-gerbe over the differential stack G/G whose Dixmier–Douady class corresponds to the canonical generator of the equivariant cohomology HG3(G).
En utilisant des extensions S1-centrales de groupoı̈des, nous présentons, dans le cas d'un groupe simple compact G, un modèle de dimension infinie d'une S1-gerbe sur un champ différentiable G/G dont la classe de Dixmier–Douady correspond au générateur canonique de la cohomologie équivariante HG3(G).
Accepté le :
Publié le :
Kai Behrend 1 ; Ping Xu 2 ; Bin Zhang 3
@article{CRMATH_2003__336_3_251_0,
author = {Kai Behrend and Ping Xu and Bin Zhang},
title = {Equivariant gerbes over compact simple {Lie} groups},
journal = {Comptes Rendus. Math\'ematique},
pages = {251--256},
year = {2003},
publisher = {Elsevier},
volume = {336},
number = {3},
doi = {10.1016/S1631-073X(02)00024-9},
language = {en},
}
Kai Behrend; Ping Xu; Bin Zhang. Equivariant gerbes over compact simple Lie groups. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 251-256. doi: 10.1016/S1631-073X(02)00024-9
[1] Lie group valued moment maps, J. Differential Geom., Volume 48 (1998), pp. 445-495
[2] S1-bundles and gerbes over differential stacks, C. R. Acad. Sci. Paris Sér. I, Volume 336 (2003)
[3] K. Behrend, P. Xu, Differential stacks and gerbes, in preparation
[4] Gerbes on complex reductive Lie groups | arXiv
[5] Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J., Volume 89 (1997), pp. 377-412
[6] The basic gerbe over a compact simple Lie group | arXiv
[7] Loop Groups, Oxford University Press, New York, 1986
[8] The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., 133, 1995, pp. 627-635
[9] Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189
[10] Morita equivalent symplectic groupoids (P. Dazord; A. Weinstein, eds.), Symplectic Geometry, Groupoids, and Integrable Systems, Seminaire sud Rhodanien a Berkeley, 1989, 1991, pp. 291-311
Cité par Sources :
Commentaires - Politique
