[Gerbes equivariantes sur les groupes de Lie simples compacts]
Using groupoid S1-central extensions, we present, for a compact simple Lie group G, an infinite dimensional model of S1-gerbe over the differential stack G/G whose Dixmier–Douady class corresponds to the canonical generator of the equivariant cohomology HG3(G).
En utilisant des extensions S1-centrales de groupoı̈des, nous présentons, dans le cas d'un groupe simple compact G, un modèle de dimension infinie d'une S1-gerbe sur un champ différentiable G/G dont la classe de Dixmier–Douady correspond au générateur canonique de la cohomologie équivariante HG3(G).
Accepté le :
Publié le :
Kai Behrend 1 ; Ping Xu 2 ; Bin Zhang 3
@article{CRMATH_2003__336_3_251_0, author = {Kai Behrend and Ping Xu and Bin Zhang}, title = {Equivariant gerbes over compact simple {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {251--256}, publisher = {Elsevier}, volume = {336}, number = {3}, year = {2003}, doi = {10.1016/S1631-073X(02)00024-9}, language = {en}, }
Kai Behrend; Ping Xu; Bin Zhang. Equivariant gerbes over compact simple Lie groups. Comptes Rendus. Mathématique, Volume 336 (2003) no. 3, pp. 251-256. doi : 10.1016/S1631-073X(02)00024-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00024-9/
[1] Lie group valued moment maps, J. Differential Geom., Volume 48 (1998), pp. 445-495
[2] S1-bundles and gerbes over differential stacks, C. R. Acad. Sci. Paris Sér. I, Volume 336 (2003)
[3] K. Behrend, P. Xu, Differential stacks and gerbes, in preparation
[4] Gerbes on complex reductive Lie groups | arXiv
[5] Group systems, groupoids, and moduli spaces of parabolic bundles, Duke Math. J., Volume 89 (1997), pp. 377-412
[6] The basic gerbe over a compact simple Lie group | arXiv
[7] Loop Groups, Oxford University Press, New York, 1986
[8] The symplectic structure on moduli space, The Floer Memorial Volume, Progr. Math., 133, 1995, pp. 627-635
[9] Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Volume 417 (1991), pp. 159-189
[10] Morita equivalent symplectic groupoids (P. Dazord; A. Weinstein, eds.), Symplectic Geometry, Groupoids, and Integrable Systems, Seminaire sud Rhodanien a Berkeley, 1989, 1991, pp. 291-311
- Reduction of symplectic groupoids and quotients of quasi-Poisson manifolds, Transformation Groups, Volume 28 (2023) no. 4, pp. 1357-1374 | DOI:10.1007/s00031-022-09700-4 | Zbl:1531.53085
- A classification of equivariant gerbe connections, Communications in Contemporary Mathematics, Volume 21 (2019) no. 2, p. 40 (Id/No 1850001) | DOI:10.1142/s0219199718500013 | Zbl:1442.53020
- Groupoid equivariant prequantization, Communications in Mathematical Physics, Volume 360 (2018) no. 1, pp. 169-195 | DOI:10.1007/s00220-017-3080-x | Zbl:1454.22001
- Basic equivariant gerbes on non-simply connected compact simple Lie groups, Journal of Geometry and Physics, Volume 133 (2018), pp. 30-41 | DOI:10.1016/j.geomphys.2018.06.016 | Zbl:1398.53031
- Picard group of isotropic realizations of twisted Poisson manifolds, Journal of Geometric Mechanics, Volume 8 (2016) no. 2, pp. 179-197 | DOI:10.3934/jgm.2016003 | Zbl:1352.53068
- Quasi-Hamiltonian Groupoids and Multiplicative Manin Pairs, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq170
- Non-abelian differentiable gerbes, Advances in Mathematics, Volume 220 (2009) no. 5, pp. 1357-1427 | DOI:10.1016/j.aim.2008.10.018 | Zbl:1177.22001
- The ring structure for equivariant twisted K-theory, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2009 (2009) no. 635 | DOI:10.1515/crelle.2009.077
- The basic bundle gerbe on unitary groups, Journal of Geometry and Physics, Volume 58 (2008) no. 11, pp. 1571-1590 | DOI:10.1016/j.geomphys.2008.07.006 | Zbl:1154.55011
- Dirac structures, momentum maps, and quasi-Poisson manifolds, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 1 | DOI:10.1007/0-8176-4419-9_1
- Quantization of pre-quasi-symplectic groupoids and their Hamiltonian spaces, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 423 | DOI:10.1007/0-8176-4419-9_14
- Prequantization of Quasi-Hamiltonian spaces, International Mathematics Research Notices (2006) | DOI:10.1155/imrn/2006/29354
- Hamiltonian loop group actions and T-duality for group manifolds, Journal of Geometry and Physics, Volume 56 (2006) no. 7, p. 1116 | DOI:10.1016/j.geomphys.2005.06.006
- Abelian and non-abelian branes in WZW models and gerbes, Communications in Mathematical Physics, Volume 258 (2005) no. 1, pp. 23-73 | DOI:10.1007/s00220-005-1301-1 | Zbl:1094.81047
- On Gauge Transformations of Poisson Structures, Quantum Field Theory and Noncommutative Geometry, Volume 662 (2005), p. 89 | DOI:10.1007/11342786_5
- Integration of twisted Dirac brackets, Duke Mathematical Journal, Volume 123 (2004) no. 3, pp. 549-607 | DOI:10.1215/s0012-7094-04-12335-8 | Zbl:1067.58016
- Basic gerbe over non-simply connected compact groups, Journal of Geometry and Physics, Volume 50 (2004) no. 1-4, pp. 28-55 | DOI:10.1016/j.geomphys.2003.11.004 | Zbl:1067.22009
- The basic gerbe over a compact simple Lie group, L'Enseignement Mathématique. 2e Série, Volume 49 (2003) no. 3-4, pp. 307-333 | Zbl:1061.53034
Cité par 18 documents. Sources : Crossref, zbMATH
Commentaires - Politique