[Les flots géodésiques partiellement hyperboliques sont Anosov]
Considérons une action de
We prove that if a
Accepté le :
Publié le :
Gonzalo Contreras 1
@article{CRMATH_2002__334_7_585_0, author = {Gonzalo Contreras}, title = {Partially hyperbolic geodesic flows are {Anosov}}, journal = {Comptes Rendus. Math\'ematique}, pages = {585--590}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02196-9}, language = {en}, }
Gonzalo Contreras. Partially hyperbolic geodesic flows are Anosov. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 585-590. doi : 10.1016/S1631-073X(02)02196-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02196-9/
[1] Convex Hamiltonians without conjugate points, Ergodic Theory Dynamic Systems, Volume 19 (1999), pp. 901-952
[2] When is a geodesic flow of Anosov type? I., J. Differential Geom., Volume 8 (1973), pp. 437-463
[3] A quasi-Anosov diffeomorphism that is not Anosov, Trans. Amer. Math. Soc., Volume 223 (1976), pp. 267-278
[4] Invariant Manifolds, Lecture Notes in Math., 583, Springer, 1977
[5] Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 351-370
[6] A quasi-Anosov flow that is not Anosov, Indiana Univ. Math. J., Volume 25 (1976), pp. 763-767
[7] Persistently expansive geodesic flows, Comm. Math. Phys., Volume 140 (1991), pp. 203-215
[8] A note on Anosov diffeomorphisms, Bull. Amer. Math. Soc., Volume 80 (1974), pp. 278-280
[9] Existence of exponential dichotomies and invariant splitting I, II, III, J. Differential Equations, Volume 15 (1974), pp. 429-458 22 (1976) 478–496; 22 (1976) 497–522
[10] Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc., Volume 203 (1975), pp. 359-390
- Franks' lemma for
-Mañé perturbations of Riemannian metrics and applications to persistence, Journal of Modern Dynamics, Volume 10 (2016), pp. 379-411 | DOI:10.3934/jmd.2016.10.379 | Zbl:1345.93044 - Partially hyperbolic geodesic flows, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 31 (2014) no. 5, pp. 985-1014 | DOI:10.1016/j.anihpc.2013.07.009 | Zbl:1298.53089
- Positive topological entropy for magnetic flows on surfaces, Nonlinearity, Volume 20 (2007) no. 8, p. 2007 | DOI:10.1088/0951-7715/20/8/011
- Fiberwise divergent orbits of projective flows with exactly two minimal sets, Pacific Journal of Mathematics, Volume 229 (2007) no. 2, p. 469 | DOI:10.2140/pjm.2007.229.469
Cité par 4 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier