[Sur la combinatoire du complexe de graphes]
Dans leur prépublication récente [3], Kontsevich et Shoikhet ont introduit deux complexes de graphes : le complexe sur l'espace pair (resp. impair) pour étudier la cohomologie de l'algèbre de Lie Ham0 (resp. Ham0odd) des champs vectoriels hamiltoniens sans terme constant sur l'espace pair (resp. impair) de dimension infinie. Nous construisons un isomorphisme entre ces deux complexes de graphes, démontrant notamment que leur cohomologies coïncident. Ceci résoud un problème posé par Shoikhet.
In their recent preprint [3] Kontsevich and Shoikhet have introduced two graph-complexes: the complex on the even (resp. odd) space in order to study the cohomology of the Lie algebra Ham0 (resp. Ham0odd) of Hamiltonian vector fields vanishing at the origin on the infinite-dimensional even (resp. odd) space. We construct an isomorphism between those two graph-complexes, proving in particular that their cohomologies coincide. This solves a problem posed by Shoikhet.
Accepté le :
Publié le :
Bodo Lass 1, 2
@article{CRMATH_2002__334_1_1_0, author = {Bodo Lass}, title = {On the combinatorics of the graph-complex}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--6}, publisher = {Elsevier}, volume = {334}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02204-5}, language = {en}, }
Bodo Lass. On the combinatorics of the graph-complex. Comptes Rendus. Mathématique, Volume 334 (2002) no. 1, pp. 1-6. doi : 10.1016/S1631-073X(02)02204-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02204-5/
[1] Kogomologii beskonechnomernykh algebr Lie, Nauka, Moskva, 1984
[2] Formal (non)-commutative symplectic geometry (L. Corwin; I. Gelfand; J. Lepowsky, eds.), The Gelfand Mathematical Seminars 1990–1992, Birkhäuser, 1993, pp. 173-187
[3] Kontsevich M., Shoikhet B., Formality conjecture, geometry of complex manifolds and combinatorics of the graph-complex, Preprint
[4] Lass B., Une conjecture de Kontsevich et Shoikhet et la caractéristique d'Euler, Rev. Math. Pures Appl. (à paraı̂tre)
Cité par Sources :
Commentaires - Politique