[Sur la combinatoire du complexe de graphes]
Dans leur prépublication récente [3], Kontsevich et Shoikhet ont introduit deux complexes de graphes : le complexe sur l'espace pair (resp. impair) pour étudier la cohomologie de l'algèbre de Lie Ham0 (resp. Ham0odd) des champs vectoriels hamiltoniens sans terme constant sur l'espace pair (resp. impair) de dimension infinie. Nous construisons un isomorphisme entre ces deux complexes de graphes, démontrant notamment que leur cohomologies coïncident. Ceci résoud un problème posé par Shoikhet.
In their recent preprint [3] Kontsevich and Shoikhet have introduced two graph-complexes: the complex on the even (resp. odd) space in order to study the cohomology of the Lie algebra Ham0 (resp. Ham0odd) of Hamiltonian vector fields vanishing at the origin on the infinite-dimensional even (resp. odd) space. We construct an isomorphism between those two graph-complexes, proving in particular that their cohomologies coincide. This solves a problem posed by Shoikhet.
Accepté le :
Publié le :
Bodo Lass 1, 2
@article{CRMATH_2002__334_1_1_0, author = {Bodo Lass}, title = {On the combinatorics of the graph-complex}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--6}, publisher = {Elsevier}, volume = {334}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02204-5}, language = {en}, }
Bodo Lass. On the combinatorics of the graph-complex. Comptes Rendus. Mathématique, Volume 334 (2002) no. 1, pp. 1-6. doi : 10.1016/S1631-073X(02)02204-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02204-5/
[1] Kogomologii beskonechnomernykh algebr Lie, Nauka, Moskva, 1984
[2] Formal (non)-commutative symplectic geometry (L. Corwin; I. Gelfand; J. Lepowsky, eds.), The Gelfand Mathematical Seminars 1990–1992, Birkhäuser, 1993, pp. 173-187
[3] Kontsevich M., Shoikhet B., Formality conjecture, geometry of complex manifolds and combinatorics of the graph-complex, Preprint
[4] Lass B., Une conjecture de Kontsevich et Shoikhet et la caractéristique d'Euler, Rev. Math. Pures Appl. (à paraı̂tre)
- On vector bundles over hyperkähler twistor spaces, Mathematische Zeitschrift, Volume 300 (2022) no. 3, pp. 3143-3170 | DOI:10.1007/s00209-021-02893-6 | Zbl:1485.14076
- Multiphysics Topology Optimization of Thermal Actuators by Using the Level Set-Based Multiple-Type Boundary Method, International Journal of Computational Methods, Volume 17 (2020) no. 08, p. 1950044 | DOI:10.1142/s0219876219500440
- Maximizing the first eigenfrequency of structures subjected to uniform boundary erosion through the level set method, Engineering with Computers, Volume 35 (2019) no. 1, p. 21 | DOI:10.1007/s00366-018-0580-z
- Some examples of kinetic schemes whose diffusion limit is Il’in’s exponential-fitting, Numerische Mathematik, Volume 141 (2019) no. 3, p. 627 | DOI:10.1007/s00211-018-01020-8
- ON SOME UNBOUNDED DOMAINS FOR A MAXIMUM PRINCIPLE, The Pure and Applied Mathematics, Volume 23 (2016) no. 1, p. 13 | DOI:10.7468/jksmeb.2016.23.1.13
- A level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration, Structural and Multidisciplinary Optimization, Volume 43 (2011) no. 4, pp. 473-485 | DOI:10.1007/s00158-010-0595-6 | Zbl:1274.74416
- Simultaneous optimization of cast part and parting direction using level set method, Structural and Multidisciplinary Optimization, Volume 44 (2011) no. 6, pp. 751-759 | DOI:10.1007/s00158-011-0690-3 | Zbl:1274.74251
- Level set based robust shape and topology optimization under random field uncertainties, Structural and Multidisciplinary Optimization, Volume 41 (2010) no. 4, pp. 507-524 | DOI:10.1007/s00158-009-0449-2 | Zbl:1274.74323
- Topology optimization of thermoelastic structures using level set method, Computational Mechanics, Volume 42 (2008) no. 6, p. 837 | DOI:10.1007/s00466-008-0287-x
- Well-Balanced High Order Extensions of Godunov's Method for Semilinear Balance Laws, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 2, p. 1012 | DOI:10.1137/060674879
- Target-matching test problem for multiobjective topology optimization using genetic algorithms, Structural and Multidisciplinary Optimization, Volume 34 (2007) no. 4, p. 333 | DOI:10.1007/s00158-006-0082-2
- Turbulent wake solutions of the Prandtl α equations, Physical Review E, Volume 67 (2003) no. 3 | DOI:10.1103/physreve.67.036304
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique