Comptes Rendus
Rough solutions of the Einstein vacuum equations
[Solutions peu régulières des équations d'Einstein dans le vide]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 125-130.

Nous annonçons un nouveau résultat concernant des solutions peu régulières des équations d'Einstein dans le vide exprimées en coordonnées d'ondes. Nos méthodes combinent les techniques paradifférentielles avec une approche géométrique pour les inégalités de type Strichartz, qui utilise la structure spécifique des équations d'Einstein. Cela permet de gagner une demi dérivée par rapport aux résultats classiques de [3] et [5].

We announce a new result, contained in [10–12], concerning rough solutions to Einstein vacuum equations expressed relative to wave coordinates. Our methods blend paradifferential techniques with a geometric approach to Strichartz type inequlities, which takes advantage of the specific structure of the Einstein equations. This results in a gain of half a derivative relative to the classical result of [3] and [5].

Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02214-8

Sergiu Klainerman 1 ; Igor Rodnianski 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
@article{CRMATH_2002__334_2_125_0,
     author = {Sergiu Klainerman and Igor Rodnianski},
     title = {Rough solutions of the {Einstein} vacuum equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {125--130},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02214-8},
     language = {en},
}
TY  - JOUR
AU  - Sergiu Klainerman
AU  - Igor Rodnianski
TI  - Rough solutions of the Einstein vacuum equations
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 125
EP  - 130
VL  - 334
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02214-8
LA  - en
ID  - CRMATH_2002__334_2_125_0
ER  - 
%0 Journal Article
%A Sergiu Klainerman
%A Igor Rodnianski
%T Rough solutions of the Einstein vacuum equations
%J Comptes Rendus. Mathématique
%D 2002
%P 125-130
%V 334
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02214-8
%G en
%F CRMATH_2002__334_2_125_0
Sergiu Klainerman; Igor Rodnianski. Rough solutions of the Einstein vacuum equations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 125-130. doi : 10.1016/S1631-073X(02)02214-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02214-8/

[1] H. Bahouri; J.Y. Chemin Équations d'ondes quasilinéaires et estimation de Strichartz, Amer. J. Math., Volume 121 (1999), pp. 1337-1777

[2] H. Bahouri; J.Y. Chemin Équations d'ondes quasilinéaires et effet dispersif, IMRN, Volume 21 (1999), pp. 1141-1178

[3] Y. Choquet-Bruhat Théorème d'existence pour certains systèmes d'équations aux dérivées partielles nonlinéaires, Acta Math., Volume 88 (1952), pp. 141-225

[4] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Ser., 41, Princeton University Press, 1993

[5] H.T. Kato; J. Marsden Well posed quasilinear second order hyperbolic systems, Arch. Rat. Mech. Anal., Volume 63 (1976) no. 3, pp. 273-294

[6] S. Klainerman A commuting vectorfield approach to Strichartz type inequalities and applications to quasilinear wave equations, IMRN, Volume 5 (2001), pp. 221-274

[7] S. Klainerman PDE as a unified subject, GAFA (2000), pp. 279-315 (Special Volume)

[8] Klainerman S., Nicolo F., On the initial value problem in general relativity, Preprint

[9] Klainerman S., Rodnianski I., Improved local well posedness for quasilinear wave equations in dimension three, Duke Math. J. (submitted)

[10] Klainerman S., Rodnianski I., Rough solutions of the Einstein-vacuum equations, arXiv:math.AP/0109173, Ann. Math. (submitted)

[11] Klainerman S., Rodnianski I., The causal structure of microlocalized, rough, Einstein metrics, arXiv:math.AP/0109174, Ann. Math. (submitted)

[12] Klainerman S., Rodnianski I., Ricci defects of microlocalized, rough, Einstein metrics, arXiv:math.AP/0110090, Ann. Math. (submitted)

[13] H. Linblad Counterexamples to local existence for semilinear wave equations, Amer. J. Math., Volume 118 (1996), pp. 1-16

[14] G. Ponce; T. Sideris Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations, Volume 18 (1993), pp. 169-177

[15] H. Smith A parametrix construction for wave equations with C1,1 coefficients, Ann. Inst. Fourier, Volume 48 (1998), pp. 797-835

[16] H. Smith; C. Sogge On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett., Volume 1 (1994), pp. 729-737

[17] Smith H., Tataru D., Sharp counterexamples for Strichartz estimates for low regularity metrics, Preprint

[18] Tataru D., Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients, Preprint

[19] D. Tataru Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math., Volume 122 (2000), pp. 349-376

Cité par Sources :

Commentaires - Politique