[Solutions peu régulières des équations d'Einstein dans le vide]
Nous annonçons un nouveau résultat concernant des solutions peu régulières des équations d'Einstein dans le vide exprimées en coordonnées d'ondes. Nos méthodes combinent les techniques paradifférentielles avec une approche géométrique pour les inégalités de type Strichartz, qui utilise la structure spécifique des équations d'Einstein. Cela permet de gagner une demi dérivée par rapport aux résultats classiques de [3] et [5].
We announce a new result, contained in [10–12], concerning rough solutions to Einstein vacuum equations expressed relative to wave coordinates. Our methods blend paradifferential techniques with a geometric approach to Strichartz type inequlities, which takes advantage of the specific structure of the Einstein equations. This results in a gain of half a derivative relative to the classical result of [3] and [5].
Publié le :
Sergiu Klainerman 1 ; Igor Rodnianski 1
@article{CRMATH_2002__334_2_125_0, author = {Sergiu Klainerman and Igor Rodnianski}, title = {Rough solutions of the {Einstein} vacuum equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {125--130}, publisher = {Elsevier}, volume = {334}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02214-8}, language = {en}, }
Sergiu Klainerman; Igor Rodnianski. Rough solutions of the Einstein vacuum equations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 125-130. doi : 10.1016/S1631-073X(02)02214-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02214-8/
[1] Équations d'ondes quasilinéaires et estimation de Strichartz, Amer. J. Math., Volume 121 (1999), pp. 1337-1777
[2] Équations d'ondes quasilinéaires et effet dispersif, IMRN, Volume 21 (1999), pp. 1141-1178
[3] Théorème d'existence pour certains systèmes d'équations aux dérivées partielles nonlinéaires, Acta Math., Volume 88 (1952), pp. 141-225
[4] The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Ser., 41, Princeton University Press, 1993
[5] Well posed quasilinear second order hyperbolic systems, Arch. Rat. Mech. Anal., Volume 63 (1976) no. 3, pp. 273-294
[6] A commuting vectorfield approach to Strichartz type inequalities and applications to quasilinear wave equations, IMRN, Volume 5 (2001), pp. 221-274
[7] PDE as a unified subject, GAFA (2000), pp. 279-315 (Special Volume)
[8] Klainerman S., Nicolo F., On the initial value problem in general relativity, Preprint
[9] Klainerman S., Rodnianski I., Improved local well posedness for quasilinear wave equations in dimension three, Duke Math. J. (submitted)
[10] Klainerman S., Rodnianski I., Rough solutions of the Einstein-vacuum equations, arXiv:math.AP/0109173, Ann. Math. (submitted)
[11] Klainerman S., Rodnianski I., The causal structure of microlocalized, rough, Einstein metrics, arXiv:math.AP/0109174, Ann. Math. (submitted)
[12] Klainerman S., Rodnianski I., Ricci defects of microlocalized, rough, Einstein metrics, arXiv:math.AP/0110090, Ann. Math. (submitted)
[13] Counterexamples to local existence for semilinear wave equations, Amer. J. Math., Volume 118 (1996), pp. 1-16
[14] Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations, Volume 18 (1993), pp. 169-177
[15] A parametrix construction for wave equations with C1,1 coefficients, Ann. Inst. Fourier, Volume 48 (1998), pp. 797-835
[16] On Strichartz and eigenfunction estimates for low regularity metrics, Math. Res. Lett., Volume 1 (1994), pp. 729-737
[17] Smith H., Tataru D., Sharp counterexamples for Strichartz estimates for low regularity metrics, Preprint
[18] Tataru D., Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients, Preprint
[19] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math., Volume 122 (2000), pp. 349-376
Cité par Sources :
Commentaires - Politique