Comptes Rendus
Article de synthèse
On the regularity problems of Einstein equations
[Sur les problèmes de régularité pour les équations d’Einstein]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 151-175.

Dans cette enquête, nous rendons compte des progrès récents dans le problème de la bonne pose locale des équations d’Einstein en (3+1)-D avec une faible régularité et ses applications.

In this survey, we provide a review of recent progresses in the local well-posedness problem of Einstein equations in (3+1)-D with low regularity and its applications.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.278
Keywords: Cauchy problem, Einstein equations, Local well-posedness
Mots-clés : Problème de Cauchy, Équations d’Einstein, Bien-posé local

Qian Wang 1

1 Mathematical Institute, University of Oxford, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_151_0,
     author = {Qian Wang},
     title = {On the regularity problems of {Einstein} equations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {151--175},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.278},
     language = {en},
}
TY  - JOUR
AU  - Qian Wang
TI  - On the regularity problems of Einstein equations
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 151
EP  - 175
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.278
LA  - en
ID  - CRMECA_2025__353_G1_151_0
ER  - 
%0 Journal Article
%A Qian Wang
%T On the regularity problems of Einstein equations
%J Comptes Rendus. Mécanique
%D 2025
%P 151-175
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.278
%G en
%F CRMECA_2025__353_G1_151_0
Qian Wang. On the regularity problems of Einstein equations. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 151-175. doi : 10.5802/crmeca.278. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.278/

[1] J. Schauder Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fund. Math., Volume 24 (1935) no. 1, pp. 213-246 | DOI

[2] Y. Choquet-Bruhat Théorème d’existence pour certains systèmes d’équations aux d’érivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI

[3] J. Leray Hyperbolic Differential Equations, The Institute for Advanced Study, Princeton, 1955

[4] Y. Choquet-Bruhat; R. Geroch Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | DOI

[5] S. Klainerman; I. Rodnianski On a breakdown criterion in general relativity, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 345-382 | DOI

[6] S. Klainerman; I. Rodnianski Bilinear estimates on curved space–times, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 2, pp. 279-291 | DOI

[7] S. Klainerman; I. Rodnianski On the radius of injectivity of null hypersuraces, J. Am. Math. Soc., Volume 21 (2006), pp. 775-795 | DOI

[8] T. Hughes; T. Kato; J. E. Marsden Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear electrodynamics and general relativity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 273-294 | DOI

[9] A. Fischer; J. Marsden The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. I, Commun. Math. Phys., Volume 28 (1972), pp. 1-38 | DOI

[10] D. Christodoulou; S. Klainerman The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993

[11] L. Andersson; V. Moncrief Elliptic-hyperbolic systems and the Einstein equations, Ann. Henri Poincaré, Volume 4 (2003), pp. 1-34 | DOI

[12] S. Klainerman PDE as a unified subject, Geom. Funct. Anal., Volume 1 (2000), pp. 279-315

[13] S. Klainerman Geometric and Fourier methods in nonlinear wave equations, The Set of Lectures Delivered at the IPAM Workshop in Oscillatory Integrals and PDE’ March 19–25 2001, UCLA, 2001 (Available online at https://web.math.princeton.edu/~seri/papers/ucla1.pdf)

[14] H. F. Smith A parametrix construction for wave equations with C1, 1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | DOI

[15] D. Tataru Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Am. J. Math., Volume 122 (2000), pp. 349-376 | DOI

[16] D. Tataru Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients II, Am. J. Math., Volume 123 (2001), pp. 385-423 | DOI

[17] D. Tataru Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III, J. Am. Math. Soc., Volume 15 (2002), pp. 419-442 | DOI

[18] H. Bahouri; J. Y. Chemin Èquations dòndes quasilineaires et effet dispersif, Int. Math. Res. Not. (1999) no. 21, pp. 1141-1178 | DOI

[19] H. Bahouri; J. Y. Chemin Eqùations dòndes quasilineaires et estimation de Strichartz, Am. J. Math., Volume 121 (1999), pp. 1337-1377 | DOI

[20] S. Klainerman A commuting vectorfield approach to Strichartz type inequalities and applications to quasilinear wave equations, Int. Math. Res. Not. (2001) no. 5, pp. 221-274 | DOI

[21] S. Klainerman; I. Rodnianski Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J., Volume 117 (2003), pp. 1-124 | DOI

[22] S. Klainerman; I. Rodnianski Rough solutions to the Einstein vacuum equations, Ann. Math., Volume 161 (2005), pp. 1143-1193 | DOI

[23] S. Klainerman; I. Rodnianski Causal structure of microlocalized rough Einstein metrics, Ann. Math., Volume 161 (2005), pp. 1195-1243 | DOI

[24] S. Klainerman; I. Rodnianski Ricci defects of microlocalized Einstein metrics, J. Hyperbolic Differ. Equ., Volume 1 (2004) no. 1, pp. 85-113 | DOI

[25] Q. Wang Rough solutions of Einstein vacuum equations in CMCSH gauges, Commun. Math. Phys., Volume 328 (2014), pp. 1275-1340 | DOI

[26] Q. Wang Causal geometry of rough Einstein CMCSH spacetime, J. Hyperbolic Differ. Equ., Volume 11 (2014) no. 3, pp. 563-601 | DOI

[27] Q. Wang A geometric approach for sharp Local well-posedness of quasilinear wave equations, Ann. PDE, Volume 3 (2017), 12 | DOI

[28] H. F. Smith; D. Tataru Sharp local well-posedness results for the nonlinear wave equation, Ann. Math., Volume 162 (2005), pp. 291-366 | DOI

[29] B. Ettinger; H. Lindblad A sharp counterexample to local existence of low regularity solutions to Einstein equations in wave coordinates, Ann. Math., Volume 185 (2017) no. 1, pp. 311-330 | DOI

[30] H. Lindblad Counterexamples to local existence for quasilinear wave equations, Math. Res. Lett., Volume 5 (1998) no. 5, pp. 605-622 | DOI

[31] G. Ponce; T. Sideris Local regularity of non linear wave equations in three space dimensions, CPDE, Volume 18 (1993), pp. 169-177 | DOI

[32] H. Lindblad Counterexamples to local existence for semi-linear wave equations, Am. J. Math., Volume 118 (1996) no. 1, pp. 1-16 | DOI

[33] S. Klainerman; M. Machedon Smoothing estimates for null forms and applications, Duke Math. J., Volume 81 (1995), pp. 99-133 | DOI

[34] S. Klainerman; M. Machedon On the Maxwell–Klein–Gordon equation with finite energy, Duke Math. J., Volume 74 (1994) no. 1, pp. 19-44 | DOI

[35] S. Klainerman; M. Machedon Finite energy solutions of the Yang–Mills equations in 3+1 , Ann. Math., Volume 142 (1995) no. 1, pp. 39-119 | DOI

[36] S. Klainerman; M. Machedon Space–time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993), pp. 1221-1268 | DOI

[37] J. Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, part II: KdV equation, Geom. Funct. Anal., Volume 3 (1993), pp. 107-156 (209-262) | DOI

[38] J. Krieger; J. Lührmann Concentration compactness for the critical Maxwell-Klein-Gordon equation, Ann. PDE, Volume 1 (2015) no. 1, 5 | DOI

[39] S. Oh; D. Tataru Global well-posedness and scattering of the (4+1)-dimensional Maxwell-Klein-Gordon equation, Invent. Math., Volume 205 (2016) no. 3, pp. 781-877 | DOI

[40] J. Krieger; D. Tataru Global well-posedness for the Yang-Mills equation in 4 + 1 dimensions: Small energy, Ann. Math., Volume 3 (2017), pp. 831-893 | DOI

[41] S. Oh; D. Tataru The threshold conjecture for the energy critical hyperbolic Yang–Mills equation, Ann. Math., Volume 194 (2021) no. 2, pp. 393-473

[42] S. Klainerman; I. Rodnianski; J. Szeftel The bounded L2 curvature conjecture, Invent. Math., Volume 202 (2015) no. 1, pp. 91-216 | DOI

[43] J. Szeftel Parametrix for wave equations on a rough background I: regularity of the phase at initial time. II: construction and control at initial time, Astérisque, Volume 443 (2023), pp. 1-275 | DOI

[44] J. Szeftel Parametrix for wave equations on a rough background III: space–time regularity of the phase, Astérisque, Volume 401 (2018), pp. 1-338 | DOI

[45] J. Szeftel Parametrix for wave equations on a rough background IV: Control of the error term, Astérisque, Volume 444 (2023), pp. 1-313

[46] J. Szeftel Sharp Strichartz estimates for the wave equation on a rough background, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 6, pp. 1279-1309 | DOI

[47] H. Lindblad; I. Rodnianski The weak null condition for Einstein’s equations, C. R. Acad. Sci. Paris, Ser., Volume 336 (2003), pp. 901-906 | DOI

[48] D. Maxwell Rough solutions of the Einstein constraint equations, J. Reine Angew. Math., Volume 590 (2006), pp. 1-29 | DOI

[49] M. Dafermos; I. Rodnianski A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, XVIth International Congress on Mathematical Physics 2010, World Scientific Publishing, Hackensack, NJ, 2010, pp. 421-432 | DOI

[50] Q. Wang Rough solutions of the 3-D compressible Euler equations, Ann. Math., Volume 195 (2022) no. 2, pp. 509-654 | DOI

[51] S. Czimek; O. Graf The spacelike-characteristic cauchy problem of general relativity in low regularity, Ann. PDE, Volume 8 (2022) no. 2, 22 | DOI

[52] M. T. Anderson Cheeger-Gromov theory and applications to general relativity, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (P. T. Chruciel; H. Friedrich, eds.), Birkhäuser, Basel, 2004, pp. 347-377 | DOI

[53] P. Petersen Convergence theorems in Riemannian geometry, Comparison Geometry (Berkeley, CA, 1993–94), Volume 30, Cambridge University Press, Cambridge, 1997, pp. 167-202

[54] J. Corvino Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., Volume 214 (2000), pp. 137-189 | DOI

[55] J. Corvino; R. Schoen On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., Volume 73 (2006), pp. 185-217 | DOI

[56] S. Klainerman; I. Rodnianski Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math., Volume 159 (2005) no. 3, pp. 437-529 | DOI

[57] S. Klainerman; I. Rodnianski Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal., Volume 16 (2006), pp. 164-229 | DOI

[58] S. Klainerman; I. Rodnianski A geometric Littlewood-Paley theory, Geom. Funct. Anal., Volume 16 (2006), pp. 126-163 | DOI

[59] Q. Wang Causal geometry of Einstein vacuum spacetimes, PhD Thesis, Princeton University (2006)

[60] Q. Wang On the geometry of null cones in Einstein Vacuum Spacetimes, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 285-328 | DOI

[61] Q. Wang On Ricci coefficients of null hypersurfaces with time foliation in Einstein vacuum space–time, Calc. Var. Partial Differ. Equ., Volume 46 (2013) no. 3-4, pp. 461-503 | DOI

[62] Q. Wang Improved breakdown criterion for Einstein vacuum equation in CMC gauge, Commun. Pure Appl. Math., Volume 65 (2012) no. 1, pp. 0021-0076 | DOI

[63] A. Shao On breakdown criteria for nonvacuum Einstein equations, Ann. Henri Poincaré, Volume 12 (2011) no. 2, pp. 205-277 | DOI

[64] S. Czimek; O. Graf The Canonical foliation on null hypersurfaces in low regularity, Ann. PDE, Volume 8 (2022) no. 2, 23 | DOI

[65] A. Shao New tensorial estimates in Besov spaces for time-dependent (2 + 1)-dimensional problems, J. Hyperbol. Differ. Eq., Volume 11 (2014) no. 4, pp. 821-908 | DOI

[66] S. Sobolev Methodes nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales, Mat. Sb., Volume 1 (1936) no. 43, pp. 31-79

[67] S. Klainerman; I. Rodnianski A Kirchoff-Sobolev parametrix for the wave equation and applications, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 3, pp. 401-433 | DOI

[68] A. Shao A generalized representation formula for systems of tensor wave equations, Commun. Math. Phys., Volume 306 (2011) no. 1, pp. 51-82 | DOI

Cité par Sources :

Commentaires - Politique