[Sur les problèmes de régularité pour les équations d’Einstein]
Dans cette enquête, nous rendons compte des progrès récents dans le problème de la bonne pose locale des équations d’Einstein en (3+1)-D avec une faible régularité et ses applications.
In this survey, we provide a review of recent progresses in the local well-posedness problem of Einstein equations in (3+1)-D with low regularity and its applications.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Problème de Cauchy, Équations d’Einstein, Bien-posé local
Qian Wang 1
@article{CRMECA_2025__353_G1_151_0, author = {Qian Wang}, title = {On the regularity problems of {Einstein} equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {151--175}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.278}, language = {en}, }
Qian Wang. On the regularity problems of Einstein equations. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 151-175. doi : 10.5802/crmeca.278. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.278/
[1] Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fund. Math., Volume 24 (1935) no. 1, pp. 213-246 | DOI
[2] Théorème d’existence pour certains systèmes d’équations aux d’érivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI
[3] Hyperbolic Differential Equations, The Institute for Advanced Study, Princeton, 1955
[4] Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | DOI
[5] On a breakdown criterion in general relativity, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 345-382 | DOI
[6] Bilinear estimates on curved space–times, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 2, pp. 279-291 | DOI
[7] On the radius of injectivity of null hypersuraces, J. Am. Math. Soc., Volume 21 (2006), pp. 775-795 | DOI
[8] Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear electrodynamics and general relativity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 273-294 | DOI
[9] The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. I, Commun. Math. Phys., Volume 28 (1972), pp. 1-38 | DOI
[10] The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993
[11] Elliptic-hyperbolic systems and the Einstein equations, Ann. Henri Poincaré, Volume 4 (2003), pp. 1-34 | DOI
[12] PDE as a unified subject, Geom. Funct. Anal., Volume 1 (2000), pp. 279-315
[13] Geometric and Fourier methods in nonlinear wave equations, The Set of Lectures Delivered at the IPAM Workshop in Oscillatory Integrals and PDE’ March 19–25 2001, UCLA, 2001 (Available online at https://web.math.princeton.edu/~seri/papers/ucla1.pdf)
[14] A parametrix construction for wave equations with C1, 1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | DOI
[15] Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Am. J. Math., Volume 122 (2000), pp. 349-376 | DOI
[16] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients II, Am. J. Math., Volume 123 (2001), pp. 385-423 | DOI
[17] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III, J. Am. Math. Soc., Volume 15 (2002), pp. 419-442 | DOI
[18] Èquations dòndes quasilineaires et effet dispersif, Int. Math. Res. Not. (1999) no. 21, pp. 1141-1178 | DOI
[19] Eqùations dòndes quasilineaires et estimation de Strichartz, Am. J. Math., Volume 121 (1999), pp. 1337-1377 | DOI
[20] A commuting vectorfield approach to Strichartz type inequalities and applications to quasilinear wave equations, Int. Math. Res. Not. (2001) no. 5, pp. 221-274 | DOI
[21] Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J., Volume 117 (2003), pp. 1-124 | DOI
[22] Rough solutions to the Einstein vacuum equations, Ann. Math., Volume 161 (2005), pp. 1143-1193 | DOI
[23] Causal structure of microlocalized rough Einstein metrics, Ann. Math., Volume 161 (2005), pp. 1195-1243 | DOI
[24] Ricci defects of microlocalized Einstein metrics, J. Hyperbolic Differ. Equ., Volume 1 (2004) no. 1, pp. 85-113 | DOI
[25] Rough solutions of Einstein vacuum equations in CMCSH gauges, Commun. Math. Phys., Volume 328 (2014), pp. 1275-1340 | DOI
[26] Causal geometry of rough Einstein CMCSH spacetime, J. Hyperbolic Differ. Equ., Volume 11 (2014) no. 3, pp. 563-601 | DOI
[27] A geometric approach for sharp Local well-posedness of quasilinear wave equations, Ann. PDE, Volume 3 (2017), 12 | DOI
[28] Sharp local well-posedness results for the nonlinear wave equation, Ann. Math., Volume 162 (2005), pp. 291-366 | DOI
[29] A sharp counterexample to local existence of low regularity solutions to Einstein equations in wave coordinates, Ann. Math., Volume 185 (2017) no. 1, pp. 311-330 | DOI
[30] Counterexamples to local existence for quasilinear wave equations, Math. Res. Lett., Volume 5 (1998) no. 5, pp. 605-622 | DOI
[31] Local regularity of non linear wave equations in three space dimensions, CPDE, Volume 18 (1993), pp. 169-177 | DOI
[32] Counterexamples to local existence for semi-linear wave equations, Am. J. Math., Volume 118 (1996) no. 1, pp. 1-16 | DOI
[33] Smoothing estimates for null forms and applications, Duke Math. J., Volume 81 (1995), pp. 99-133 | DOI
[34] On the Maxwell–Klein–Gordon equation with finite energy, Duke Math. J., Volume 74 (1994) no. 1, pp. 19-44 | DOI
[35] Finite energy solutions of the Yang–Mills equations in , Ann. Math., Volume 142 (1995) no. 1, pp. 39-119 | DOI
[36] Space–time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993), pp. 1221-1268 | DOI
[37] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, part II: KdV equation, Geom. Funct. Anal., Volume 3 (1993), pp. 107-156 (209-262) | DOI
[38] Concentration compactness for the critical Maxwell-Klein-Gordon equation, Ann. PDE, Volume 1 (2015) no. 1, 5 | DOI
[39] Global well-posedness and scattering of the (4+1)-dimensional Maxwell-Klein-Gordon equation, Invent. Math., Volume 205 (2016) no. 3, pp. 781-877 | DOI
[40] Global well-posedness for the Yang-Mills equation in 4 + 1 dimensions: Small energy, Ann. Math., Volume 3 (2017), pp. 831-893 | DOI
[41] The threshold conjecture for the energy critical hyperbolic Yang–Mills equation, Ann. Math., Volume 194 (2021) no. 2, pp. 393-473
[42] The bounded L2 curvature conjecture, Invent. Math., Volume 202 (2015) no. 1, pp. 91-216 | DOI
[43] Parametrix for wave equations on a rough background I: regularity of the phase at initial time. II: construction and control at initial time, Astérisque, Volume 443 (2023), pp. 1-275 | DOI
[44] Parametrix for wave equations on a rough background III: space–time regularity of the phase, Astérisque, Volume 401 (2018), pp. 1-338 | DOI
[45] Parametrix for wave equations on a rough background IV: Control of the error term, Astérisque, Volume 444 (2023), pp. 1-313
[46] Sharp Strichartz estimates for the wave equation on a rough background, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 6, pp. 1279-1309 | DOI
[47] The weak null condition for Einstein’s equations, C. R. Acad. Sci. Paris, Ser., Volume 336 (2003), pp. 901-906 | DOI
[48] Rough solutions of the Einstein constraint equations, J. Reine Angew. Math., Volume 590 (2006), pp. 1-29 | DOI
[49] A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, XVIth International Congress on Mathematical Physics 2010, World Scientific Publishing, Hackensack, NJ, 2010, pp. 421-432 | DOI
[50] Rough solutions of the 3-D compressible Euler equations, Ann. Math., Volume 195 (2022) no. 2, pp. 509-654 | DOI
[51] The spacelike-characteristic cauchy problem of general relativity in low regularity, Ann. PDE, Volume 8 (2022) no. 2, 22 | DOI
[52] Cheeger-Gromov theory and applications to general relativity, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (P. T. Chruciel; H. Friedrich, eds.), Birkhäuser, Basel, 2004, pp. 347-377 | DOI
[53] Convergence theorems in Riemannian geometry, Comparison Geometry (Berkeley, CA, 1993–94), Volume 30, Cambridge University Press, Cambridge, 1997, pp. 167-202
[54] Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., Volume 214 (2000), pp. 137-189 | DOI
[55] On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., Volume 73 (2006), pp. 185-217 | DOI
[56] Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math., Volume 159 (2005) no. 3, pp. 437-529 | DOI
[57] Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal., Volume 16 (2006), pp. 164-229 | DOI
[58] A geometric Littlewood-Paley theory, Geom. Funct. Anal., Volume 16 (2006), pp. 126-163 | DOI
[59] Causal geometry of Einstein vacuum spacetimes, PhD Thesis, Princeton University (2006)
[60] On the geometry of null cones in Einstein Vacuum Spacetimes, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 285-328 | DOI
[61] On Ricci coefficients of null hypersurfaces with time foliation in Einstein vacuum space–time, Calc. Var. Partial Differ. Equ., Volume 46 (2013) no. 3-4, pp. 461-503 | DOI
[62] Improved breakdown criterion for Einstein vacuum equation in CMC gauge, Commun. Pure Appl. Math., Volume 65 (2012) no. 1, pp. 0021-0076 | DOI
[63] On breakdown criteria for nonvacuum Einstein equations, Ann. Henri Poincaré, Volume 12 (2011) no. 2, pp. 205-277 | DOI
[64] The Canonical foliation on null hypersurfaces in low regularity, Ann. PDE, Volume 8 (2022) no. 2, 23 | DOI
[65] New tensorial estimates in Besov spaces for time-dependent (2 + 1)-dimensional problems, J. Hyperbol. Differ. Eq., Volume 11 (2014) no. 4, pp. 821-908 | DOI
[66] Methodes nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales, Mat. Sb., Volume 1 (1936) no. 43, pp. 31-79
[67] A Kirchoff-Sobolev parametrix for the wave equation and applications, J. Hyperbolic Differ. Equ., Volume 4 (2007) no. 3, pp. 401-433 | DOI
[68] A generalized representation formula for systems of tensor wave equations, Commun. Math. Phys., Volume 306 (2011) no. 1, pp. 51-82 | DOI
Cité par Sources :
Commentaires - Politique