Comptes Rendus
Positivity of 𝐋(1 2,π) for symplectic representations
[Positivité de L(1 2,π) pour représentations simplectiques]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 101-104.

Soit π une représentation cuspidale géńerique de SO(2n+1). Nous prouvons que L(1 2,π)0.

Let π a cuspidal generic representation of SO(2n+1). We prove that L(1 2,π)0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02217-3

Erez Lapid 1 ; Stephen Rallis 1

1 Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
@article{CRMATH_2002__334_2_101_0,
     author = {Erez Lapid and Stephen Rallis},
     title = {Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {101--104},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02217-3},
     language = {en},
}
TY  - JOUR
AU  - Erez Lapid
AU  - Stephen Rallis
TI  - Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 101
EP  - 104
VL  - 334
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02217-3
LA  - en
ID  - CRMATH_2002__334_2_101_0
ER  - 
%0 Journal Article
%A Erez Lapid
%A Stephen Rallis
%T Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations
%J Comptes Rendus. Mathématique
%D 2002
%P 101-104
%V 334
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02217-3
%G en
%F CRMATH_2002__334_2_101_0
Erez Lapid; Stephen Rallis. Positivity of $ \mathbf{L(}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{,\pi )}$ for symplectic representations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 101-104. doi : 10.1016/S1631-073X(02)02217-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02217-3/

[1] C.J. Bushnell; G. Henniart Calculs de facteurs epsilon de paires pour GLn sur un corps local. I, Bull. London Math. Soc., Volume 31 (1999) no. 5, pp. 534-542

[2] Cogdell J., Kim H., Piatetski-Shapiro I., Shahidi F., On lifting from classical groups to GLn, Preprint, 2000

[3] P. Deligne Les constantes locales de l'équation fonctionnelle de la fonction L d'Artin d'une représentation orthogonale, Invent. Math., Volume 35 (1976), pp. 299-316

[4] A. Fröhlich; J. Queyrut On the functional equation of the Artin L-function for characters of real representations, Invent. Math., Volume 20 (1973), pp. 125-138

[5] D. Ginzburg; S. Rallis; D. Soudry On explicit lifts of cusp forms from GLm to classical groups, Ann. of Math. (2), Volume 150 (1999) no. 3, pp. 807-866

[6] D. Goldberg Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math., Volume 116 (1994) no. 5, pp. 1101-1151

[7] J. Guo On the positivity of the central critical values of automorphic L-functions for GL(2), Duke Math. J., Volume 83 (1996) no. 1, pp. 157-190

[8] H. Jacquet; C. Nan Positivity of quadratic base change L-functions, Bull. Soc. Math. France, Volume 129 (2001) no. 3, pp. 33-90

[9] H. Jacquet; J. Shalika Exterior square L-functions, Automorphic Forms, Shimura Varieties, and L-Functions, Vol. II (Ann Arbor, MI, 1988), Academic Press, Boston, MA, 1990, pp. 143-226

[10] C. Jantzen Reducibility of certain representations for symplectic and odd-orthogonal groups, Compositio Math., Volume 104 (1996) no. 1, pp. 55-63

[11] S. Katok; P. Sarnak Heegner points, cycles and Maass forms, Israel J. Math., Volume 84 (1993) no. 1–2, pp. 193-227

[12] C.D. Keys; F. Shahidi Artin L-functions and normalization of intertwining operators, Ann. Sci. École Norm. Sup. (4), Volume 21 (1988) no. 1, pp. 67-89

[13] Lapid E., Rallis S., On the non-negativity of L(1 2,π) for SO2n+1, Preprint

[14] G. Muić A proof of Casselman–Shahidi's conjecture for quasi-split classical groups, Canad. Math. Bull., Volume 44 (2001) no. 3, pp. 298-312

[15] D. Prasad; D. Ramakrishnan On the global root numbers of GL(n)×GL(m), Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, TX, 1996), American Mathematical Society, Providence, RI, 1999, pp. 311-330

[16] F. Shahidi A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2), Volume 132 (1990) no. 2, pp. 273-330

[17] F. Shahidi Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J., Volume 66 (1992) no. 1, pp. 1-41

[18] M. Tadić On reducibility of parabolic induction, Israel J. Math., Volume 107 (1998), pp. 29-91

Cité par Sources :

Commentaires - Politique