Comptes Rendus
Deformations and derived categories
Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 97-100.

We generalize the deformation theory of representations of profinite groups developed by Mazur and Schlessinger to complexes of modules for such groups. As an example, we determine the universal deformation ring of the compact étale hypercohomology of μp on certain affine CM elliptic curves studied by Boston and Ullom.

Nous généralisons la théorie de déformation des représentations des groupes profinis développée par Mazur et Schlessinger aux complexes de modules sur de tels groupes. Comme exemple nous déterminons l'anneau de déformation universelle de l'hypercohomologie étale compacte de μp sur certaines courbes elliptiques affines de type CM étudiées par Boston et Ullom.

Published online:
DOI: 10.1016/S1631-073X(02)02237-9

Frauke M. Bleher 1; Ted Chinburg 2

1 Department of Mathematics, University of Iowa, Iowa City, IA 52242-1419, USA
2 Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA
     author = {Frauke M. Bleher and Ted Chinburg},
     title = {Deformations and derived categories},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {97--100},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02237-9},
     language = {en},
AU  - Frauke M. Bleher
AU  - Ted Chinburg
TI  - Deformations and derived categories
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 97
EP  - 100
VL  - 334
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02237-9
LA  - en
ID  - CRMATH_2002__334_2_97_0
ER  - 
%0 Journal Article
%A Frauke M. Bleher
%A Ted Chinburg
%T Deformations and derived categories
%J Comptes Rendus. Mathématique
%D 2002
%P 97-100
%V 334
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02237-9
%G en
%F CRMATH_2002__334_2_97_0
Frauke M. Bleher; Ted Chinburg. Deformations and derived categories. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 97-100. doi : 10.1016/S1631-073X(02)02237-9.

[1] F.M. Bleher; T. Chinburg Universal deformation rings and cyclic blocks, Math. Ann., Volume 318 (2000), pp. 805-836

[2] Bleher F.M., Chinburg T., Applications of universal deformations to Galois theory, Preprint, 2001

[3] N. Boston; S.V. Ullom Representations related to CM elliptic curves, Math. Proc. Cambridge Philos. Soc., Volume 113 (1993), pp. 71-85

[4] C. Breuil; B. Conrad; F. Diamond; R. Taylor On the modularity of elliptic curves over Q: Wild 3-adic exercises, J. Amer. Math. Soc., Volume 14 (2001), pp. 843-939

[5] M. Broué Isométries parfaites, types de blocs, catégories dérivées, Astérisque, Volume 181–182 (1990), pp. 61-92

[6] Modular Forms and Fermat's Last Theorem (Boston, 1995) (G. Cornell; J.H. Silverman; G. Stevens, eds.), Springer-Verlag, Berlin, 1997

[7] C. Deninger; J. Murre Motivic decomposition of Abelian schemes and the Fourier transform, J. Reine Angew. Math., Volume 422 (1991), pp. 201-219

[8] L. Illusie Complexe cotangent et déformations. I, Lecture Notes in Math., 239, Springer-Verlag, Berlin, 1971

[9] L. Illusie Complexe cotangent et déformations. II, Lecture Notes in Math., 283, Springer-Verlag, Berlin, 1972

[10] K. Künnemann On the Chow motive of an Abelian scheme, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 1, American Mathematical Society, Providence, RI, 1994, pp. 189-205

[11] B. Mazur Deforming Galois representations, Galois Groups over $ \mathrm{Q}$Q (Berkeley, CA, 1987), Springer-Verlag, Berlin, 1989, pp. 385-437

[12] B. Mazur Deformation theory of Galois representations, Modular Forms and Fermat's Last Theorem (Boston, 1995), Springer-Verlag, Berlin, 1997, pp. 243-311

[13] J.S. Milne Étale cohomology, Princeton University Press, Princeton, 1980

[14] L. Ribes; P. Zalesskii Profinite Groups, Ergeb. Math. Grenzgeb., 40, Springer-Verlag, Berlin, 2000

[15] J. Rickard The Abelian defect group conjecture, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math., Extra, II, 1998, pp. 121-128

[16] M. Schlessinger Functors of Artin rings, Trans. Amer. Math. Soc., Volume 130 (1968), pp. 208-222

[17] R. Taylor; A. Wiles Ring-theoretic properties of certain Hecke algebras, Ann. Math., Volume 141 (1995), pp. 553-572

[18] A. Wiles Modular elliptic curves and Fermat's last theorem, Ann. Math., Volume 141 (1995), pp. 443-551

Cited by Sources:

Supported (respectively) by NSA Young Investigator Grant MDA904-01-1-0050 and NSF Grant DMS00-70433.

Comments - Policy