[Quelques groupes extrêmement moyennables]
Un groupe topologique G est extrêmement moyennable si toute action continue de G sur un espace compact possède un point fixe. En utilisant les techniques de concentration de mesure développées par Gromov et Milman, nous démontrons que le groupe des automorphismes d'un espace de Lebesgue avec une mesure diffuse est extrêmement moyennable s'il est muni de la topologie faible, mais ne l'est pas avec la topologie uniforme. Si M est une algèbre de von Neumann, nous montrons en utilisant un résultat de P. de la Harpe que M est approximativement de dimension finie si et seulement si son groupe unitaire (muni de la topologie forte) est le produit d'un groupe compact et d'un groupe extrêmement moyennable.
A topological group G is extremely amenable if every continuous action of G on a compact space has a fixed point. Using the concentration of measure techniques developed by Gromov and Milman, we prove that the group of automorphisms of a Lebesgue space with a non-atomic measure is extremely amenable with the weak topology but not with the uniform one. Strengthening a de la Harpe's result, we show that a von Neumann algebra is approximately finite-dimensional if and only if its unitary group with the strong topology is the product of an extremely amenable group with a compact group.
Révisé le :
Publié le :
Thierry Giordano 1 ; Vladimir Pestov 2
@article{CRMATH_2002__334_4_273_0, author = {Thierry Giordano and Vladimir Pestov}, title = {Some extremely amenable groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--278}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02218-5}, language = {en}, }
Thierry Giordano; Vladimir Pestov. Some extremely amenable groups. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 273-278. doi : 10.1016/S1631-073X(02)02218-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02218-5/
[1] On the existence of exotic Banach–Lie groups, Math. Ann., Volume 264 (1983), pp. 485-493
[2] Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990), pp. 383-401
[3] On approximately finite-dimensional von Neumann algebras. II, Canad. Math. Bull., Volume 21 (1978), pp. 415-418
[4] On minimal actions of Polish groups, Topology Appl., Volume 85 (1998), pp. 119-125
[5] Proximal Flows, Lecture Notes in Math., 517, Springer-Verlag, Berlin, 1976
[6] Extremely amenable semigroups 2, Math. Scand., Volume 20 (1967), pp. 93-113
[7] Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser, Basel, 1999
[8] A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983), pp. 843-854
[9] All nuclear -algebras are amenable, Invent. Math., Volume 74 (1983), pp. 305-319
[10] Lectures on Ergodic Theory, Chelsea, New York, 1960
[11] Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Acad. Sci. Paris, Série A, Volume 277 (1973), pp. 1037-1040
[12] Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann, Algèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math., 725, Springer-Verlag, Berlin, 1979, pp. 220-227
[13] On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann., Volume 213 (1975), pp. 203-210
[14] Constructions de suites symétriques, C. R. Acad. Sci. Paris, Série A–B, Volume 288 (1979), pp. 679-681
[15] The heritage of P. Lévy in geometric functional analysis, Astérisque, Volume 157–158 (1988), pp. 273-301
[16] Nuclear -algebras have amenable unitary groups, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 719-721
[17] On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 4149-4165
[18] Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space, Geom. Funct. Anal., Volume 10 (2000), pp. 1171-1201
[19] V.G. Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. (to appear). E-print: | arXiv
[20] A note on and Veech's theorem, Semigroup Forum, Volume 59 (1999), pp. 171-174
[21] On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc., Volume 114 (1965), pp. 261-279
[22] Topological dynamics, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 775-830
Cité par Sources :
Commentaires - Politique