[Quelques groupes extrêmement moyennables]
A topological group G is extremely amenable if every continuous action of G on a compact space has a fixed point. Using the concentration of measure techniques developed by Gromov and Milman, we prove that the group of automorphisms of a Lebesgue space with a non-atomic measure is extremely amenable with the weak topology but not with the uniform one. Strengthening a de la Harpe's result, we show that a von Neumann algebra is approximately finite-dimensional if and only if its unitary group with the strong topology is the product of an extremely amenable group with a compact group.
Un groupe topologique G est extrêmement moyennable si toute action continue de G sur un espace compact possède un point fixe. En utilisant les techniques de concentration de mesure développées par Gromov et Milman, nous démontrons que le groupe des automorphismes d'un espace de Lebesgue avec une mesure diffuse est extrêmement moyennable s'il est muni de la topologie faible, mais ne l'est pas avec la topologie uniforme. Si M est une algèbre de von Neumann, nous montrons en utilisant un résultat de P. de la Harpe que M est approximativement de dimension finie si et seulement si son groupe unitaire (muni de la topologie forte) est le produit d'un groupe compact et d'un groupe extrêmement moyennable.
Révisé le :
Publié le :
Thierry Giordano 1 ; Vladimir Pestov 2
@article{CRMATH_2002__334_4_273_0, author = {Thierry Giordano and Vladimir Pestov}, title = {Some extremely amenable groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {273--278}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02218-5}, language = {en}, }
Thierry Giordano; Vladimir Pestov. Some extremely amenable groups. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 273-278. doi : 10.1016/S1631-073X(02)02218-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02218-5/
[1] On the existence of exotic Banach–Lie groups, Math. Ann., Volume 264 (1983), pp. 485-493
[2] Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990), pp. 383-401
[3] On approximately finite-dimensional von Neumann algebras. II, Canad. Math. Bull., Volume 21 (1978), pp. 415-418
[4] On minimal actions of Polish groups, Topology Appl., Volume 85 (1998), pp. 119-125
[5] Proximal Flows, Lecture Notes in Math., 517, Springer-Verlag, Berlin, 1976
[6] Extremely amenable semigroups 2, Math. Scand., Volume 20 (1967), pp. 93-113
[7] Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser, Basel, 1999
[8] A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983), pp. 843-854
[9] All nuclear
[10] Lectures on Ergodic Theory, Chelsea, New York, 1960
[11] Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Acad. Sci. Paris, Série A, Volume 277 (1973), pp. 1037-1040
[12] Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann, Algèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math., 725, Springer-Verlag, Berlin, 1979, pp. 220-227
[13] On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann., Volume 213 (1975), pp. 203-210
[14] Constructions de suites symétriques, C. R. Acad. Sci. Paris, Série A–B, Volume 288 (1979), pp. 679-681
[15] The heritage of P. Lévy in geometric functional analysis, Astérisque, Volume 157–158 (1988), pp. 273-301
[16] Nuclear
[17] On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 4149-4165
[18] Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space, Geom. Funct. Anal., Volume 10 (2000), pp. 1171-1201
[19] V.G. Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. (to appear). E-print: | arXiv
[20] A note on
[21] On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc., Volume 114 (1965), pp. 261-279
[22] Topological dynamics, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 775-830
- On the continuity of Følner averages, Journal of Functional Analysis, Volume 289 (2025) no. 7, p. 111039 | DOI:10.1016/j.jfa.2025.111039
- Concentration of measure for classical Lie groups, European Journal of Mathematics, Volume 9 (2023) no. 1, p. 26 (Id/No 3) | DOI:10.1007/s40879-023-00607-2 | Zbl:1527.22014
- Universal minimal flow in the theory of topological groupoids, Groups, Geometry, and Dynamics, Volume 14 (2020) no. 2, pp. 513-537 | DOI:10.4171/ggd/553 | Zbl:1442.22003
- Isometry groups of Borel randomizations, Notre Dame Journal of Formal Logic, Volume 61 (2020) no. 2, pp. 297-316 | DOI:10.1215/00294527-2020-0008 | Zbl:1484.03090
- An exotic group as limit of finite special linear groups, Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 257-273 | DOI:10.5802/aif.3160 | Zbl:1404.54023
- Orbit full groups for locally compact groups, Transactions of the American Mathematical Society, Volume 370 (2018) no. 4, pp. 2321-2349 | DOI:10.1090/tran/6985 | Zbl:1451.37008
- Fraïssé limits of
-algebras, The Journal of Symbolic Logic, Volume 81 (2016) no. 2, pp. 755-773 | DOI:10.1017/jsl.2016.14 | Zbl:1383.03046 - The Group Aut (μ) is Roelcke Precompact, Canadian Mathematical Bulletin, Volume 55 (2012) no. 2, p. 297 | DOI:10.4153/cmb-2011-083-2
- Topological properties of full groups, Ergodic Theory and Dynamical Systems, Volume 30 (2010) no. 2, pp. 525-545 | DOI:10.1017/s0143385709000078 | Zbl:1185.37010
- Concentration of maps and group actions, Geometriae Dedicata, Volume 149 (2010), pp. 103-119 | DOI:10.1007/s10711-010-9470-2 | Zbl:1228.53047
- Transitivity in spaces of vector-valued functions, Proceedings of the Edinburgh Mathematical Society. Series II, Volume 53 (2010) no. 3, pp. 601-608 | DOI:10.1017/s0013091508000540 | Zbl:1210.46011
- Concentration of 1-Lipschitz maps into an infinite dimensional
-ball with the -distance function, Proceedings of the American Mathematical Society, Volume 137 (2009) no. 7, pp. 2407-2417 | DOI:10.1090/s0002-9939-09-09873-6 | Zbl:1202.46012 - Fixed points of non-expansive mappings associated with invariant means in a Banach space, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 11, pp. 3316-3324 | DOI:10.1016/j.na.2007.03.018 | Zbl:1223.47062
- Forty-plus annotated questions about large topological groups, Open Problems in Topology II (2007), p. 439 | DOI:10.1016/b978-044452208-5/50044-2
- The automorphism group of the Gaussian measure cannot act pointwise, Israel Journal of Mathematics, Volume 148 (2005), pp. 305-329 | DOI:10.1007/bf02775441 | Zbl:1105.37006
- Universal minimal flows of automorphism groups, Bulletin: Classe des sciences mathematiques et natturalles, Volume 127 (2003) no. 28, p. 93 | DOI:10.2298/bmat0328093k
Cité par 16 documents. Sources : Crossref, zbMATH
Commentaires - Politique