Comptes Rendus
Some extremely amenable groups
[Quelques groupes extrêmement moyennables]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 273-278.

A topological group G is extremely amenable if every continuous action of G on a compact space has a fixed point. Using the concentration of measure techniques developed by Gromov and Milman, we prove that the group of automorphisms of a Lebesgue space with a non-atomic measure is extremely amenable with the weak topology but not with the uniform one. Strengthening a de la Harpe's result, we show that a von Neumann algebra is approximately finite-dimensional if and only if its unitary group with the strong topology is the product of an extremely amenable group with a compact group.

Un groupe topologique G est extrêmement moyennable si toute action continue de G sur un espace compact possède un point fixe. En utilisant les techniques de concentration de mesure développées par Gromov et Milman, nous démontrons que le groupe des automorphismes d'un espace de Lebesgue avec une mesure diffuse est extrêmement moyennable s'il est muni de la topologie faible, mais ne l'est pas avec la topologie uniforme. Si M est une algèbre de von Neumann, nous montrons en utilisant un résultat de P. de la Harpe que M est approximativement de dimension finie si et seulement si son groupe unitaire (muni de la topologie forte) est le produit d'un groupe compact et d'un groupe extrêmement moyennable.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02218-5

Thierry Giordano 1 ; Vladimir Pestov 2

1 Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
2 School of Mathematical and Computing Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
@article{CRMATH_2002__334_4_273_0,
     author = {Thierry Giordano and Vladimir Pestov},
     title = {Some extremely amenable groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--278},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02218-5},
     language = {en},
}
TY  - JOUR
AU  - Thierry Giordano
AU  - Vladimir Pestov
TI  - Some extremely amenable groups
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 273
EP  - 278
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02218-5
LA  - en
ID  - CRMATH_2002__334_4_273_0
ER  - 
%0 Journal Article
%A Thierry Giordano
%A Vladimir Pestov
%T Some extremely amenable groups
%J Comptes Rendus. Mathématique
%D 2002
%P 273-278
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02218-5
%G en
%F CRMATH_2002__334_4_273_0
Thierry Giordano; Vladimir Pestov. Some extremely amenable groups. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 273-278. doi : 10.1016/S1631-073X(02)02218-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02218-5/

[1] W. Banaszczyk On the existence of exotic Banach–Lie groups, Math. Ann., Volume 264 (1983), pp. 485-493

[2] M.E.B. Bekka Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990), pp. 383-401

[3] G.A. Elliott On approximately finite-dimensional von Neumann algebras. II, Canad. Math. Bull., Volume 21 (1978), pp. 415-418

[4] S. Glasner On minimal actions of Polish groups, Topology Appl., Volume 85 (1998), pp. 119-125

[5] S. Glasner Proximal Flows, Lecture Notes in Math., 517, Springer-Verlag, Berlin, 1976

[6] E. Granirer Extremely amenable semigroups 2, Math. Scand., Volume 20 (1967), pp. 93-113

[7] M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser, Basel, 1999

[8] M. Gromov; V.D. Milman A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983), pp. 843-854

[9] U. Haagerup All nuclear C*-algebras are amenable, Invent. Math., Volume 74 (1983), pp. 305-319

[10] P.R. Halmos Lectures on Ergodic Theory, Chelsea, New York, 1960

[11] P. de la Harpe Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Acad. Sci. Paris, Série A, Volume 277 (1973), pp. 1037-1040

[12] P. de la Harpe Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann, Algèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math., 725, Springer-Verlag, Berlin, 1979, pp. 220-227

[13] W. Herer; J.P.R. Christensen On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann., Volume 213 (1975), pp. 203-210

[14] B. Maurey Constructions de suites symétriques, C. R. Acad. Sci. Paris, Série A–B, Volume 288 (1979), pp. 679-681

[15] V.D. Milman The heritage of P. Lévy in geometric functional analysis, Astérisque, Volume 157–158 (1988), pp. 273-301

[16] A.L.T. Paterson Nuclear C*-algebras have amenable unitary groups, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 719-721

[17] V.G. Pestov On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 4149-4165

[18] V.G. Pestov Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space, Geom. Funct. Anal., Volume 10 (2000), pp. 1171-1201

[19] V.G. Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. (to appear). E-print: | arXiv

[20] J. Pym A note on Gℒ𝒰𝒞 and Veech's theorem, Semigroup Forum, Volume 59 (1999), pp. 171-174

[21] A.I. Tulcea On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc., Volume 114 (1965), pp. 261-279

[22] W.A. Veech Topological dynamics, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 775-830

  • Gabriel Fuhrmann; Maik Gröger; Till Hauser On the continuity of Følner averages, Journal of Functional Analysis, Volume 289 (2025) no. 7, p. 111039 | DOI:10.1016/j.jfa.2025.111039
  • Sergio L. Cacciatori; Pietro Ursino Concentration of measure for classical Lie groups, European Journal of Mathematics, Volume 9 (2023) no. 1, p. 26 (Id/No 3) | DOI:10.1007/s40879-023-00607-2 | Zbl:1527.22014
  • Riccardo Re; Pietro Ursino Universal minimal flow in the theory of topological groupoids, Groups, Geometry, and Dynamics, Volume 14 (2020) no. 2, pp. 513-537 | DOI:10.4171/ggd/553 | Zbl:1442.22003
  • Alexander Berenstein; Rafael Zamora Isometry groups of Borel randomizations, Notre Dame Journal of Formal Logic, Volume 61 (2020) no. 2, pp. 297-316 | DOI:10.1215/00294527-2020-0008 | Zbl:1484.03090
  • Alessandro Carderi; Andreas Thom An exotic group as limit of finite special linear groups, Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 257-273 | DOI:10.5802/aif.3160 | Zbl:1404.54023
  • A. Carderi; F. Le Maître Orbit full groups for locally compact groups, Transactions of the American Mathematical Society, Volume 370 (2018) no. 4, pp. 2321-2349 | DOI:10.1090/tran/6985 | Zbl:1451.37008
  • Christopher J. Eagle; Ilijas Farah; Bradd Hart; Boris Kadets; Vladyslav Kalashnyk; Martino Lupini Fraïssé limits of C-algebras, The Journal of Symbolic Logic, Volume 81 (2016) no. 2, pp. 755-773 | DOI:10.1017/jsl.2016.14 | Zbl:1383.03046
  • Eli Glasner The Group Aut (μ) is Roelcke Precompact, Canadian Mathematical Bulletin, Volume 55 (2012) no. 2, p. 297 | DOI:10.4153/cmb-2011-083-2
  • John Kittrell; Todor Tsankov Topological properties of full groups, Ergodic Theory and Dynamical Systems, Volume 30 (2010) no. 2, pp. 525-545 | DOI:10.1017/s0143385709000078 | Zbl:1185.37010
  • Kei Funano Concentration of maps and group actions, Geometriae Dedicata, Volume 149 (2010), pp. 103-119 | DOI:10.1007/s10711-010-9470-2 | Zbl:1228.53047
  • Félix Cabello Sánchez Transitivity in spaces of vector-valued functions, Proceedings of the Edinburgh Mathematical Society. Series II, Volume 53 (2010) no. 3, pp. 601-608 | DOI:10.1017/s0013091508000540 | Zbl:1210.46011
  • Kei Funano Concentration of 1-Lipschitz maps into an infinite dimensional p-ball with the q-distance function, Proceedings of the American Mathematical Society, Volume 137 (2009) no. 7, pp. 2407-2417 | DOI:10.1090/s0002-9939-09-09873-6 | Zbl:1202.46012
  • Jung Im Kang Fixed points of non-expansive mappings associated with invariant means in a Banach space, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 11, pp. 3316-3324 | DOI:10.1016/j.na.2007.03.018 | Zbl:1223.47062
  • Vladimir Pestov Forty-plus annotated questions about large topological groups, Open Problems in Topology II (2007), p. 439 | DOI:10.1016/b978-044452208-5/50044-2
  • E. Glasner; B. Tsirelson; B. Weiss The automorphism group of the Gaussian measure cannot act pointwise, Israel Journal of Mathematics, Volume 148 (2005), pp. 305-329 | DOI:10.1007/bf02775441 | Zbl:1105.37006
  • A.S. Kechris; V. Pestov; S. Todorcevic Universal minimal flows of automorphism groups, Bulletin: Classe des sciences mathematiques et natturalles, Volume 127 (2003) no. 28, p. 93 | DOI:10.2298/bmat0328093k

Cité par 16 documents. Sources : Crossref, zbMATH

Commentaires - Politique