Comptes Rendus
Some extremely amenable groups
Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 273-278.

A topological group G is extremely amenable if every continuous action of G on a compact space has a fixed point. Using the concentration of measure techniques developed by Gromov and Milman, we prove that the group of automorphisms of a Lebesgue space with a non-atomic measure is extremely amenable with the weak topology but not with the uniform one. Strengthening a de la Harpe's result, we show that a von Neumann algebra is approximately finite-dimensional if and only if its unitary group with the strong topology is the product of an extremely amenable group with a compact group.

Un groupe topologique G est extrêmement moyennable si toute action continue de G sur un espace compact possède un point fixe. En utilisant les techniques de concentration de mesure développées par Gromov et Milman, nous démontrons que le groupe des automorphismes d'un espace de Lebesgue avec une mesure diffuse est extrêmement moyennable s'il est muni de la topologie faible, mais ne l'est pas avec la topologie uniforme. Si M est une algèbre de von Neumann, nous montrons en utilisant un résultat de P. de la Harpe que M est approximativement de dimension finie si et seulement si son groupe unitaire (muni de la topologie forte) est le produit d'un groupe compact et d'un groupe extrêmement moyennable.

Published online:
DOI: 10.1016/S1631-073X(02)02218-5

Thierry Giordano 1; Vladimir Pestov 2

1 Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
2 School of Mathematical and Computing Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
     author = {Thierry Giordano and Vladimir Pestov},
     title = {Some extremely amenable groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--278},
     publisher = {Elsevier},
     volume = {334},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02218-5},
     language = {en},
AU  - Thierry Giordano
AU  - Vladimir Pestov
TI  - Some extremely amenable groups
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 273
EP  - 278
VL  - 334
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02218-5
LA  - en
ID  - CRMATH_2002__334_4_273_0
ER  - 
%0 Journal Article
%A Thierry Giordano
%A Vladimir Pestov
%T Some extremely amenable groups
%J Comptes Rendus. Mathématique
%D 2002
%P 273-278
%V 334
%N 4
%I Elsevier
%R 10.1016/S1631-073X(02)02218-5
%G en
%F CRMATH_2002__334_4_273_0
Thierry Giordano; Vladimir Pestov. Some extremely amenable groups. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 273-278. doi : 10.1016/S1631-073X(02)02218-5.

[1] W. Banaszczyk On the existence of exotic Banach–Lie groups, Math. Ann., Volume 264 (1983), pp. 485-493

[2] M.E.B. Bekka Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990), pp. 383-401

[3] G.A. Elliott On approximately finite-dimensional von Neumann algebras. II, Canad. Math. Bull., Volume 21 (1978), pp. 415-418

[4] S. Glasner On minimal actions of Polish groups, Topology Appl., Volume 85 (1998), pp. 119-125

[5] S. Glasner Proximal Flows, Lecture Notes in Math., 517, Springer-Verlag, Berlin, 1976

[6] E. Granirer Extremely amenable semigroups 2, Math. Scand., Volume 20 (1967), pp. 93-113

[7] M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., 152, Birkhäuser, Basel, 1999

[8] M. Gromov; V.D. Milman A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983), pp. 843-854

[9] U. Haagerup All nuclear C * -algebras are amenable, Invent. Math., Volume 74 (1983), pp. 305-319

[10] P.R. Halmos Lectures on Ergodic Theory, Chelsea, New York, 1960

[11] P. de la Harpe Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Acad. Sci. Paris, Série A, Volume 277 (1973), pp. 1037-1040

[12] P. de la Harpe Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann, Algèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math., 725, Springer-Verlag, Berlin, 1979, pp. 220-227

[13] W. Herer; J.P.R. Christensen On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann., Volume 213 (1975), pp. 203-210

[14] B. Maurey Constructions de suites symétriques, C. R. Acad. Sci. Paris, Série A–B, Volume 288 (1979), pp. 679-681

[15] V.D. Milman The heritage of P. Lévy in geometric functional analysis, Astérisque, Volume 157–158 (1988), pp. 273-301

[16] A.L.T. Paterson Nuclear C * -algebras have amenable unitary groups, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 719-721

[17] V.G. Pestov On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 4149-4165

[18] V.G. Pestov Amenable representations and dynamics of the unit sphere in an infinite-dimensional Hilbert space, Geom. Funct. Anal., Volume 10 (2000), pp. 1171-1201

[19] V.G. Pestov, Ramsey–Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math. (to appear). E-print: | arXiv

[20] J. Pym A note on G ℒ𝒰𝒞 and Veech's theorem, Semigroup Forum, Volume 59 (1999), pp. 171-174

[21] A.I. Tulcea On the category of certain classes of transformations in ergodic theory, Trans. Amer. Math. Soc., Volume 114 (1965), pp. 261-279

[22] W.A. Veech Topological dynamics, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 775-830

Cited by Sources:

Comments - Policy