[L'image de la dérivée d'une fonction bosse différentiable]
Nous étudions l'image de la dérivée d'une fonction bosse Fréchet différentiable. X est un espace de Banach séparable de dimension infinie et Cp-lisse. Tout d'abord nous montrons que tout ouvert connexe de
We study the range of the derivative of a Frechet differentiable bump. X is an infinite dimensional separable Cp-smooth Banach space. We first prove that any connected open subset of
Accepté le :
Publié le :
Thierry Gaspari 1
@article{CRMATH_2002__334_3_189_0, author = {Thierry Gaspari}, title = {The range of the derivative of a differentiable bump}, journal = {Comptes Rendus. Math\'ematique}, pages = {189--194}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02223-9}, language = {en}, }
Thierry Gaspari. The range of the derivative of a differentiable bump. Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 189-194. doi : 10.1016/S1631-073X(02)02223-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02223-9/
[1] Jame's theorem fails for starlike bodies, J. Functional Anal., Volume 180 (2001) no. 2, pp. 328-346
[2] The range of the gradient of a continuously differentiable bump, J. Nonlinear Convex Anal., Volume 2 (2001), pp. 1-19
[3] J.M. Borwein, M. Fabian, P.D. Loewen, The range of the gradient of a Lipschitz C1-smooth bump in infinite dimensions, Preprint, 2001
[4] Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure Appl. Math., 64, 1993
[5] The Darboux property for gradients, Real Anal. Exchange, Volume 22 (1996/1997), pp. 167-173
[6] J. Saint-Raymond, Local inversion for differentiable functions and Darboux property, Preprint, 2001
[7] Introduction to Topology and Modern Analysis, Internat. Ser. Pure Appl. Math., 1963
Cité par Sources :
Commentaires - Politique