[Diffusions non linéaires et constantes optimales dans des inégalités de type Sobolev : comportement asymptotique d'équations faisant intervenir le p-Laplacien]
Nous étudions le comportement asymptotique des solutions positives ou nulles de : ut=Δpum à l'aide d'une estimation d'entropie qui repose sur l'utilisation d'une sous-famille des inégalités de Gagliardo–Nirenberg – ou, dans le cas limite m=(p−1)−1, d'une inégalité de Sobolev logarithmique dans W1,p – pour laquelle on connait des fonctions optimales.
We study the asymptotic behaviour of nonnegative solutions to: ut=Δpum using an entropy estimate based on a sub-family of the Gagliardo–Nirenberg inequalities – or, in the limit case m=(p−1)−1, on a logarithmic Sobolev inequality in W1,p – for which optimal functions are known.
Accepté le :
Publié le :
Manuel Del Pino 1 ; Jean Dolbeault 2
@article{CRMATH_2002__334_5_365_0, author = {Manuel Del Pino and Jean Dolbeault}, title = {Nonlinear diffusions and optimal constants in {Sobolev} type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}${-Laplacian}}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--370}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02225-2}, language = {en}, }
TY - JOUR AU - Manuel Del Pino AU - Jean Dolbeault TI - Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian JO - Comptes Rendus. Mathématique PY - 2002 SP - 365 EP - 370 VL - 334 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(02)02225-2 LA - en ID - CRMATH_2002__334_5_365_0 ER -
%0 Journal Article %A Manuel Del Pino %A Jean Dolbeault %T Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian %J Comptes Rendus. Mathématique %D 2002 %P 365-370 %V 334 %N 5 %I Elsevier %R 10.1016/S1631-073X(02)02225-2 %G en %F CRMATH_2002__334_5_365_0
Manuel Del Pino; Jean Dolbeault. Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 365-370. doi : 10.1016/S1631-073X(02)02225-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02225-2/
[1] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 43-100
[2] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Asymptotic Methods in Kinetic Theory, Volume 119 (1999), pp. 1-91 (Preprint TMR)
[3] Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., Volume 49 (2000), pp. 113-141
[4] Del Pino M., Dolbeault J., Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous media problems, Preprint Ceremade no. 9905, 1999, pp. 1–45
[5] Del Pino M., Dolbeault J., Best constants for Gagliardo–Nirenberg inequalities and application to nonlinear diffusions, Preprint Ceremade no. 0119, 2001, pp. 1–25, J. Math. Pures Appl. (to appear)
[6] Del Pino M., Dolbeault J., General logarithmic and Gagliardo–Nirenberg inequalities with best constants, Preprint Ceremade no. 0120, 2001, pp. 1–12. Preprint CMM-B-01/06-38, 2001, pp. 1–11
[7] Del Pino M., Dolbeault J., Asymptotic behaviour of nonlinear diffusions (in preparation)
[8] Degenerate Parabolic Equations, Springer-Verlag, New York, 1993
[9] The asymptotic behaviour of gas in a n-dimensional porous medium, Trans. Amer. Math. Soc., Volume 262 (1980) no. 2, pp. 551-563
[10] Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 339-354
[11] The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174
[12] Uniqueness for ground states of quasilinear elliptic equations, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 897-923
[13] Sur l'inégalité logarithmique de Sobolev, C. R. Acad. Sci. Paris, Série I, Volume 324 (1997), pp. 689-694
- On the equivalence between an Onofri-type inequality by del Pino-Dolbeault and the sharp logarithmic Moser-Trudinger inequality, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 3, p. 22 (Id/No 80) | DOI:10.1007/s00526-025-02935-5 | Zbl:7986684
- Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth, Communications in Analysis and Mechanics, Volume 17 (2025) no. 1, p. 263 | DOI:10.3934/cam.2025011
- Functional inequalities and applications to doubly nonlinear diffusion equations, Advances in Calculus of Variations, Volume 17 (2024) no. 2, pp. 467-485 | DOI:10.1515/acv-2022-0021 | Zbl:1539.35132
- On a singular parabolic
-Laplacian equation with logarithmic nonlinearity, Communications in Analysis and Mechanics, Volume 16 (2024) no. 3, pp. 528-553 | DOI:10.3934/cam.2024025 | Zbl:1548.35166 - Existence of global solutions and blow-up results for a class of p(x)−Laplacian heat equations with logarithmic nonlinearity, Filomat, Volume 37 (2023) no. 22, p. 7527 | DOI:10.2298/fil2322527l
- Existence of global solutions and blow-up for p-Laplacian parabolic equations with logarithmic nonlinearity on metric graphs, Electronic Journal of Differential Equations, Volume 2022 (2022) no. 01-87, p. 51 | DOI:10.58997/ejde.2022.51
- Existence of global solutions and blow-up for
-Laplacian parabolic equations with logarithmic nonlinearity on metric graphs, Electronic Journal of Differential Equations (EJDE), Volume 2022 (2022), p. 18 (Id/No 51) | Zbl:1496.35406 - The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity, Evolution Equations and Control Theory, Volume 11 (2022) no. 3, pp. 781-792 | DOI:10.3934/eect.2021025 | Zbl:1487.35122
- The Cauchy problem for the fast
-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 163 (2022), pp. 83-131 | DOI:10.1016/j.matpur.2022.05.002 | Zbl:1492.35035 - Global well-posedness for pseudo-parabolic
-Laplacian equation with singular potential and logarithmic nonlinearity, Journal of Mathematical Physics, Volume 63 (2022) no. 6, p. 18 (Id/No 061503) | DOI:10.1063/5.0077842 | Zbl:1508.35021 - Grow-up of weak solutions in a
-Laplacian pseudo-parabolic problem, Nonlinear Analysis. Real World Applications, Volume 68 (2022), p. 16 (Id/No 103657) | DOI:10.1016/j.nonrwa.2022.103657 | Zbl:1498.35081 - Blow up and decay for a class of
-Laplacian hyperbolic equation with logarithmic nonlinearity, Taiwanese Journal of Mathematics, Volume 26 (2022) no. 4, pp. 741-763 | DOI:10.11650/tjm/220107 | Zbl:1496.35099 - Global well-posedness of solutions for the
-Laplacian hyperbolic type equation with weak and strong damping terms and logarithmic nonlinearity, Taiwanese Journal of Mathematics, Volume 26 (2022) no. 6, pp. 1235-1255 | DOI:10.11650/tjm/220702 | Zbl:1503.35033 - Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Applied Mathematics and Optimization, Volume 83 (2021) no. 3, pp. 1651-1707 | DOI:10.1007/s00245-019-09603-z | Zbl:1469.35122
- Global existence and decay estimates of energy of solutions for a new class of
-Laplacian heat equations with logarithmic nonlinearity, Journal of Function Spaces, Volume 2021 (2021), p. 11 (Id/No 5558818) | DOI:10.1155/2021/5558818 | Zbl:1464.35151 - Qualitative analysis of solutions for the
-Laplacian hyperbolic equation with logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 6, pp. 4654-4672 | DOI:10.1002/mma.7058 | Zbl:1472.35171 - Infinite time blow-up of solutions to a fourth-order nonlinear parabolic equation with logarithmic nonlinearity modeling epitaxial growth, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 6, p. 19 (Id/No 240) | DOI:10.1007/s00009-021-01880-9 | Zbl:1477.35042
- Existence results for a class of the quasilinear elliptic equations with the logarithmic nonlinearity, Journal of Function Spaces, Volume 2020 (2020), p. 9 (Id/No 6545918) | DOI:10.1155/2020/6545918 | Zbl:1459.35188
- Global existence and blow-up for the fractional
-Laplacian with logarithmic nonlinearity, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 5, p. 24 (Id/No 162) | DOI:10.1007/s00009-020-01584-6 | Zbl:1450.35145 - A
-Laplace equation with logarithmic nonlinearity at high initial energy level, Acta Applicandae Mathematicae, Volume 164 (2019), pp. 155-164 | DOI:10.1007/s10440-018-00230-4 | Zbl:1423.35152 - Ground state solution for a fourth-order elliptic equation with logarithmic nonlinearity modeling epitaxial growth, Computers Mathematics with Applications, Volume 78 (2019) no. 6, pp. 1878-1886 | DOI:10.1016/j.camwa.2019.03.025 | Zbl:1442.35109
- Global existence and blow-up for a mixed pseudo-parabolic
-Laplacian type equation with logarithmic nonlinearity, Journal of Mathematical Analysis and Applications, Volume 478 (2019) no. 2, pp. 393-420 | DOI:10.1016/j.jmaa.2019.05.018 | Zbl:1447.35202 - Existence and nonexistence of global solutions for doubly nonlinear diffusion equations with logarithmic nonlinearity, Electronic Journal of Qualitative Theory of Differential Equations (2018) no. 67, p. 1 | DOI:10.14232/ejqtde.2018.1.67
- Global solution and blow-up for a class of
-Laplacian evolution equations with logarithmic nonlinearity, Acta Applicandae Mathematicae, Volume 151 (2017) no. 1, pp. 149-169 | DOI:10.1007/s10440-017-0106-5 | Zbl:1373.35008 - Global solution and blow-up for a class of pseudo
-Laplacian evolution equations with logarithmic nonlinearity, Computers Mathematics with Applications, Volume 73 (2017) no. 9, pp. 2076-2091 | DOI:10.1016/j.camwa.2017.02.030 | Zbl:1386.35244 - Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic equations with measurable coefficients, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 138 (2016), pp. 111-126 | DOI:10.1016/j.na.2015.09.006 | Zbl:1334.35157
- The Euclidean Onofri Inequality in Higher Dimensions, International Mathematics Research Notices, Volume 2013 (2013) no. 15, p. 3600 | DOI:10.1093/imrn/rns119
- Note on affine Gagliardo-Nirenberg inequalities, Potential Analysis, Volume 34 (2011) no. 1, pp. 1-12 | DOI:10.1007/s11118-010-9176-y | Zbl:1220.46024
- Relative Newtonian Potentials of Radial Functions and Asymptotics in Nonlinear Diffusion, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1975 | DOI:10.1137/100805157
- Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime, Journal of Evolution Equations, Volume 10 (2010) no. 1, pp. 59-84 | DOI:10.1007/s00028-009-0040-8 | Zbl:1239.35063
- Rates of decay to equilibria for
-Laplacian type equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 68 (2008) no. 7, pp. 1909-1927 | DOI:10.1016/j.na.2007.01.043 | Zbl:1185.35017 - On the minimum
-divergence for given total variation, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 343 (2006) no. 11-12, pp. 763-766 | DOI:10.1016/j.crma.2006.10.027 | Zbl:1250.62005 - Ultracontractive Bounds for Nonlinear Evolution Equations Governed by the Subcritical p-Laplacian, Trends in Partial Differential Equations of Mathematical Physics, Volume 61 (2005), p. 15 | DOI:10.1007/3-7643-7317-2_2
- Nonlinear diffusions, hypercontractivity and the optimal
-Euclidean logarithmic Sobolev inequality, Journal of Mathematical Analysis and Applications, Volume 293 (2004) no. 2, pp. 375-388 | DOI:10.1016/j.jmaa.2003.10.009 | Zbl:1058.35124 - Asymptotic behavior for doubly degenerate parabolic equations, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 337 (2003) no. 5, pp. 331-336 | DOI:10.1016/s1631-073x(03)00352-2 | Zbl:1029.35144
- Asymptotic behaviour for the porous medium equation posed in the whole space, Nonlinear Evolution Equations and Related Topics (2003), p. 67 | DOI:10.1007/978-3-0348-7924-8_5
- Nonlinear diffusions and optimal constants in Sobolev type inequalities: Asymptotic behaviour of equations involving the
-Laplacian, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 334 (2002) no. 5, pp. 365-370 | DOI:10.1016/s1631-073x(02)02225-2 | Zbl:1090.35096 - Nonlinear Stability inLpfor a Confined System of Charged Particles, SIAM Journal on Mathematical Analysis, Volume 34 (2002) no. 2, p. 478 | DOI:10.1137/s0036141001398435
Cité par 38 documents. Sources : Crossref, zbMATH
Commentaires - Politique