Comptes Rendus
Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the 𝐩-Laplacian
[Diffusions non linéaires et constantes optimales dans des inégalités de type Sobolev : comportement asymptotique d'équations faisant intervenir le p-Laplacien]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 365-370.

We study the asymptotic behaviour of nonnegative solutions to: ut=Δpum using an entropy estimate based on a sub-family of the Gagliardo–Nirenberg inequalities – or, in the limit case m=(p−1)−1, on a logarithmic Sobolev inequality in W1,p – for which optimal functions are known.

Nous étudions le comportement asymptotique des solutions positives ou nulles de : ut=Δpum à l'aide d'une estimation d'entropie qui repose sur l'utilisation d'une sous-famille des inégalités de Gagliardo–Nirenberg – ou, dans le cas limite m=(p−1)−1, d'une inégalité de Sobolev logarithmique dans W1,p – pour laquelle on connait des fonctions optimales.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02225-2

Manuel Del Pino 1 ; Jean Dolbeault 2

1 DIM & CMM (UMR CNRS 2071), FCFM, Univ. de Chile, Casilla 170 Correo 3, Santiago, Chile
2 Ceremade (UMR CNRS 7534), Univ. Paris IX-Dauphine, Pl. de Lattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2002__334_5_365_0,
     author = {Manuel Del Pino and Jean Dolbeault},
     title = {Nonlinear diffusions and optimal constants in {Sobolev} type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}${-Laplacian}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {365--370},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02225-2},
     language = {en},
}
TY  - JOUR
AU  - Manuel Del Pino
AU  - Jean Dolbeault
TI  - Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 365
EP  - 370
VL  - 334
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02225-2
LA  - en
ID  - CRMATH_2002__334_5_365_0
ER  - 
%0 Journal Article
%A Manuel Del Pino
%A Jean Dolbeault
%T Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian
%J Comptes Rendus. Mathématique
%D 2002
%P 365-370
%V 334
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02225-2
%G en
%F CRMATH_2002__334_5_365_0
Manuel Del Pino; Jean Dolbeault. Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 365-370. doi : 10.1016/S1631-073X(02)02225-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02225-2/

[1] A. Arnold; P. Markowich; G. Toscani; A. Unterreiter On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 43-100

[2] J.A. Carrillo; A. Jüngel; P.A. Markowich; G. Toscani; A. Unterrreiter Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Asymptotic Methods in Kinetic Theory, Volume 119 (1999), pp. 1-91 (Preprint TMR)

[3] J.A. Carrillo; G. Toscani Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., Volume 49 (2000), pp. 113-141

[4] Del Pino M., Dolbeault J., Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous media problems, Preprint Ceremade no. 9905, 1999, pp. 1–45

[5] Del Pino M., Dolbeault J., Best constants for Gagliardo–Nirenberg inequalities and application to nonlinear diffusions, Preprint Ceremade no. 0119, 2001, pp. 1–25, J. Math. Pures Appl. (to appear)

[6] Del Pino M., Dolbeault J., General logarithmic and Gagliardo–Nirenberg inequalities with best constants, Preprint Ceremade no. 0120, 2001, pp. 1–12. Preprint CMM-B-01/06-38, 2001, pp. 1–11

[7] Del Pino M., Dolbeault J., Asymptotic behaviour of nonlinear diffusions (in preparation)

[8] E. Di Benedetto Degenerate Parabolic Equations, Springer-Verlag, New York, 1993

[9] A. Friedmann; S. Kamin The asymptotic behaviour of gas in a n-dimensional porous medium, Trans. Amer. Math. Soc., Volume 262 (1980) no. 2, pp. 551-563

[10] S. Kamin; J.L. Vázquez Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 339-354

[11] F. Otto The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174

[12] J. Serrin; M. Tang Uniqueness for ground states of quasilinear elliptic equations, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 897-923

[13] G. Toscani Sur l'inégalité logarithmique de Sobolev, C. R. Acad. Sci. Paris, Série I, Volume 324 (1997), pp. 689-694

  • Natalino Borgia; Silvia Cingolani; Gabriele Mancini On the equivalence between an Onofri-type inequality by Del Pino–Dolbeault and the sharp logarithmic Moser–Trudinger inequality, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 3 | DOI:10.1007/s00526-025-02935-5
  • Tingfu Feng; Yan Dong; Kelei Zhang; Yan Zhu Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth, Communications in Analysis and Mechanics, Volume 17 (2025) no. 1, p. 263 | DOI:10.3934/cam.2025011
  • Hang Ding; Jun Zhou Well-Posedness and Dynamics of Solutions for a p-Laplacian Type Wave Equation with Logarithmic Nonlinearity and Strong Damping, The Journal of Geometric Analysis, Volume 35 (2025) no. 9 | DOI:10.1007/s12220-025-02107-z
  • Iwona Chlebicka; Nikita Simonov Functional inequalities and applications to doubly nonlinear diffusion equations, Advances in Calculus of Variations, Volume 17 (2024) no. 2, p. 467 | DOI:10.1515/acv-2022-0021
  • Xiulan Wu; Yaxin Zhao; Xiaoxin Yang On a singular parabolic p-Laplacian equation with logarithmic nonlinearity, Communications in Analysis and Mechanics, Volume 16 (2024) no. 3, p. 528 | DOI:10.3934/cam.2024025
  • Mohammad Shahrouzi Existence, decay and blow-up results for a plate viscoelastic equation with variable-exponent logarithmic terms, Filomat, Volume 38 (2024) no. 20, p. 7051 | DOI:10.2298/fil2420051s
  • Abdellatif Lalmi; Sarra Toualbia; Yamina Laskri Existence of global solutions and blow-up results for a class of p(x)−Laplacian heat equations with logarithmic nonlinearity, Filomat, Volume 37 (2023) no. 22, p. 7527 | DOI:10.2298/fil2322527l
  • Ru Wang; Xiaojun Chang Existence of global solutions and blow-up for p-Laplacian parabolic equations with logarithmic nonlinearity on metric graphs, Electronic Journal of Differential Equations, Volume 2022 (2022) no. 01-87, p. 51 | DOI:10.58997/ejde.2022.51
  • Menglan Liao The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity, Evolution Equations and Control Theory, Volume 11 (2022) no. 3, p. 781 | DOI:10.3934/eect.2021025
  • Matteo Bonforte; Nikita Simonov; Diana Stan The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour, Journal de Mathématiques Pures et Appliquées, Volume 163 (2022), p. 83 | DOI:10.1016/j.matpur.2022.05.002
  • Wen-Shuo Yuan; Bin Ge Global well-posedness for pseudo-parabolic p-Laplacian equation with singular potential and logarithmic nonlinearity, Journal of Mathematical Physics, Volume 63 (2022) no. 6 | DOI:10.1063/5.0077842
  • Ke Li; Bingchen Liu Grow-up of weak solutions in a p-Laplacian pseudo-parabolic problem, Nonlinear Analysis: Real World Applications, Volume 68 (2022), p. 103657 | DOI:10.1016/j.nonrwa.2022.103657
  • Ying Chu; Yuqi Wu; Libo Cheng Blow up and Decay for a Class of p-Laplacian Hyperbolic Equation with Logarithmic Nonlinearity, Taiwanese Journal of Mathematics, Volume 26 (2022) no. 4 | DOI:10.11650/tjm/220107
  • Nouri Boumaza; Billel Gheraibia; Gongwei Liu Global Well-posedness of Solutions for the p-Laplacian Hyperbolic Type Equation with Weak and Strong Damping Terms and Logarithmic Nonlinearity, Taiwanese Journal of Mathematics, Volume 26 (2022) no. 6 | DOI:10.11650/tjm/220702
  • Hang Ding; Jun Zhou Global Existence and Blow-Up for a Parabolic Problem of Kirchhoff Type with Logarithmic Nonlinearity, Applied Mathematics Optimization, Volume 83 (2021) no. 3, p. 1651 | DOI:10.1007/s00245-019-09603-z
  • Salah Mahmoud Boulaaras; Abdelbaki Choucha; Abderrahmane Zara; Mohamed Abdalla; Bahri-Belkacem Cheri; Chuanjun Chen Global Existence and Decay Estimates of Energy of Solutions for a New Class of p -Laplacian Heat Equations with Logarithmic Nonlinearity, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5558818
  • Erhan Pişkin; Salah Boulaaras; Nazli Irkil Qualitative analysis of solutions for the p‐Laplacian hyperbolic equation with logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 6, p. 4654 | DOI:10.1002/mma.7058
  • Hang Ding; Jun Zhou Infinite Time Blow-Up of Solutions to a Fourth-Order Nonlinear Parabolic Equation with Logarithmic Nonlinearity Modeling Epitaxial Growth, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 6 | DOI:10.1007/s00009-021-01880-9
  • Zhoujin Cui; Zisen Mao; Wen Zong; Xiaorong Zhang; Zuodong Yang; Pasquale Vetro Existence Results for a Class of the Quasilinear Elliptic Equations with the Logarithmic Nonlinearity, Journal of Function Spaces, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/6545918
  • Tahir Boudjeriou Global Existence and Blow-Up for the Fractional p-Laplacian with Logarithmic Nonlinearity, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 5 | DOI:10.1007/s00009-020-01584-6
  • Jun Zhou Ground state solution for a fourth-order elliptic equation with logarithmic nonlinearity modeling epitaxial growth, Computers Mathematics with Applications, Volume 78 (2019) no. 6, p. 1878 | DOI:10.1016/j.camwa.2019.03.025
  • Hang Ding; Jun Zhou Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity, Journal of Mathematical Analysis and Applications, Volume 478 (2019) no. 2, p. 393 | DOI:10.1016/j.jmaa.2019.05.018
  • Cong Le Nhan; Le Truong Existence and nonexistence of global solutions for doubly nonlinear diffusion equations with logarithmic nonlinearity, Electronic Journal of Qualitative Theory of Differential Equations (2018) no. 67, p. 1 | DOI:10.14232/ejqtde.2018.1.67
  • Cong Nhan Le; Xuan Truong Le Global Solution and Blow-up for a Class of p-Laplacian Evolution Equations with Logarithmic Nonlinearity, Acta Applicandae Mathematicae, Volume 151 (2017) no. 1, p. 149 | DOI:10.1007/s10440-017-0106-5
  • Le Cong Nhan; Le Xuan Truong Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Computers Mathematics with Applications, Volume 73 (2017) no. 9, p. 2076 | DOI:10.1016/j.camwa.2017.02.030
  • Roberto Gianni; Anatoli Tedeev; Vincenzo Vespri Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic equations with measurable coefficients, Nonlinear Analysis, Volume 138 (2016), p. 111 | DOI:10.1016/j.na.2015.09.006
  • Manuel del Pino; Jean Dolbeault The Euclidean Onofri Inequality in Higher Dimensions, International Mathematics Research Notices, Volume 2013 (2013) no. 15, p. 3600 | DOI:10.1093/imrn/rns119
  • Zhichun Zhai Note on Affine Gagliardo–Nirenberg Inequalities, Potential Analysis, Volume 34 (2011) no. 1, p. 1 | DOI:10.1007/s11118-010-9176-y
  • Jaywan Chung; Yong Jung Kim Relative Newtonian Potentials of Radial Functions and Asymptotics in Nonlinear Diffusion, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1975 | DOI:10.1137/100805157
  • Martial Agueh; Adrien Blanchet; José A. Carrillo Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime, Journal of Evolution Equations, Volume 10 (2010) no. 1, p. 59 | DOI:10.1007/s00028-009-0040-8
  • Martial Agueh Rates of decay to equilibria for -Laplacian type equations, Nonlinear Analysis: Theory, Methods Applications, Volume 68 (2008) no. 7, p. 1909 | DOI:10.1016/j.na.2007.01.043
  • Matteo Bonforte; Gabriele Grillo Ultracontractive Bounds for Nonlinear Evolution Equations Governed by the Subcritical p-Laplacian, Trends in Partial Differential Equations of Mathematical Physics, Volume 61 (2005), p. 15 | DOI:10.1007/3-7643-7317-2_2
  • Manuel Del Pino; Jean Dolbeault; Ivan Gentil Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality, Journal of Mathematical Analysis and Applications, Volume 293 (2004) no. 2, p. 375 | DOI:10.1016/j.jmaa.2003.10.009
  • Juan Luis Vázquez Asymptotic behaviour for the porous medium equation posed in the whole space, Nonlinear Evolution Equations and Related Topics (2003), p. 67 | DOI:10.1007/978-3-0348-7924-8_5
  • María J. Cáceres; José A. Carrillo; Jean Dolbeault Nonlinear Stability inLpfor a Confined System of Charged Particles, SIAM Journal on Mathematical Analysis, Volume 34 (2002) no. 2, p. 478 | DOI:10.1137/s0036141001398435

Cité par 35 documents. Sources : Crossref

Commentaires - Politique