[Diffusions non linéaires et constantes optimales dans des inégalités de type Sobolev : comportement asymptotique d'équations faisant intervenir le p-Laplacien]
We study the asymptotic behaviour of nonnegative solutions to: ut=Δpum using an entropy estimate based on a sub-family of the Gagliardo–Nirenberg inequalities – or, in the limit case m=(p−1)−1, on a logarithmic Sobolev inequality in W1,p – for which optimal functions are known.
Nous étudions le comportement asymptotique des solutions positives ou nulles de : ut=Δpum à l'aide d'une estimation d'entropie qui repose sur l'utilisation d'une sous-famille des inégalités de Gagliardo–Nirenberg – ou, dans le cas limite m=(p−1)−1, d'une inégalité de Sobolev logarithmique dans W1,p – pour laquelle on connait des fonctions optimales.
Accepté le :
Publié le :
Manuel Del Pino 1 ; Jean Dolbeault 2
@article{CRMATH_2002__334_5_365_0, author = {Manuel Del Pino and Jean Dolbeault}, title = {Nonlinear diffusions and optimal constants in {Sobolev} type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}${-Laplacian}}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--370}, publisher = {Elsevier}, volume = {334}, number = {5}, year = {2002}, doi = {10.1016/S1631-073X(02)02225-2}, language = {en}, }
TY - JOUR AU - Manuel Del Pino AU - Jean Dolbeault TI - Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian JO - Comptes Rendus. Mathématique PY - 2002 SP - 365 EP - 370 VL - 334 IS - 5 PB - Elsevier DO - 10.1016/S1631-073X(02)02225-2 LA - en ID - CRMATH_2002__334_5_365_0 ER -
%0 Journal Article %A Manuel Del Pino %A Jean Dolbeault %T Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian %J Comptes Rendus. Mathématique %D 2002 %P 365-370 %V 334 %N 5 %I Elsevier %R 10.1016/S1631-073X(02)02225-2 %G en %F CRMATH_2002__334_5_365_0
Manuel Del Pino; Jean Dolbeault. Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $ \mathbf{p}$-Laplacian. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 365-370. doi : 10.1016/S1631-073X(02)02225-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02225-2/
[1] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 43-100
[2] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Asymptotic Methods in Kinetic Theory, Volume 119 (1999), pp. 1-91 (Preprint TMR)
[3] Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., Volume 49 (2000), pp. 113-141
[4] Del Pino M., Dolbeault J., Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous media problems, Preprint Ceremade no. 9905, 1999, pp. 1–45
[5] Del Pino M., Dolbeault J., Best constants for Gagliardo–Nirenberg inequalities and application to nonlinear diffusions, Preprint Ceremade no. 0119, 2001, pp. 1–25, J. Math. Pures Appl. (to appear)
[6] Del Pino M., Dolbeault J., General logarithmic and Gagliardo–Nirenberg inequalities with best constants, Preprint Ceremade no. 0120, 2001, pp. 1–12. Preprint CMM-B-01/06-38, 2001, pp. 1–11
[7] Del Pino M., Dolbeault J., Asymptotic behaviour of nonlinear diffusions (in preparation)
[8] Degenerate Parabolic Equations, Springer-Verlag, New York, 1993
[9] The asymptotic behaviour of gas in a n-dimensional porous medium, Trans. Amer. Math. Soc., Volume 262 (1980) no. 2, pp. 551-563
[10] Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, Volume 4 (1988) no. 2, pp. 339-354
[11] The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001) no. 1–2, pp. 101-174
[12] Uniqueness for ground states of quasilinear elliptic equations, Indiana Univ. Math. J., Volume 49 (2000) no. 3, pp. 897-923
[13] Sur l'inégalité logarithmique de Sobolev, C. R. Acad. Sci. Paris, Série I, Volume 324 (1997), pp. 689-694
- On the equivalence between an Onofri-type inequality by Del Pino–Dolbeault and the sharp logarithmic Moser–Trudinger inequality, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 3 | DOI:10.1007/s00526-025-02935-5
- Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth, Communications in Analysis and Mechanics, Volume 17 (2025) no. 1, p. 263 | DOI:10.3934/cam.2025011
- Well-Posedness and Dynamics of Solutions for a p-Laplacian Type Wave Equation with Logarithmic Nonlinearity and Strong Damping, The Journal of Geometric Analysis, Volume 35 (2025) no. 9 | DOI:10.1007/s12220-025-02107-z
- Functional inequalities and applications to doubly nonlinear diffusion equations, Advances in Calculus of Variations, Volume 17 (2024) no. 2, p. 467 | DOI:10.1515/acv-2022-0021
- On a singular parabolic
-Laplacian equation with logarithmic nonlinearity, Communications in Analysis and Mechanics, Volume 16 (2024) no. 3, p. 528 | DOI:10.3934/cam.2024025 - Existence, decay and blow-up results for a plate viscoelastic equation with variable-exponent logarithmic terms, Filomat, Volume 38 (2024) no. 20, p. 7051 | DOI:10.2298/fil2420051s
- Existence of global solutions and blow-up results for a class of p(x)−Laplacian heat equations with logarithmic nonlinearity, Filomat, Volume 37 (2023) no. 22, p. 7527 | DOI:10.2298/fil2322527l
- Existence of global solutions and blow-up for p-Laplacian parabolic equations with logarithmic nonlinearity on metric graphs, Electronic Journal of Differential Equations, Volume 2022 (2022) no. 01-87, p. 51 | DOI:10.58997/ejde.2022.51
- The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity, Evolution Equations and Control Theory, Volume 11 (2022) no. 3, p. 781 | DOI:10.3934/eect.2021025
- The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour, Journal de Mathématiques Pures et Appliquées, Volume 163 (2022), p. 83 | DOI:10.1016/j.matpur.2022.05.002
- Global well-posedness for pseudo-parabolic p-Laplacian equation with singular potential and logarithmic nonlinearity, Journal of Mathematical Physics, Volume 63 (2022) no. 6 | DOI:10.1063/5.0077842
- Grow-up of weak solutions in a p-Laplacian pseudo-parabolic problem, Nonlinear Analysis: Real World Applications, Volume 68 (2022), p. 103657 | DOI:10.1016/j.nonrwa.2022.103657
- Blow up and Decay for a Class of
-Laplacian Hyperbolic Equation with Logarithmic Nonlinearity, Taiwanese Journal of Mathematics, Volume 26 (2022) no. 4 | DOI:10.11650/tjm/220107 - Global Well-posedness of Solutions for the
-Laplacian Hyperbolic Type Equation with Weak and Strong Damping Terms and Logarithmic Nonlinearity, Taiwanese Journal of Mathematics, Volume 26 (2022) no. 6 | DOI:10.11650/tjm/220702 - Global Existence and Blow-Up for a Parabolic Problem of Kirchhoff Type with Logarithmic Nonlinearity, Applied Mathematics Optimization, Volume 83 (2021) no. 3, p. 1651 | DOI:10.1007/s00245-019-09603-z
- Global Existence and Decay Estimates of Energy of Solutions for a New Class of p -Laplacian Heat Equations with Logarithmic Nonlinearity, Journal of Function Spaces, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5558818
- Qualitative analysis of solutions for the p‐Laplacian hyperbolic equation with logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 6, p. 4654 | DOI:10.1002/mma.7058
- Infinite Time Blow-Up of Solutions to a Fourth-Order Nonlinear Parabolic Equation with Logarithmic Nonlinearity Modeling Epitaxial Growth, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 6 | DOI:10.1007/s00009-021-01880-9
- Existence Results for a Class of the Quasilinear Elliptic Equations with the Logarithmic Nonlinearity, Journal of Function Spaces, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/6545918
- Global Existence and Blow-Up for the Fractional p-Laplacian with Logarithmic Nonlinearity, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 5 | DOI:10.1007/s00009-020-01584-6
- Ground state solution for a fourth-order elliptic equation with logarithmic nonlinearity modeling epitaxial growth, Computers Mathematics with Applications, Volume 78 (2019) no. 6, p. 1878 | DOI:10.1016/j.camwa.2019.03.025
- Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity, Journal of Mathematical Analysis and Applications, Volume 478 (2019) no. 2, p. 393 | DOI:10.1016/j.jmaa.2019.05.018
- Existence and nonexistence of global solutions for doubly nonlinear diffusion equations with logarithmic nonlinearity, Electronic Journal of Qualitative Theory of Differential Equations (2018) no. 67, p. 1 | DOI:10.14232/ejqtde.2018.1.67
- Global Solution and Blow-up for a Class of p-Laplacian Evolution Equations with Logarithmic Nonlinearity, Acta Applicandae Mathematicae, Volume 151 (2017) no. 1, p. 149 | DOI:10.1007/s10440-017-0106-5
- Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Computers Mathematics with Applications, Volume 73 (2017) no. 9, p. 2076 | DOI:10.1016/j.camwa.2017.02.030
- Asymptotic expansion of solutions to the Cauchy problem for doubly degenerate parabolic equations with measurable coefficients, Nonlinear Analysis, Volume 138 (2016), p. 111 | DOI:10.1016/j.na.2015.09.006
- The Euclidean Onofri Inequality in Higher Dimensions, International Mathematics Research Notices, Volume 2013 (2013) no. 15, p. 3600 | DOI:10.1093/imrn/rns119
- Note on Affine Gagliardo–Nirenberg Inequalities, Potential Analysis, Volume 34 (2011) no. 1, p. 1 | DOI:10.1007/s11118-010-9176-y
- Relative Newtonian Potentials of Radial Functions and Asymptotics in Nonlinear Diffusion, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1975 | DOI:10.1137/100805157
- Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime, Journal of Evolution Equations, Volume 10 (2010) no. 1, p. 59 | DOI:10.1007/s00028-009-0040-8
- Rates of decay to equilibria for -Laplacian type equations, Nonlinear Analysis: Theory, Methods Applications, Volume 68 (2008) no. 7, p. 1909 | DOI:10.1016/j.na.2007.01.043
- Ultracontractive Bounds for Nonlinear Evolution Equations Governed by the Subcritical p-Laplacian, Trends in Partial Differential Equations of Mathematical Physics, Volume 61 (2005), p. 15 | DOI:10.1007/3-7643-7317-2_2
- Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality, Journal of Mathematical Analysis and Applications, Volume 293 (2004) no. 2, p. 375 | DOI:10.1016/j.jmaa.2003.10.009
- Asymptotic behaviour for the porous medium equation posed in the whole space, Nonlinear Evolution Equations and Related Topics (2003), p. 67 | DOI:10.1007/978-3-0348-7924-8_5
- Nonlinear Stability inLpfor a Confined System of Charged Particles, SIAM Journal on Mathematical Analysis, Volume 34 (2002) no. 2, p. 478 | DOI:10.1137/s0036141001398435
Cité par 35 documents. Sources : Crossref
Commentaires - Politique