Comptes Rendus
Sharp Hodge decompositions in two and three dimensional Lipschitz domains
[Décompositions de Hodge optimales pour les domaines lipschitziens en dimensions deux et trois]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 109-112.

We identify the optimal range of coefficients s, p for which differential forms with coefficients in the Sobolev space Lsp(Ω) admit natural Hodge decompositions in arbitrary two and three dimensional Lipschitz domains Ω.

Nous identifionsla gamme optimale des coefficients s, p pour lesquels les formes différentielles à coefficients dans l'espace de Sobolev Lsp(Ω) admettent des décompositions de Hodge naturelles, pour des domaines lipschitziens Ω arbitraires de dimensions deux et trois.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02232-X

Dorina Mitrea 1 ; Marius Mitrea 1

1 Department of Mathematics, University of Missouri-Columbia, Columbia, MO 65211, USA
@article{CRMATH_2002__334_2_109_0,
     author = {Dorina Mitrea and Marius Mitrea},
     title = {Sharp {Hodge} decompositions in two and three dimensional {Lipschitz} domains},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {109--112},
     publisher = {Elsevier},
     volume = {334},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02232-X},
     language = {en},
}
TY  - JOUR
AU  - Dorina Mitrea
AU  - Marius Mitrea
TI  - Sharp Hodge decompositions in two and three dimensional Lipschitz domains
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 109
EP  - 112
VL  - 334
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02232-X
LA  - en
ID  - CRMATH_2002__334_2_109_0
ER  - 
%0 Journal Article
%A Dorina Mitrea
%A Marius Mitrea
%T Sharp Hodge decompositions in two and three dimensional Lipschitz domains
%J Comptes Rendus. Mathématique
%D 2002
%P 109-112
%V 334
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02232-X
%G en
%F CRMATH_2002__334_2_109_0
Dorina Mitrea; Marius Mitrea. Sharp Hodge decompositions in two and three dimensional Lipschitz domains. Comptes Rendus. Mathématique, Volume 334 (2002) no. 2, pp. 109-112. doi : 10.1016/S1631-073X(02)02232-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02232-X/

[1] B. Dahlberg Arch. Rational Mech. Anal., 65 (1977), pp. 275-288

[2] B. Dahlberg; C. Kenig Ann. Math., 125 (1987), pp. 437-465

[3] R. Dautray; J.-L. Lions Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, 1990

[4] E. Fabes; M. Jodeit; N. Rivière Acta Math., 141 (1978), pp. 165-186

[5] V. Girault; P.-A. Raviart Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, 1986

[6] Grachev N.V., Maz'ya V.G., Linköping Univ. Research Report LiTH-MAT-R-91-50

[7] D. Jerison; C.E. Kenig J. Functional Anal., 130 (1995), pp. 161-219

[8] M. Mitrea; M. Taylor J. Functional Anal., 176 (2000), pp. 1-79

[9] G. Schwarz Hodge Decomposition – A Method for Solving Boundary Value Problems, LMN, 1607, Springer-Verlag, 1995

[10] G. Verchota J. Functional Anal., 59 (1984), pp. 572-611

  • Emilio Marmolejo-Olea; I. Mitrea; D. Mitrea; M. Mitrea Radiation conditions and integral representations for Clifford algebra-valued null-solutions of the Helmholtz operator, Journal of Mathematical Sciences (New York), Volume 231 (2018) no. 3, pp. 367-472 | DOI:10.1007/s10958-018-3826-9 | Zbl:1395.78015
  • M. Ballesteros; L. Menrath; Ma. de los Á. Sandoval-Romero; F. Torres-Ayala Besov and Triebel-Lizorkin regularity for the Hodge decomposition and applications to magnetic potentials, Journal of Mathematical Analysis and Applications, Volume 445 (2017) no. 1, pp. 532-555 | DOI:10.1016/j.jmaa.2016.07.070 | Zbl:1351.58002
  • W. Sprössig On Helmholtz decompositions and their generalizations - an overview, Mathematical Methods in the Applied Sciences, Volume 33 (2010) no. 4, pp. 374-383 | DOI:10.1002/mma.1212 | Zbl:1193.30071

Cité par 3 documents. Sources : zbMATH

Commentaires - Politique