[Sur les substitutions inversibles ayant deux points fixes]
On considère une substitution primitive ϕ sur l'alphabet {a,b} ayant deux points fixes ξa et ξb (commençant respectivement par a et b). Nous montrons que la substitution ϕ est inversible si et seulement si l'on a ξa=abξ et ξb=baξ.
Let ϕ be a primitive substitution on a two-letter alphabet {a,b} having two fixed points ξa and ξb. We show that the substitution ϕ is invertible if and only if one has ξa=abξ and ξb=baξ.
Accepté le :
Publié le :
Zhi-Xiong Wen 1 ; Zhi-Ying Wen 2 ; Jun Wu 1
@article{CRMATH_2002__334_9_727_0, author = {Zhi-Xiong Wen and Zhi-Ying Wen and Jun Wu}, title = {On invertible substitutions with two fixed points}, journal = {Comptes Rendus. Math\'ematique}, pages = {727--731}, publisher = {Elsevier}, volume = {334}, number = {9}, year = {2002}, doi = {10.1016/S1631-073X(02)02235-5}, language = {en}, }
Zhi-Xiong Wen; Zhi-Ying Wen; Jun Wu. On invertible substitutions with two fixed points. Comptes Rendus. Mathématique, Volume 334 (2002) no. 9, pp. 727-731. doi : 10.1016/S1631-073X(02)02235-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02235-5/
[1] Berstel J., Mot de Fibonacci, Séminaire d'informatique théorique, L.I.T.P., Paris, Année (1980/1981) 57–78
[2] Decomposition theorem for invertible substitution, Osaka J. Math., Volume 34 (1998), pp. 821-834
[3] Mignosi F., Ph.D. thesis, L.I.T.P., 92.01
[4] Morphismes sturmiens et règles de Rauzy, J. Théorie des Nombres de Bordeaux, Volume 5 (1993), pp. 221-233
[5] Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., Volume 78 (1918), pp. 385-397
[6] Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci., Volume 88 (1991), pp. 365-384
[7] Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris, Série I, Volume 318 (1994), pp. 299-304
[8] Some properties of the singular words of the Fibonacci word, European J. Combin., Volume 15 (1994), pp. 587-598
[9] Factor properties of infinite words generated by a class of invertible substitution, 5th Conference Formal Power Series and Algebraic Combinatorics, Florence, 1993, pp. 455-466
[10] Wen Z.-X., Wen Z.-Y., Wu J., Some properties of Fibonacci sequence, Preprint
Cité par Sources :
☆ Supported by the Special Funds for Major State Basic Research Projects of China and Morningside Center of Mathematics (CAS).
Commentaires - Politique