[Substitutions inversibles sur un alphabet de trois lettres]
Nous étudions la structure des substitutions inversibles sur un alphabet à trois lettres. Nous prouvons qu'il existe un ensemble fini de substitutions inversibles tel que toute substitution inversible puisse être écrite comme Iw∘σ1∘σ2∘⋯∘σk, où Iw est l'automorphisme intérieur associé à w et où pour 1⩽j⩽k. Comme conséquence, M est la matrice d'une substitution inversible si et seulement si elle est un produit fini de matrices élémentaires non-négatives.
We study the structure of invertible substitutions on a three-letter alphabet. We show that there exists a finite set of invertible substitutions such that any invertible substitution can be written as Iw∘σ1∘σ2∘⋯∘σk, where Iw is the inner automorphism associated with w, and for 1⩽j⩽k. As a consequence, M is the matrix of an invertible substitution if and only if it is a finite product of non-negative elementary matrices.
Accepté le :
Publié le :
Bo Tan 1 ; Zhi-Xiong Wen 1 ; Yiping Zhang 1
@article{CRMATH_2003__336_2_111_0, author = {Bo Tan and Zhi-Xiong Wen and Yiping Zhang}, title = {Invertible substitutions on a three-letter alphabet}, journal = {Comptes Rendus. Math\'ematique}, pages = {111--116}, publisher = {Elsevier}, volume = {336}, number = {2}, year = {2003}, doi = {10.1016/S1631-073X(02)00006-7}, language = {en}, }
Bo Tan; Zhi-Xiong Wen; Yiping Zhang. Invertible substitutions on a three-letter alphabet. Comptes Rendus. Mathématique, Volume 336 (2003) no. 2, pp. 111-116. doi : 10.1016/S1631-073X(02)00006-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)00006-7/
[1] P. Arnoux et al., Introduction to finite automata and substitution dynamical systems, in: Lecture Notes in Math., Springer-Verlag, to appear
[2] Pisot substitutions and Rauzy fractals, Journées Montoises d'Informatique Théorique (Marne-la-Vallée, 2000) (Bull. Belgian Math. Soc. Simon Stevin), Volume 8 (2001) no. 2, pp. 181-207
[3] Recent results in Sturmian words, Developments in Language Theory, II (Magdeburg, 1995), World Sci. Publishing, River Edge, NJ, 1996, pp. 13-24
[4] Uniform tag sequences, Math. System Theory, Volume 6 (1972), pp. 164-192
[5] Decomposition theorem for invertible substitution, Osaka J. Math., Volume 34 (1998), pp. 821-834
[6] M. Lothaire, Algebraic combinatorics on words, Cambridge University Press, 2002, to appear. Available at http://www-igm.univ-mlv.fr/~berstel/Lothaire
[7] Combinatorial Group Theory, Spring-Verlag, Berlin, 1977
[8] Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover, 1976
[9] Die Isomorphismen der freien Gruppen, Math. Ann., Volume 91 (1924), pp. 169-209
[10] Polynomês associées aux endomorphismes de groupes libres, Enseign. Math., Volume 39 (1993), pp. 153-175
[11] Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci., Volume 88 (1991), pp. 365-384
[12] Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris Sér. I Math., Volume 318 (1994), pp. 299-304
[13] Some properties of the singular words of the Fibonacci word, European J. Combin., Volume 15 (1994), pp. 587-598
[14] Invertible substitutions and local isomorphisms, C. R. Acad. Sci. Paris Sér. I Math., Volume 334 (2002), pp. 629-634
[15] Some remarks on invertible substitutions on three letter alphabet, Chinese Sci. Bull., Volume 44 (1999) no. 19, pp. 1755-1760
Cité par Sources :
☆ Research supported by NSFC and by the Special Funds for Major State Basic Research Projects of China.
Commentaires - Politique