[Décomposition de domaines sans superposition pour les équations de Stokes via une pénalisation dans l'interface]
Le but de cette Note est la réalisation d'une analyse théorique de la méthode de décomposition de domaines introduite par [2]. On motive et introduit une amélioration de cette méthode et on fait l'analyse lorsque'on l'applique à la résolution des équations de Stokes. Notre méthode est basée sur l'introduction d'un terme de pénalisation dans l'interface entre les sous-domaines, qui renforce les conditions appropiées de transmission. On peut voir cette méthode comme une variation de la méthode de Robin. On obtient un résultat de convergence forte pour la vitesse et la pression dans les normes standard H1 et L2, le taux de convergence et les estimations d'erreur. Ces estimations sont d'ordre optimal par rapport à précision de la l'interpolation. On finit avec quelques tests numériques.
The purpose of this Note is to perform a theoretical analysis of the domain decomposition method introduced in [2]. We motivate and introduce an improvement of this method and carry out the analysis when it is applied to solving the Stokes equations. Our method is based on a penalty term on the interface between subdomains that enforces the appropriate transmission conditions and may be seen as variation of the Robin method. We obtain strong convergence results for velocity and pressure in the standard H1 and L2 norms and precise rates of convergence, together with error estimates. These error estimates are of optimal order with respect to the precision of the interpolation. We conclude with some numerical tests.
Accepté le :
Publié le :
Tomás Chacón Rebollo 1 ; Eliseo Chacón Vera 1
@article{CRMATH_2002__334_3_221_0, author = {Tom\'as Chac\'on Rebollo and Eliseo Chac\'on Vera}, title = {A non-overlapping domain decomposition method for the {Stokes} equations via a penalty term on the interface}, journal = {Comptes Rendus. Math\'ematique}, pages = {221--226}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2002}, doi = {10.1016/S1631-073X(02)02249-5}, language = {en}, }
TY - JOUR AU - Tomás Chacón Rebollo AU - Eliseo Chacón Vera TI - A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface JO - Comptes Rendus. Mathématique PY - 2002 SP - 221 EP - 226 VL - 334 IS - 3 PB - Elsevier DO - 10.1016/S1631-073X(02)02249-5 LA - en ID - CRMATH_2002__334_3_221_0 ER -
%0 Journal Article %A Tomás Chacón Rebollo %A Eliseo Chacón Vera %T A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface %J Comptes Rendus. Mathématique %D 2002 %P 221-226 %V 334 %N 3 %I Elsevier %R 10.1016/S1631-073X(02)02249-5 %G en %F CRMATH_2002__334_3_221_0
Tomás Chacón Rebollo; Eliseo Chacón Vera. A non-overlapping domain decomposition method for the Stokes equations via a penalty term on the interface. Comptes Rendus. Mathématique, Volume 334 (2002) no. 3, pp. 221-226. doi : 10.1016/S1631-073X(02)02249-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02249-5/
[1] Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields, Comput. Methods Appl. Mech. Engrg., Volume 145 (1997) no. 3–4, pp. 361-379
[2] Overlapping domain decomposition of evolution operators, C. R. Acad. Sci. Paris, Serie I, Volume 330 (2000), pp. 937-942
[3] A nonoverlapping domain decomposition method for stabilized finite element approximations of the Oseen equations, J. Comput. Appl. Math., Volume 132 (2001) no. 2, pp. 211-236
[4] Iterative substructuring methods for spectral element discretizations of elliptic systems. II. Mixed methods for linear elasticity and Stokes flow, SIAM J. Numer. Anal., Volume 37 (2000) no. 2, pp. 375-402 (electronic)
Cité par Sources :
Commentaires - Politique