We show that a stochastic heat equation with multiplicative noise on a bounded domain can be stabilized by a control acting only on a subdomain if is sufficiently ‘thin’. We consider both linear and semilinear stochastic heat equations.
On démontre qu'une équation parabolique stochastique avec bruit multiplicatif sur un domaine peut être stabilisée par un contrôle agissant seulement sur un sous-domaine si est « assez petit ». On considère le cas des équations linéaires et celui des équations semi-linéaires.
Accepted:
Published online:
Viorel Barbu 1; Catalin Lefter 1; Gianmario Tessitore 2
@article{CRMATH_2002__334_4_311_0, author = {Viorel Barbu and Catalin Lefter and Gianmario Tessitore}, title = {A note on the stabilizability of stochastic heat equations with multiplicative noise}, journal = {Comptes Rendus. Math\'ematique}, pages = {311--316}, publisher = {Elsevier}, volume = {334}, number = {4}, year = {2002}, doi = {10.1016/S1631-073X(02)02259-8}, language = {en}, }
TY - JOUR AU - Viorel Barbu AU - Catalin Lefter AU - Gianmario Tessitore TI - A note on the stabilizability of stochastic heat equations with multiplicative noise JO - Comptes Rendus. Mathématique PY - 2002 SP - 311 EP - 316 VL - 334 IS - 4 PB - Elsevier DO - 10.1016/S1631-073X(02)02259-8 LA - en ID - CRMATH_2002__334_4_311_0 ER -
%0 Journal Article %A Viorel Barbu %A Catalin Lefter %A Gianmario Tessitore %T A note on the stabilizability of stochastic heat equations with multiplicative noise %J Comptes Rendus. Mathématique %D 2002 %P 311-316 %V 334 %N 4 %I Elsevier %R 10.1016/S1631-073X(02)02259-8 %G en %F CRMATH_2002__334_4_311_0
Viorel Barbu; Catalin Lefter; Gianmario Tessitore. A note on the stabilizability of stochastic heat equations with multiplicative noise. Comptes Rendus. Mathématique, Volume 334 (2002) no. 4, pp. 311-316. doi : 10.1016/S1631-073X(02)02259-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02259-8/
[1] V. Barbu, A. Răşcanu, G. Tessitore, Carleman estimates and controllability of linear stochastic heat equations, Preprint della Scuola Normale, Pisa, 2001
[2] V. Barbu, G. Tessitore, Considerations on the controllability of stochastic linear heat equations, in: G. Da Prato, L. Tubaro (Eds.), Stochastic Partial Differential Equations and Applications, Marcel Dekker, 2001 (to appear)
[3] Fractional-steps method for a class of SPDEs, Stochastic Process. Appl., Volume 73 (1998), pp. 1-45
[4] Optimal stationary control with state and control dependent noise, SIAM J. Control Optim., Volume 9 (1971), pp. 184-198
[5] A note on the stability of stochastic systems with unbounded perturbations, Stochastic Anal. Appl., Volume 7 (1989), pp. 426-434
[6] E. Pardoux, Equations aux dérivées partielles stochastiques nonlinéaires monotones, étude de solutions fortes du type Itô, Thèse, Paris-Sud, Orsay, 1975
[7] M. Sirbu, G. Tessitore, Null controllability of an infinite dimensional SDE with state and control-dependent noise, Preprint, DIMA-Università di Genova, 1999
[8] Some remarks on the mean square stabilizability of a linear SPDE, Dynamic Systems Appl., Volume 2 (1993), pp. 251-266
[9] Feedback stabilizability for stochastic systems with state and control depending noise, Automatica, Volume 12 (1976), pp. 277-283
Cited by Sources:
Comments - Policy