Comptes Rendus
On some infinite sums of integer valued Dirac's masses
[Sur certaines sommes infinies de masses de Dirac entières]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 371-374.

On donne une démonstration simple d'un résultat obtenu par Bourgain, Brezis et Mironescu [2] concernant certains déterminants jacobiens singuliers. La preuve utilise la relation forte du problème avec les théoremes de rectifiabilité du bord en théorie géometrique de la mesure. Un problème intéressant reste ouvert.

We give a simple proof of a result obtained by Bourgain, Brezis and Mironescu [2] concerning special distributions arising as singular Jacobian determinants. The strong relation of the problem with boundary rectifiability theorems is discussed, and an interesting question remains open.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02270-7

Didier Smets 1

1 Laboratoire d'analyse numerique, Université Pierre et Marie Curie, boite Courrier 187, 75252 Paris cedex 05, France
@article{CRMATH_2002__334_5_371_0,
     author = {Didier Smets},
     title = {On some infinite sums of integer valued {Dirac's} masses},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {371--374},
     publisher = {Elsevier},
     volume = {334},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02270-7},
     language = {en},
}
TY  - JOUR
AU  - Didier Smets
TI  - On some infinite sums of integer valued Dirac's masses
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 371
EP  - 374
VL  - 334
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02270-7
LA  - en
ID  - CRMATH_2002__334_5_371_0
ER  - 
%0 Journal Article
%A Didier Smets
%T On some infinite sums of integer valued Dirac's masses
%J Comptes Rendus. Mathématique
%D 2002
%P 371-374
%V 334
%N 5
%I Elsevier
%R 10.1016/S1631-073X(02)02270-7
%G en
%F CRMATH_2002__334_5_371_0
Didier Smets. On some infinite sums of integer valued Dirac's masses. Comptes Rendus. Mathématique, Volume 334 (2002) no. 5, pp. 371-374. doi : 10.1016/S1631-073X(02)02270-7. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02270-7/

[1] L. Ambrosio; B. Kirchheim Currents in metric spaces, Acta Math., Volume 185 (2000) no. 1, pp. 1-80

[2] J. Bourgain; H. Brezis; P. Mironescu On the structure of the Sobolev space H1/2 with values into the circle, C. R. Acad. Sci. Paris, Sér. I, Volume 331 (2000) no. 2, pp. 119-124

[3] H. Brezis; J.-M. Coron; E. Lieb Harmonic maps with defects, Comm. Math. Phys., Volume 7 (1986), pp. 649-705

[4] H. Federer Geometric Measure Theory, Springer-Verlag, Berlin, 1969

[5] R.L. Jerrard; H.M. Soner Rectifiability of the distributional Jacobian for a class of functions, C. R. Acad. Sci. Paris, Sér. I, Volume 329 (1999) no. 8, pp. 683-688

[6] R.L. Jerrard, H.M. Soner, Functions of bounded higher variation, Preprint, 1999

[7] T. Rivière Dense subsets of H1/2(S2,S1), Ann. Global Anal. Geom., Volume 18 (2000) no. 5, pp. 517-528

Cité par Sources :

Commentaires - Politique