[Sur les distributions de la forme ∑i(δpi−δni)]
On présente quelques propriétés sur les distributions T de la forme ∑i(δpi−δni), avec ∑id(pi,ni)<∞, qui interviennent dans le problème de Ginzburg–Landau en 3-d étudié par Bourgain, Brezis et Mironescu (C. R. Acad. Sci. Paris, Ser. I 331 (2000) 119–124). Même dans un cadre plus général, ces formes linéaires ont toujours une représentation irréductible. Notre approche permet aussi de montrer que T est une mesure si et seulement si T peut être écrite comme une somme finie de masses de Dirac, ce qui généralise un résultat de Smets (C. R. Acad. Sci. Paris, Ser. I 334 (2002) 371–374).
We present some properties of the distributions of the form T=∑i(δpi−δni), with ∑id(pi,ni)<∞, which arise in the 3-d Ginzburg–Landau problem studied by Bourgain, Brezis and Mironescu (C. R. Acad. Sci. Paris, Ser. I 331 (2000) 119–124). We show that there always exists an irreducible representation of T. We also extend a result of Smets (C. R. Acad. Sci. Paris, Ser. I 334 (2002) 371–374) which says that T is a measure iff T can be written as a finite sum of dipoles.
Publié le :
Augusto C. Ponce 1, 2
@article{CRMATH_2003__336_7_571_0, author = {Augusto C. Ponce}, title = {On the distributions of the form \ensuremath{\sum}\protect\textsubscript{\protect\emph{i}}(\protect\emph{\ensuremath{\delta}}\protect\textsubscript{\protect\emph{p}\protect\textsubscript{\protect\emph{i}}}\ensuremath{-}\protect\emph{\ensuremath{\delta}}\protect\textsubscript{\protect\emph{n}\protect\textsubscript{\protect\emph{i}}})}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--576}, publisher = {Elsevier}, volume = {336}, number = {7}, year = {2003}, doi = {10.1016/S1631-073X(03)00133-X}, language = {en}, }
Augusto C. Ponce. On the distributions of the form ∑i(δpi−δni). Comptes Rendus. Mathématique, Volume 336 (2003) no. 7, pp. 571-576. doi : 10.1016/S1631-073X(03)00133-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00133-X/
[1] On the structure of the Sobolev space H1/2 with values into the circle, C. R. Acad. Sci. Paris, Ser. I, Volume 331 (2000), pp. 119-124
[2] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, to appear
[3] Liquid crystals and energy estimates for S2-valued maps, Theory and Applications of Liquid Crystals, Minneapolis, MN, 1985, IMA Vol. Math. Appl., 5, Springer, New York, 1987, pp. 31-52
[4] H. Brezis, The interplay between analysis and topology in some nonlinear PDE's, Bull. Amer. Math. Soc., to appear
[5] Harmonic maps with defects, Comm. Math. Phys., Volume 107 (1986), pp. 649-705
[6] A.C. Ponce, On the distributions of the form ∑i(δpi−δni), to appear
[7] On some infinite sums of integer valued Dirac's masses, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 371-374
Cité par Sources :
Commentaires - Politique