[Une note sur les théorèmes inverses de GL2]
Weil's well-known converse theorem shows that modular forms
Le théorème bien connu de Weil montre que les formes modulaires
Accepté le :
Publié le :
A. Diaconu 1 ; A. Perelli 2 ; A. Zaharescu 3
@article{CRMATH_2002__334_8_621_0, author = {A. Diaconu and A. Perelli and A. Zaharescu}, title = {A note on {GL\protect\textsubscript{2}} converse theorems}, journal = {Comptes Rendus. Math\'ematique}, pages = {621--624}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02277-X}, language = {en}, }
A. Diaconu; A. Perelli; A. Zaharescu. A note on GL2 converse theorems. Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 621-624. doi : 10.1016/S1631-073X(02)02277-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02277-X/
[1] An extension of Hecke's converse theorem, Internat. Math. Res. Notices (1995), pp. 445-463
[2] Sieve Methods, Academic Press, 1974
[3] Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3), Volume 64 (1992), pp. 265-338
[4] Topics in Classical Automorphic Forms, American Mathematical Society, 1997
[5] Über die Bestimmung Dirichletscher Reihen durch Funktionengleichungen, Math. Ann., Volume 168 (1967), pp. 149-156
Cité par Sources :
Commentaires - Politique