[Hamiltoniens anisotropes asymptotiquement périodiques]
We construct a -algebra proper to an anisotropic asymptotically periodic quantum system and we compute its quotient by the algebra of compact operators. We describe then the self-adjoint operators affiliated to and their essential spectrum.
Nous construisons une -algèbre adaptée au traitement des systèmes quantiques anisotropes asymptotiquement périodiques et nous calculons son quotient par l'algèbre des opérateurs compacts. Nous décrivons alors les opérateurs auto-adjoints affiliés à et leurs spectres essentiels.
Accepté le :
Publié le :
Olivier Rodot 1
@article{CRMATH_2002__334_7_575_0,
author = {Olivier Rodot},
title = {On a class of anisotropic asymptotically periodic {Hamiltonians}},
journal = {Comptes Rendus. Math\'ematique},
pages = {575--579},
year = {2002},
publisher = {Elsevier},
volume = {334},
number = {7},
doi = {10.1016/S1631-073X(02)02301-4},
language = {en},
}
Olivier Rodot. On a class of anisotropic asymptotically periodic Hamiltonians. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 575-579. doi: 10.1016/S1631-073X(02)02301-4
[1] Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys., Volume 52 (1928), pp. 555-600
[2] M. Damak, V. Georgescu, -algebras related to the N-body problem and the self-adjoint operators affiliated to them, available as preprint 99-482 at http://www.ma.utexas.edu/mp_arc/
[3] Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys., Volume 63 (1978), pp. 277-301
[4] Expansion in eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR, Volume 73 (1950), pp. 1117-1120 (in Russian)
[5] V. Georgescu, A. Iftimovici, -algebras and spectral analysis of quantum systems, in: Proceedings of the OAMP Conference, Constanta, 2001, to appear
[6] V. Georgescu, A. Iftimovici, -algebras of energy observables, Preprint 9/2001, Université de Cergy-Pontoise, pp. 1–120, also available at http://www.ma.utexas.edu/mp_arc
[7] Scattering for step-periodic potentials in one dimension, J. Math. Phys., Volume 31 (1990) no. 9, pp. 2181-2191
[8] Eigenfunction Expansions Associated with Second Order Differential Equations, Clarendon Press, Oxford, 1962
Cité par Sources :
Commentaires - Politique
