Nous montrons que pour tout caractère de Dirichlet χ pair, primitif et de conducteur qχ>1 impair, nous avons
We prove that for any even primitive Dirichlet character χ of odd conductor qχ>1 we have
Révisé le :
Publié le :
Stéphane R. Louboutin 1
@article{CRMATH_2002__334_8_625_0, author = {St\'ephane R. Louboutin}, title = {Majorations explicites de {|\protect\emph{L}(1,\protect\emph{\ensuremath{\chi}})|} (quatri\`eme partie)}, journal = {Comptes Rendus. Math\'ematique}, pages = {625--628}, publisher = {Elsevier}, volume = {334}, number = {8}, year = {2002}, doi = {10.1016/S1631-073X(02)02333-6}, language = {fr}, }
Stéphane R. Louboutin. Majorations explicites de |L(1,χ)| (quatrième partie). Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 625-628. doi : 10.1016/S1631-073X(02)02333-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02333-6/
[1] Upper bounds for class numbers of real quadratic fields, Acta Arith., Volume 68 (1994), pp. 141-144
[2] Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math., Volume 419 (1991), pp. 213-219
[3] Majorations explicites de |L(1,χ)|, C. R. Acad. Sci. Paris, Volume 316 (1993), pp. 11-14
[4] Majorations explicites de |L(1,χ)| (troisième partie), C. R. Acad. Sci. Paris, Volume 332 (2001), pp. 95-98
[5] Explicit upper bounds for |L(1,χ)| for primitive even Dirichlet characters, Acta Arith., Volume 101 (2002), pp. 1-18
[6] S. Louboutin, Explicit lower bounds for residues at s=1 of Dedekind zeta functions and relative class numbers of CM-fields, Preprint, submitted
[7] Approximate formulae for L(1,χ), Acta Arith., Volume 100 (2001), pp. 245-256
[8] An upper bound for the period of the simple continued fraction for
- Upper bounds on
taking into account a finite set of prime ideals, Acta Arithmetica, Volume 182 (2018) no. 3, pp. 249-269 | DOI:10.4064/aa170426-23-10 | Zbl:1422.11230 - Security analysis of cryptosystems using short generators over ideal lattices, Japan Journal of Industrial and Applied Mathematics, Volume 35 (2018) no. 2, pp. 739-771 | DOI:10.1007/s13160-018-0306-z | Zbl:1404.94103
- On Analysis of Recovering Short Generator Problems via Upper and Lower Bounds of Dirichlet L-Functions: Part 1, Mathematical Modelling for Next-Generation Cryptography, Volume 29 (2018), p. 257 | DOI:10.1007/978-981-10-5065-7_14
- On Analysis of Recovering Short Generator Problems via Upper and Lower Bounds of Dirichlet L-functions: Part 2, Mathematical Modelling for Next-Generation Cryptography, Volume 29 (2018), p. 279 | DOI:10.1007/978-981-10-5065-7_15
- Upper bounds on
taking into account ramified prime ideals, Journal of Number Theory, Volume 177 (2017), pp. 60-72 | DOI:10.1016/j.jnt.2017.01.010 | Zbl:1428.11200 - The First Years, Rational Number Theory in the 20th Century (2012), p. 13 | DOI:10.1007/978-0-85729-532-3_2
- Upper bounds for residues of Dedekind zeta functions and class numbers of cubic and quartic number fields, Mathematics of Computation, Volume 80 (2011) no. 275, pp. 1813-1822 | DOI:10.1090/s0025-5718-2011-02457-9 | Zbl:1282.11150
- Approximate formulae for
. II, Acta Arithmetica, Volume 112 (2004) no. 2, pp. 141-149 | DOI:10.4064/aa112-2-4 | Zbl:1053.11073 - Explicit upper bounds for values at
of Dirichlet -series associated with primitive even characters., Journal of Number Theory, Volume 104 (2004) no. 1, pp. 118-131 | DOI:10.1016/s0022-314x(03)00159-8 | Zbl:1044.11082 - Explicit lower bounds for residues at
of Dedekind zeta functions and relative class numbers of CM-fields, Transactions of the American Mathematical Society, Volume 355 (2003) no. 8, pp. 3079-3098 | DOI:10.1090/s0002-9947-03-03313-0 | Zbl:1026.11085 - Class number bounds and Catalan's equation, Mathematics of Computation, Volume 67 (1998) no. 223, pp. 1317-1322 | DOI:10.1090/s0025-5718-98-00966-1 | Zbl:0897.11009
- Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents ≤2, Mathematics of Computation, Volume 64 (1995) no. 209, p. 323 | DOI:10.1090/s0025-5718-1995-1248972-6
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier