Comptes Rendus
Majorations explicites de |L(1,χ)| (quatrième partie)
Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 625-628.

Nous montrons que pour tout caractère de Dirichlet χ pair, primitif et de conducteur qχ>1 impair, nous avons (1-χ(2)2)L(1,χ)14(logqχ+κ) avec κ :=2+γ−log(π/4)=2.81878….

We prove that for any even primitive Dirichlet character χ of odd conductor qχ>1 we have (1-χ(2)2)L(1,χ)14(logqχ+κ), where κ:=2+γ−log(π/4)=2.81878….

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02333-6

Stéphane R. Louboutin 1

1 Institut de mathématiques de Luminy, UPR 9016, 163 avenue de Luminy, case 907, 13288 Marseille cedex 9, France
@article{CRMATH_2002__334_8_625_0,
     author = {St\'ephane R. Louboutin},
     title = {Majorations explicites de {|\protect\emph{L}(1,\protect\emph{\ensuremath{\chi}})|} (quatri\`eme partie)},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {625--628},
     publisher = {Elsevier},
     volume = {334},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02333-6},
     language = {fr},
}
TY  - JOUR
AU  - Stéphane R. Louboutin
TI  - Majorations explicites de |L(1,χ)| (quatrième partie)
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 625
EP  - 628
VL  - 334
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02333-6
LA  - fr
ID  - CRMATH_2002__334_8_625_0
ER  - 
%0 Journal Article
%A Stéphane R. Louboutin
%T Majorations explicites de |L(1,χ)| (quatrième partie)
%J Comptes Rendus. Mathématique
%D 2002
%P 625-628
%V 334
%N 8
%I Elsevier
%R 10.1016/S1631-073X(02)02333-6
%G fr
%F CRMATH_2002__334_8_625_0
Stéphane R. Louboutin. Majorations explicites de |L(1,χ)| (quatrième partie). Comptes Rendus. Mathématique, Volume 334 (2002) no. 8, pp. 625-628. doi : 10.1016/S1631-073X(02)02333-6. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02333-6/

[1] M. Le Upper bounds for class numbers of real quadratic fields, Acta Arith., Volume 68 (1994), pp. 141-144

[2] S. Louboutin Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal, J. Reine Angew. Math., Volume 419 (1991), pp. 213-219

[3] S. Louboutin Majorations explicites de |L(1,χ)|, C. R. Acad. Sci. Paris, Volume 316 (1993), pp. 11-14

[4] S. Louboutin Majorations explicites de |L(1,χ)| (troisième partie), C. R. Acad. Sci. Paris, Volume 332 (2001), pp. 95-98

[5] S. Louboutin Explicit upper bounds for |L(1,χ)| for primitive even Dirichlet characters, Acta Arith., Volume 101 (2002), pp. 1-18

[6] S. Louboutin, Explicit lower bounds for residues at s=1 of Dedekind zeta functions and relative class numbers of CM-fields, Preprint, submitted

[7] O. Ramaré Approximate formulae for L(1,χ), Acta Arith., Volume 100 (2001), pp. 245-256

[8] R.G. Stanton; C. Sudler; H.C. Williams An upper bound for the period of the simple continued fraction for D, Pacific J. Math., Volume 67 (1976), pp. 525-536

  • Stéphane R. Louboutin Upper bounds on L(1,χ) taking into account a finite set of prime ideals, Acta Arithmetica, Volume 182 (2018) no. 3, pp. 249-269 | DOI:10.4064/aa170426-23-10 | Zbl:1422.11230
  • Shinya Okumura; Shingo Sugiyama; Masaya Yasuda; Tsuyoshi Takagi Security analysis of cryptosystems using short generators over ideal lattices, Japan Journal of Industrial and Applied Mathematics, Volume 35 (2018) no. 2, pp. 739-771 | DOI:10.1007/s13160-018-0306-z | Zbl:1404.94103
  • Shingo Sugiyama On Analysis of Recovering Short Generator Problems via Upper and Lower Bounds of Dirichlet L-Functions: Part 1, Mathematical Modelling for Next-Generation Cryptography, Volume 29 (2018), p. 257 | DOI:10.1007/978-981-10-5065-7_14
  • Shinya Okumura On Analysis of Recovering Short Generator Problems via Upper and Lower Bounds of Dirichlet L-functions: Part 2, Mathematical Modelling for Next-Generation Cryptography, Volume 29 (2018), p. 279 | DOI:10.1007/978-981-10-5065-7_15
  • Stéphane R. Louboutin Upper bounds on L(1,χ) taking into account ramified prime ideals, Journal of Number Theory, Volume 177 (2017), pp. 60-72 | DOI:10.1016/j.jnt.2017.01.010 | Zbl:1428.11200
  • Władysław Narkiewicz The First Years, Rational Number Theory in the 20th Century (2012), p. 13 | DOI:10.1007/978-0-85729-532-3_2
  • Stéphane R. Louboutin Upper bounds for residues of Dedekind zeta functions and class numbers of cubic and quartic number fields, Mathematics of Computation, Volume 80 (2011) no. 275, pp. 1813-1822 | DOI:10.1090/s0025-5718-2011-02457-9 | Zbl:1282.11150
  • Olivier Ramaré Approximate formulae for L(1,χ). II, Acta Arithmetica, Volume 112 (2004) no. 2, pp. 141-149 | DOI:10.4064/aa112-2-4 | Zbl:1053.11073
  • Stéphane R. Louboutin Explicit upper bounds for values at s=1 of Dirichlet L-series associated with primitive even characters., Journal of Number Theory, Volume 104 (2004) no. 1, pp. 118-131 | DOI:10.1016/s0022-314x(03)00159-8 | Zbl:1044.11082
  • Stéphane Louboutin Explicit lower bounds for residues at s=1 of Dedekind zeta functions and relative class numbers of CM-fields, Transactions of the American Mathematical Society, Volume 355 (2003) no. 8, pp. 3079-3098 | DOI:10.1090/s0002-9947-03-03313-0 | Zbl:1026.11085
  • Ray Steiner Class number bounds and Catalan's equation, Mathematics of Computation, Volume 67 (1998) no. 223, pp. 1317-1322 | DOI:10.1090/s0025-5718-98-00966-1 | Zbl:0897.11009
  • Stéphane Louboutin Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents ≤2, Mathematics of Computation, Volume 64 (1995) no. 209, p. 323 | DOI:10.1090/s0025-5718-1995-1248972-6

Cité par 12 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: