[Régularité Hölder–Sobolev des solutions d'une classe d'E.D.P.S. dirigées par un bruit coloré]
Dans cette Note nous présentons des résultats nouveaux concernant l'équivalence, l'existence et la régularité spatio–temporelle conjointe de diverses notions de solution relatives à une classe d'équations aux dérivées partielles stochastiques semilinéaires non autonomes définies dans un ouvert régulier borné convexe
In this Note we present new results regarding the equivalence, the existence and the joint space–time regularity properties of various notions of solution to a class of non-autonomous, semilinear, stochastic partial differential equations defined on a smooth, bounded, convex domain
Accepté le :
Publié le :
Marta Sanz-Solé 1 ; Pierre-A. Vuillermot 2
@article{CRMATH_2002__334_10_869_0, author = {Marta Sanz-Sol\'e and Pierre-A. Vuillermot}, title = {H\"older{\textendash}Sobolev regularity of solutions to a class of {SPDE's} driven by a spatially colored noise}, journal = {Comptes Rendus. Math\'ematique}, pages = {869--874}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02359-2}, language = {en}, }
TY - JOUR AU - Marta Sanz-Solé AU - Pierre-A. Vuillermot TI - Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise JO - Comptes Rendus. Mathématique PY - 2002 SP - 869 EP - 874 VL - 334 IS - 10 PB - Elsevier DO - 10.1016/S1631-073X(02)02359-2 LA - en ID - CRMATH_2002__334_10_869_0 ER -
%0 Journal Article %A Marta Sanz-Solé %A Pierre-A. Vuillermot %T Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise %J Comptes Rendus. Mathématique %D 2002 %P 869-874 %V 334 %N 10 %I Elsevier %R 10.1016/S1631-073X(02)02359-2 %G en %F CRMATH_2002__334_10_869_0
Marta Sanz-Solé; Pierre-A. Vuillermot. Hölder–Sobolev regularity of solutions to a class of SPDE's driven by a spatially colored noise. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 869-874. doi : 10.1016/S1631-073X(02)02359-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02359-2/
[1] Stochastic differential equations in Hilbert spaces, Banach Center Publ., Volume 5 (1979), pp. 53-73
[2] Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D. E's, Electronic J. Probab., Volume 4 (1999), pp. 1-29
[3] Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992
[4] Solutions of evolution equations in Hilbert space, J. Differential Equations, Volume 68 (1987), pp. 299-319
[5] Investigation of the Green matrix for a homogeneous parabolic boundary value problem, Trans. Moscow Math. Soc., Volume 23 (1970), pp. 179-242
[6] Stochastic evolution equations, J. Soviet Math., Volume 16 (1981), pp. 1233-1277
[7] Stochastic evolution equations with respect to semimartingales in Hilbert space, Stochastics, Volume 27 (1989), pp. 1-21
[8] O. Lévêque, Hyperbolic stochastic partial differential equations driven by boundary noises, Thèse EPFL 2452, Lausanne, 2001
[9] E. Pardoux, Équations aux dérivées partielles stochastiques nonlinéaires monotones : Étude de solutions fortes de type Itô, Thèse de l'Université Paris–Orsay 1556, Paris, 1975
[10] Nonlinear stochastic wave and heat equations, Probab. Theory Related Fields, Volume 116 (2000), pp. 421-443
[11] M. Sanz-Solé, P.-A. Vuillermot, Equivalence and Hölder–Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations, 2002, in preparation
[12] An introduction to stochastic partial differential equations, École d'Été de Probabilités de Saint-Flour XIV, Lecture Notes in Math., 1180, Springer, New York, 1986, pp. 265-439
- On temporal regularity of stochastic convolutions in
-smooth Banach spaces, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 56 (2020) no. 3, pp. 1792-1808 | DOI:10.1214/19-aihp1017 | Zbl:1483.60058 - Non-autonomous stochastic evolution equations and applications to stochastic partial differential equations, Journal of Evolution Equations, Volume 10 (2010) no. 1, pp. 85-127 | DOI:10.1007/s00028-009-0041-7 | Zbl:1239.60062
- Non-random invariant sets for some systems of parabolic stochastic partial differential equations, Stochastic Analysis and Applications, Volume 22 (2004) no. 6, pp. 1421-1486 | DOI:10.1081/sap-200029487 | Zbl:1065.60076
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique