[Présentations pour les monoı̈des de tresses duaux]
Birman, Ko et Lee ont introduit un nouveau monoı̈ de —avec une présentation explicite—dont le groupe de fractions est le groupe des tresses à n brins. Suivant une nouvelle approche proposée avec Digne et Michel, Bessis a défini un monoı̈ de de tresses dual pour tout groupe d'Artin–Tits de type de Coxeter fini généralisant le cas du type A. Ici, nous donnons une présentation explicite de ce monoı̈de de tresses dual pour les groupes d'Artin–Tits de type B et D, et nous étudions la combinatoire des structures de Garside sous-jacentes.
Birman, Ko and Lee have introduced a new monoid —with an explicit presentation—whose group of fractions is the n-strand braid group . Building on a new approach by Digne, Michel and himself, Bessis has defined a dual braid monoid for every finite Coxeter type Artin–Tits group extending the type A case. Here, we give an explicit presentation for this dual braid monoid in the case of types B and D, and we study the combinatorics of the underlying Garside structures.
Publié le :
Matthieu Picantin 1
@article{CRMATH_2002__334_10_843_0, author = {Matthieu Picantin}, title = {Explicit presentations for the dual braid monoids}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--848}, publisher = {Elsevier}, volume = {334}, number = {10}, year = {2002}, doi = {10.1016/S1631-073X(02)02370-1}, language = {en}, }
Matthieu Picantin. Explicit presentations for the dual braid monoids. Comptes Rendus. Mathématique, Volume 334 (2002) no. 10, pp. 843-848. doi : 10.1016/S1631-073X(02)02370-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02370-1/
[1] D. Allcock, Braid pictures for Artin groups, ArXiv:math.GT/9907194, Trans. Amer. Math. Soc., to appear
[2] A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998), pp. 322-353
[3] D. Bessis, The dual braid monoid, ArXiv:math.GR/0101158
[4] D. Bessis, F. Digne, J. Michel, Springer theory in braid groups and the Birman–Ko–Lee monoid, ArXiv:math.GR/0010254
[5] T. Brady, C. Watt, K(π,1)'s for Artin groups of finite type, ArXiv:math.GR/0102078, Geom. Dedicata, to appear
[6] Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271
[7] R. Charney, J. Meier, K. Whittlesey, Bestvina's normal form complex and the homology of Garside groups, ArXiv:math.GR/0202228
[8] R. Corran, Personal communication
[9] Braids and Self-Distributivity, Progress in Math., 192, Birkhäuser, 2000
[10] P. Dehornoy, Groupes de Garside, ArXiv:math.GR/0111157, Ann. Sci. École Norm. Sup., to appear
[11] P. Dehornoy, Complete positive group presentations, ArXiv:math.GR/0111275
[12] Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc., Volume 79 (1999) no. 3, pp. 569-604
[13] P. Dehornoy, Y. Lafont, Homology of Gaussian groups, ArXiv:math.GR/0111231
[14] Les immeubles des groupes de tresses généralisés, Invent. Math., Volume 17 (1972), pp. 273-302
[15] The braid group and other groups, Quart. J. Math. Oxford, Volume 20 (1969), pp. 235-254
[16] The conjugacy problem in small Gaussian groups, Comm. Algebra, Volume 29 (2001) no. 3, pp. 1021-1039
[17] The center of thin Gaussian groups, J. Algebra, Volume 245 (2001) no. 1, pp. 92-122
[18] M. Picantin, Petits groupes gaussiens, Ph.D. thesis, Université de Caen, 2000
[19] Non-crossing partitions for classical reflection groups, Disc. Math., Volume 177 (1997), pp. 195-222
[20] The GAP Group, GAP – Groups, Algorithms, and Programming, V.4.2, 2000, http://www.gap-system.org
Cité par Sources :
Commentaires - Politique