[La théorie Föppl–von Kármán des plaques comme Γ-limite de l'élasticité non linéaire]
Nous montrons que la théorie Föppl–von Kármán des plaques émerge comme Γ-limite de la théorie de l'élasticité tridimensionnelle. La démonstration repose sur une generalisation aux derivées d'ordre supérieur de notre résultat de rigidité [5] que pour des fonctions , la distance L2 de ∇v à une rotation est bornée par un multiple de la distance L2 à l'ensemble SO(3) des rotations.
We show that the Föppl–von Kármán theory arises as a low energy Γ-limit of three-dimensional nonlinear elasticity. A key ingredient in the proof is a generalization to higher derivatives of our rigidity result [5] that for maps , the L2 distance of ∇v from a single rotation is bounded by a multiple of the L2 distance from the set SO(3) of all rotations.
Accepté le :
Publié le :
Gero Friesecke 1 ; Richard D. James 2 ; Stefan Müller 3
@article{CRMATH_2002__335_2_201_0, author = {Gero Friesecke and Richard~D. James and Stefan M\"uller}, title = {The {F\"oppl{\textendash}von} {K\'arm\'an} plate theory as a low energy {\protect\emph{\ensuremath{\Gamma}}-limit} of nonlinear elasticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {201--206}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02388-9}, language = {en}, }
TY - JOUR AU - Gero Friesecke AU - Richard D. James AU - Stefan Müller TI - The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity JO - Comptes Rendus. Mathématique PY - 2002 SP - 201 EP - 206 VL - 335 IS - 2 PB - Elsevier DO - 10.1016/S1631-073X(02)02388-9 LA - en ID - CRMATH_2002__335_2_201_0 ER -
%0 Journal Article %A Gero Friesecke %A Richard D. James %A Stefan Müller %T The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity %J Comptes Rendus. Mathématique %D 2002 %P 201-206 %V 335 %N 2 %I Elsevier %R 10.1016/S1631-073X(02)02388-9 %G en %F CRMATH_2002__335_2_201_0
Gero Friesecke; Richard D. James; Stefan Müller. The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 201-206. doi : 10.1016/S1631-073X(02)02388-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02388-9/
[1] Nonlinear Problems of Elasticity, Springer, New York, 1995
[2] Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptotic Anal., Volume 9 (1994), pp. 61-100
[3] Mathematical Elasticity II – Theory of Plates, Elsevier, Amsterdam, 1997
[4] A justification of nonlinear properly invariant plate theories, Arch. Rational Mech. Anal., Volume 124 (1993), pp. 157-199
[5] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Série I, Volume 334 (2002), pp. 173-178
[6] G. Friesecke, R.D. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., to appear
[7] Le modéle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle, C. R. Acad. Sci. Paris, Série I, Volume 317 (1993), pp. 221-226
[8] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578
[9] A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927
[10] Des poutres flexibles aux fils extensibles : une hiérachie de modèles asymptotiques, C. R. Acad. Sci. Paris, Série IIb, Volume 326 (1998), pp. 79-84
[11] R. Monneau, Justification of nonlinear Kirchhoff–Love theory of plates as the application of a new singular inverse method, Preprint, 2001
[12] Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 587-592
[13] A. Raoult, Personal communication
Cité par Sources :
Commentaires - Politique