[La théorie Föppl–von Kármán des plaques comme Γ-limite de l'élasticité non linéaire]
We show that the Föppl–von Kármán theory arises as a low energy Γ-limit of three-dimensional nonlinear elasticity. A key ingredient in the proof is a generalization to higher derivatives of our rigidity result [5] that for maps
Nous montrons que la théorie Föppl–von Kármán des plaques émerge comme Γ-limite de la théorie de l'élasticité tridimensionnelle. La démonstration repose sur une generalisation aux derivées d'ordre supérieur de notre résultat de rigidité [5] que pour des fonctions
Accepté le :
Publié le :
Gero Friesecke 1 ; Richard D. James 2 ; Stefan Müller 3
@article{CRMATH_2002__335_2_201_0, author = {Gero Friesecke and Richard~D. James and Stefan M\"uller}, title = {The {F\"oppl{\textendash}von} {K\'arm\'an} plate theory as a low energy {\protect\emph{\ensuremath{\Gamma}}-limit} of nonlinear elasticity}, journal = {Comptes Rendus. Math\'ematique}, pages = {201--206}, publisher = {Elsevier}, volume = {335}, number = {2}, year = {2002}, doi = {10.1016/S1631-073X(02)02388-9}, language = {en}, }
TY - JOUR AU - Gero Friesecke AU - Richard D. James AU - Stefan Müller TI - The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity JO - Comptes Rendus. Mathématique PY - 2002 SP - 201 EP - 206 VL - 335 IS - 2 PB - Elsevier DO - 10.1016/S1631-073X(02)02388-9 LA - en ID - CRMATH_2002__335_2_201_0 ER -
%0 Journal Article %A Gero Friesecke %A Richard D. James %A Stefan Müller %T The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity %J Comptes Rendus. Mathématique %D 2002 %P 201-206 %V 335 %N 2 %I Elsevier %R 10.1016/S1631-073X(02)02388-9 %G en %F CRMATH_2002__335_2_201_0
Gero Friesecke; Richard D. James; Stefan Müller. The Föppl–von Kármán plate theory as a low energy Γ-limit of nonlinear elasticity. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 201-206. doi : 10.1016/S1631-073X(02)02388-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02388-9/
[1] Nonlinear Problems of Elasticity, Springer, New York, 1995
[2] Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptotic Anal., Volume 9 (1994), pp. 61-100
[3] Mathematical Elasticity II – Theory of Plates, Elsevier, Amsterdam, 1997
[4] A justification of nonlinear properly invariant plate theories, Arch. Rational Mech. Anal., Volume 124 (1993), pp. 157-199
[5] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Série I, Volume 334 (2002), pp. 173-178
[6] G. Friesecke, R.D. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., to appear
[7] Le modéle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle, C. R. Acad. Sci. Paris, Série I, Volume 317 (1993), pp. 221-226
[8] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578
[9] A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 1927
[10] Des poutres flexibles aux fils extensibles : une hiérachie de modèles asymptotiques, C. R. Acad. Sci. Paris, Série IIb, Volume 326 (1998), pp. 79-84
[11] R. Monneau, Justification of nonlinear Kirchhoff–Love theory of plates as the application of a new singular inverse method, Preprint, 2001
[12] Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 587-592
[13] A. Raoult, Personal communication
- An essay on deformation measures in isotropic thin shell theories: Bending versus curvature, Mathematics and Mechanics of Solids, Volume 30 (2025) no. 6, p. 1393 | DOI:10.1177/10812865241269725
- Dimension reduction and homogenization of composite plate with matrix pre-strain, Asymptotic Analysis, Volume 138 (2024) no. 4, p. 255 | DOI:10.3233/asy-241896
- Numerical approximations of thin structure deformations, Comptes Rendus. Mécanique, Volume 351 (2024) no. S1, p. 181 | DOI:10.5802/crmeca.201
- A Geometrically Nonlinear Cosserat (Micropolar) Curvy Shell Model Via Gamma Convergence, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09906-0
- Minimal energy configurations of bilayer plates as a polynomial optimization problem, Nonlinear Analysis, Volume 231 (2023), p. 113034 | DOI:10.1016/j.na.2022.113034
- An atomistic derivation of von-Kármán plate theory, Networks and Heterogeneous Media, Volume 17 (2022) no. 4, p. 613 | DOI:10.3934/nhm.2022019
- Distributed Branch Points and the Shape of Elastic Surfaces with Constant Negative Curvature, Journal of Nonlinear Science, Volume 31 (2021) no. 1 | DOI:10.1007/s00332-020-09657-2
- A mixed variational principle for the Föppl–von Kármán equations, Applied Mathematical Modelling, Volume 79 (2020), p. 381 | DOI:10.1016/j.apm.2019.10.041
- On material optimisation for nonlinearly elastic plates and shells, ESAIM: Control, Optimisation and Calculus of Variations, Volume 26 (2020), p. 82 | DOI:10.1051/cocv/2020053
- Finite element simulation of nonlinear bending models for thin elastic rods and plates, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 221 | DOI:10.1016/bs.hna.2019.06.003
- Asymptotic behavior for textiles in von-Kármán regime, Journal de Mathématiques Pures et Appliquées, Volume 144 (2020), p. 164 | DOI:10.1016/j.matpur.2020.10.002
- Investigation on free vibration and transient response of functionally graded graphene platelets reinforced cylindrical shell resting on elastic foundation, The European Physical Journal Plus, Volume 135 (2020) no. 7 | DOI:10.1140/epjp/s13360-020-00577-4
- The Wrinkling of a Twisted Ribbon, Journal of Nonlinear Science, Volume 28 (2018) no. 4, p. 1221 | DOI:10.1007/s00332-018-9447-0
- Numerical Solution of a Föppl–von Kármán Model, SIAM Journal on Numerical Analysis, Volume 55 (2017) no. 3, p. 1505 | DOI:10.1137/16m1069791
- Rigidity of pairs of quasiregular mappings whose symmetric part of gradient are close, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 33 (2016) no. 1, p. 23 | DOI:10.1016/j.anihpc.2014.08.003
- Cosserat-Type Shells, Generalized Continua from the Theory to Engineering Applications, Volume 541 (2013), p. 131 | DOI:10.1007/978-3-7091-1371-4_3
- Automatically inf − sup compliant diamond‐mixed finite elements for Kirchhoff plates, International Journal for Numerical Methods in Engineering, Volume 96 (2013) no. 7, p. 405 | DOI:10.1002/nme.4555
- Finite element approximation of large bending isometries, Numerische Mathematik, Volume 124 (2013) no. 3, p. 415 | DOI:10.1007/s00211-013-0519-7
- Nonlinear Weakly Curved Rod by Γ-Convergence, Journal of Elasticity, Volume 108 (2012) no. 2, p. 125 | DOI:10.1007/s10659-011-9358-x
- Shallow-shell models by Γ-convergence, Mathematics and Mechanics of Solids, Volume 17 (2012) no. 8, p. 781 | DOI:10.1177/1081286511429889
- On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Archive of Applied Mechanics, Volume 80 (2010) no. 1, p. 73 | DOI:10.1007/s00419-009-0365-3
- THE REISSNER–MINDLIN PLATE IS THE Γ-LIMIT OF COSSERAT ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 09, p. 1553 | DOI:10.1142/s0218202510004763
- Γ-convergene e for a geometrically exact Cosserat shell-model of defective elastic crystals, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, Volume 516 (2010), p. 301 | DOI:10.1007/978-3-7091-0174-2_9
- Numerical approximation for a non-linear membrane problem, International Journal of Non-Linear Mechanics, Volume 43 (2008) no. 9, p. 908 | DOI:10.1016/j.ijnonlinmec.2008.06.007
- ON THE GENERALIZED VON KÁRMÁN EQUATIONS AND THEIR APPROXIMATION, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 04, p. 617 | DOI:10.1142/s0218202507002042
- A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence, Archive for Rational Mechanics and Analysis, Volume 180 (2006) no. 2, p. 183 | DOI:10.1007/s00205-005-0400-7
- Derivation of a rod theory for multiphase materials, Calculus of Variations and Partial Differential Equations, Volume 28 (2006) no. 2, p. 161 | DOI:10.1007/s00526-006-0039-8
- NonLinearly Elastic Membrane Model For Heterogeneous Shells by Using a New Double Scale Variational Formulation: A Formal Asymptotic Approach, Journal of Elasticity, Volume 84 (2006) no. 3, p. 245 | DOI:10.1007/s10659-006-9066-0
- Scaling of the Energy for Thin Martensitic Films, SIAM Journal on Mathematical Analysis, Volume 38 (2006) no. 2, p. 468 | DOI:10.1137/04061581x
- Rigorous Derivation of Föppl’s Theory for Clamped Elastic Membranes Leads to Relaxation, SIAM Journal on Mathematical Analysis, Volume 38 (2006) no. 2, p. 657 | DOI:10.1137/050632567
- Some remarks on the asymptotic invertibility of the linearized operator of nonlinear elasticity in the context of the displacement approach, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 86 (2006) no. 5, p. 400 | DOI:10.1002/zamm.200510249
- Self-similar folding patterns and energy scaling in compressed elastic sheets, Computer Methods in Applied Mechanics and Engineering, Volume 194 (2005) no. 21-24, p. 2534 | DOI:10.1016/j.cma.2004.07.044
- Spatial heterogeneity in 3D-2D dimensional reduction, ESAIM: Control, Optimisation and Calculus of Variations, Volume 11 (2005) no. 1, p. 139 | DOI:10.1051/cocv:2004031
- Regularity properties of isometric immersions, Mathematische Zeitschrift, Volume 251 (2005) no. 2, p. 313 | DOI:10.1007/s00209-005-0804-y
- A New Quasilinear Model for Plate Buckling, The Rational Spirit in Modern Continuum Mechanics (2005), p. 673 | DOI:10.1007/1-4020-2308-1_37
- A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 21 (2004) no. 3, p. 271 | DOI:10.1016/j.anihpc.2003.08.001
- Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge, Nonlinearity, Volume 17 (2004) no. 1, p. 301 | DOI:10.1088/0951-7715/17/1/017
Cité par 37 documents. Sources : Crossref
Commentaires - Politique