Comptes Rendus
Mathematical Problems in Mechanics/Calculus of Variations
Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence
[Dérivation de la théorie non linéaire des coques en flexion à partir de l'élasticité non linéaire tridimensionelle par Gamma-convergence]
Comptes Rendus. Mathématique, Volume 336 (2003) no. 8, pp. 697-702.

Nous montrons que la théorie non linéaire des coques en flexion émerge comme Γ-limite de la théorie de l'élasticité tridimensionelle.

We show that the nonlinear bending theory of shells arises as a Γ-limit of three-dimensional nonlinear elasticity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00028-1

Gero Friesecke 1 ; Richard D. James 2 ; Maria Giovanna Mora 3 ; Stefan Müller 3

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
2 Department of Aerospace Engineering and Mechanics, 107 Akerman Hall, University of Minnesota, Minneapolis, MN 55455, USA
3 Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
@article{CRMATH_2003__336_8_697_0,
     author = {Gero Friesecke and Richard D. James and Maria Giovanna Mora and Stefan M\"uller},
     title = {Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by {Gamma-convergence}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {697--702},
     publisher = {Elsevier},
     volume = {336},
     number = {8},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00028-1},
     language = {en},
}
TY  - JOUR
AU  - Gero Friesecke
AU  - Richard D. James
AU  - Maria Giovanna Mora
AU  - Stefan Müller
TI  - Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 697
EP  - 702
VL  - 336
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00028-1
LA  - en
ID  - CRMATH_2003__336_8_697_0
ER  - 
%0 Journal Article
%A Gero Friesecke
%A Richard D. James
%A Maria Giovanna Mora
%A Stefan Müller
%T Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence
%J Comptes Rendus. Mathématique
%D 2003
%P 697-702
%V 336
%N 8
%I Elsevier
%R 10.1016/S1631-073X(03)00028-1
%G en
%F CRMATH_2003__336_8_697_0
Gero Friesecke; Richard D. James; Maria Giovanna Mora; Stefan Müller. Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. Comptes Rendus. Mathématique, Volume 336 (2003) no. 8, pp. 697-702. doi : 10.1016/S1631-073X(03)00028-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00028-1/

[1] E. Acerbi; G. Buttazzo; D. Percivale A variational definition for the strain energy of an elastic string, J. Elasticity, Volume 25 (1991), pp. 137-148

[2] S.S. Antman Nonlinear Problems of Elasticity, Springer, New York, 1995

[3] P.G. Ciarlet Mathematical Elasticity, Vols. II and III, Elsevier, 1997 (2000)

[4] D.D. Fox; A. Raoult; J.C. Simo A justification of properly invariant plate theories, Arch. Rational Mech. Anal., Volume 124 (1993), pp. 157-199

[5] G. Friesecke; R.D. James; S. Müller Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 173-178

[6] G. Friesecke; R.D. James; S. Müller A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506

[7] F. John Rotation and strain, Comm. Pure Appl. Math., Volume 14 (1961), pp. 391-413

[8] G. Kirchhoff Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math., Volume 40 (1850), pp. 51-88

[9] H. LeDret; A. Raoult Le modèle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle, C. R. Acad. Sci. Paris Sér. I, Volume 317 (1993), pp. 221-226

[10] H. LeDret; A. Raoult The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578

[11] H. LeDret; A. Raoult The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci., Volume 6 (1996), pp. 59-84

[12] O. Pantz Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Sér. I, Volume 332 (2001), pp. 587-592

  • Andrea Bonito; Diane Guignard; Angelique Morvant Numerical approximations of thin structure deformations, Comptes Rendus. Mécanique, Volume 351 (2024) no. S1, p. 181 | DOI:10.5802/crmeca.201
  • Janusz Ginster; Peter Gladbach The Euler–Bernoulli Limit of Thin Brittle Linearized Elastic Beams, Journal of Elasticity, Volume 156 (2024) no. 1, p. 125 | DOI:10.1007/s10659-023-10040-x
  • Manuel Friedrich; Leonard Kreutz; Konstantinos Zemas Derivation of effective theories for thin 3D nonlinearly elastic rods with voids, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 04, p. 723 | DOI:10.1142/s0218202524500131
  • Rufat Badal; Manuel Friedrich; Lennart Machill Derivation of a von Kármán plate theory for thermoviscoelastic solids, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 14, p. 2749 | DOI:10.1142/s0218202524500581
  • Ionel-Dumitrel Ghiba; Peter Lewintan; Adam Sky; Patrizio Neff An essay on deformation measures in isotropic thin shell theories: Bending versus curvature, Mathematics and Mechanics of Solids (2024) | DOI:10.1177/10812865241269725
  • Andrea Bonito; Diane Guignard; Angelique Morvant Finite element methods for the stretching and bending of thin structures with folding, Numerische Mathematik, Volume 156 (2024) no. 6, p. 2031 | DOI:10.1007/s00211-024-01442-7
  • Mario Santilli; Bernd Schmidt A Blake-Zisserman-Kirchhoff theory for plates with soft inclusions, Journal de Mathématiques Pures et Appliquées, Volume 175 (2023), p. 143 | DOI:10.1016/j.matpur.2023.05.005
  • Davit Harutyunyan; Andre Martins Rodrigues The Buckling Load of Cylindrical Shells Under Axial Compression Depends on the Cross-Sectional Curvature, Journal of Nonlinear Science, Volume 33 (2023) no. 2 | DOI:10.1007/s00332-022-09880-z
  • Maryam Mohammadi Saem; Ionel-Dumitrel Ghiba; Patrizio Neff A Geometrically Nonlinear Cosserat (Micropolar) Curvy Shell Model Via Gamma Convergence, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09906-0
  • David J. Steigmann; Mircea Bîrsan; Milad Shirani Nonlinear Equations for Plates and Shells, Lecture Notes on the Theory of Plates and Shells, Volume 274 (2023), p. 169 | DOI:10.1007/978-3-031-25674-5_6
  • M. Legougui; A. Ghezal Asymptotic Justification of Equations for von Kármán Membrane Shells, Mathematical Notes, Volume 114 (2023) no. 3-4, p. 536 | DOI:10.1134/s0001434623090237
  • Stefano Almi; Emanuele Tasso Brittle fracture in linearly elastic plates, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 1, p. 68 | DOI:10.1017/prm.2021.71
  • Marta Lewicka; L. Mahadevan Geometry, analysis, and morphogenesis: Problems and prospects, Bulletin of the American Mathematical Society, Volume 59 (2022) no. 3, p. 331 | DOI:10.1090/bull/1765
  • Jean-François Babadjian; Giovanni Di Fratta; Irene Fonseca; Gilles Francfort; Marta Lewicka; Cyrill Muratov The mathematics of thin structures, Quarterly of Applied Mathematics, Volume 81 (2022) no. 1, p. 1 | DOI:10.1090/qam/1628
  • Martin Rumpf; Stefan Simon; Christoph Smoch Finite Element Approximation of Large-Scale Isometric Deformations of Parametrized Surfaces, SIAM Journal on Numerical Analysis, Volume 60 (2022) no. 5, p. 2945 | DOI:10.1137/21m1455292
  • G. Castiñeira; Á. Rodríguez-Arós On the Justification of Koiter’s Equations for Viscoelastic Shells, Applied Mathematics Optimization, Volume 84 (2021) no. 2, p. 2221 | DOI:10.1007/s00245-020-09708-w
  • Zh. Avetisyan; D. Harutyunyan; N. Hovsepyan Rigidity of a Thin Domain Depends on the Curvature, Width, and Boundary Conditions, Applied Mathematics Optimization, Volume 84 (2021) no. 3, p. 3229 | DOI:10.1007/s00245-021-09746-y
  • Miguel de Benito Delgado; Bernd Schmidt A hierarchy of multilayered plate models, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. S16 | DOI:10.1051/cocv/2020067
  • Olivier Ozenda; Epifanio G. Virga On the Kirchhoff-Love Hypothesis (Revised and Vindicated), Journal of Elasticity, Volume 143 (2021) no. 2, p. 359 | DOI:10.1007/s10659-021-09819-7
  • Pengfei Yao Lower Bounds of Optimal Exponentials of Thickness in Geometry Rigidity Inequality for Shells, Journal of Systems Science and Complexity, Volume 34 (2021) no. 6, p. 2092 | DOI:10.1007/s11424-020-0075-z
  • Roland Duduchava; Tengiz Buchukuri Shell equations in terms of Günter's derivatives, derived by the Γ‐convergence, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 12, p. 9710 | DOI:10.1002/mma.7226
  • Stefano Almi; Sandro Belz; Stefano Micheletti; Simona Perotto A dimension-reduction model for brittle fractures on thin shells with mesh adaptivity, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 01, p. 37 | DOI:10.1142/s0218202521500020
  • Behrend Heeren; Martin Rumpf; Max Wardetzky; Benedikt Wirth Discrete Riemannian calculus on shell space, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 621 | DOI:10.1016/bs.hna.2019.06.005
  • D. Harutyunyan The Asymptotically Sharp Geometric Rigidity Interpolation Estimate in Thin Bi-Lipschitz Domains, Journal of Elasticity, Volume 141 (2020) no. 2, p. 291 | DOI:10.1007/s10659-020-09783-8
  • Matko Ljulj; Josip Tambača A Naghdi Type Nonlinear Model for Shells with Little Regularity, Journal of Elasticity, Volume 142 (2020) no. 2, p. 447 | DOI:10.1007/s10659-020-09802-8
  • Silvia Jiménez Bolaños; Anna Zemlyanova Relative bending energy for weakly prestrained shells, Rocky Mountain Journal of Mathematics, Volume 50 (2020) no. 3 | DOI:10.1216/rmj.2020.50.1001
  • Cristinel Mardare Nonlinear Shell Models of Kirchhoff-Love Type: Existence Theorem and Comparison with Koiter’s Model, Acta Mathematicae Applicatae Sinica, English Series, Volume 35 (2019) no. 1, p. 3 | DOI:10.1007/s10255-019-0800-3
  • Yuanyou Li; Hui-Hui Dai; Jiong Wang On a consistent finite-strain shell theory for incompressible hyperelastic materials, Mathematics and Mechanics of Solids, Volume 24 (2019) no. 5, p. 1320 | DOI:10.1177/1081286518787837
  • Zilong Song; Jiong Wang; Hui-Hui Dai On a consistent dynamic finite-strain shell theory and its linearization, Mathematics and Mechanics of Solids, Volume 24 (2019) no. 8, p. 2335 | DOI:10.1177/1081286517754245
  • Antoine Remond-Tiedrez; Ian Tice The Viscous Surface Wave Problem with Generalized Surface Energies, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 6, p. 4894 | DOI:10.1137/18m1195851
  • G. B. Maggiani; M. G. Mora Quasistatic evolution of perfectly plastic shallow shells: a rigorous variational derivation, Annali di Matematica Pura ed Applicata (1923 -), Volume 197 (2018) no. 3, p. 775 | DOI:10.1007/s10231-017-0704-x
  • Peter Hornung; Igor Velčić Regularity of intrinsically convex W2,2 surfaces and a derivation of a homogenized bending theory of convex shells, Journal de Mathématiques Pures et Appliquées, Volume 115 (2018), p. 1 | DOI:10.1016/j.matpur.2018.04.008
  • Sylvia Anicic Polyconvexity and Existence Theorem for Nonlinearly Elastic Shells, Journal of Elasticity, Volume 132 (2018) no. 1, p. 161 | DOI:10.1007/s10659-017-9664-z
  • Philippe G. Ciarlet; Cristinel Mardare An existence theorem for a two-dimensional nonlinear shell model of Koiter’s type, Mathematical Models and Methods in Applied Sciences, Volume 28 (2018) no. 14, p. 2833 | DOI:10.1142/s0218202518500628
  • D. Harutyunyan On the Korn Interpolation and Second Inequalities in Thin Domains, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 5, p. 4964 | DOI:10.1137/18m1167474
  • Hui Li A short note on the derivation of the elastic von Kármán shell theory, Acta Mathematicae Applicatae Sinica, English Series, Volume 33 (2017) no. 1, p. 93 | DOI:10.1007/s10255-017-0640-y
  • Diego Ricciotti; Marta Lewicka; Annie Raoult Plates with incompatible prestrain of high order, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 7, p. 1883 | DOI:10.1016/j.anihpc.2017.01.003
  • Patrick W. Dondl; Antoine Lemenant; Stephan Wojtowytsch Phase Field Models for Thin Elastic Structures with Topological Constraint, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 2, p. 693 | DOI:10.1007/s00205-016-1043-6
  • Davit Harutyunyan Gaussian Curvature as an Identifier of Shell Rigidity, Archive for Rational Mechanics and Analysis, Volume 226 (2017) no. 2, p. 743 | DOI:10.1007/s00205-017-1143-y
  • Peter Hornung Stationary points of nonlinear plate theories, Journal of Functional Analysis, Volume 273 (2017) no. 3, p. 946 | DOI:10.1016/j.jfa.2017.04.010
  • Bernd Schmidt A Griffith–Euler–Bernoulli theory for thin brittle beams derived from nonlinear models in variational fracture mechanics, Mathematical Models and Methods in Applied Sciences, Volume 27 (2017) no. 09, p. 1685 | DOI:10.1142/s0218202517500294
  • Stefan Müller Mathematical Problems in Thin Elastic Sheets: Scaling Limits, Packing, Crumpling and Singularities, Vector-Valued Partial Differential Equations and Applications, Volume 2179 (2017), p. 125 | DOI:10.1007/978-3-319-54514-1_3
  • Kaushik Bhattacharya; Marta Lewicka; Mathias Schäffner Plates with Incompatible Prestrain, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 1, p. 143 | DOI:10.1007/s00205-015-0958-7
  • Zilong Song; Hui-Hui Dai On a consistent finite-strain shell theory based on 3-D nonlinear elasticity, International Journal of Solids and Structures, Volume 97-98 (2016), p. 137 | DOI:10.1016/j.ijsolstr.2016.07.034
  • Marta Lewicka; Piotr B. Mucha A Local and Global Well-Posedness Results for the General Stress-Assisted Diffusion Systems, Journal of Elasticity, Volume 123 (2016) no. 1, p. 19 | DOI:10.1007/s10659-015-9545-2
  • Souhayl Sadik; Arzhang Angoshtari; Alain Goriely; Arash Yavari A Geometric Theory of Nonlinear Morphoelastic Shells, Journal of Nonlinear Science, Volume 26 (2016) no. 4, p. 929 | DOI:10.1007/s00332-016-9294-9
  • Giovanni Battista Maggiani; Maria Giovanna Mora A dynamic evolution model for perfectly plastic plates, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 10, p. 1825 | DOI:10.1142/s0218202516500469
  • Erick Pruchnicki A fifth-order model for shells which combines bending, stretching and transverse shearing deduced from three-dimensional elasticity, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 7, p. 842 | DOI:10.1177/1081286514542117
  • Lorenzo Freddi; Peter Hornung; Maria Giovanna Mora; Roberto Paroni A Variational Model for Anisotropic and Naturally Twisted Ribbons, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 6, p. 3883 | DOI:10.1137/16m1074862
  • E. L. Starostin; G. H. M. van der Heijden Equilibrium Shapes with Stress Localisation for Inextensible Elastic Möbius and Other Strips, The Mechanics of Ribbons and Möbius Bands (2016), p. 67 | DOI:10.1007/978-94-017-7300-3_8
  • Chao Zhang; Behrend Heeren; Martin Rumpf; William A. P. Smith, 2015 IEEE International Conference on Computer Vision (ICCV) (2015), p. 1671 | DOI:10.1109/iccv.2015.195
  • Peter Hornung; Igor Velčić Derivation of a homogenized von-Kármán shell theory from 3D elasticity, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 5, p. 1039 | DOI:10.1016/j.anihpc.2014.05.003
  • Philippe G. Ciarlet; Cristinel Mardare Nonlinear Korn inequalities, Journal de Mathématiques Pures et Appliquées, Volume 104 (2015) no. 6, p. 1119 | DOI:10.1016/j.matpur.2015.07.007
  • E. L. Starostin; G. H. M. van der Heijden Equilibrium Shapes with Stress Localisation for Inextensible Elastic Möbius and Other Strips, Journal of Elasticity, Volume 119 (2015) no. 1-2, p. 67 | DOI:10.1007/s10659-014-9495-0
  • Yury Grabovsky; Davit Harutyunyan Rigorous Derivation of the Formula for the Buckling Load in Axially Compressed Circular Cylindrical Shells, Journal of Elasticity, Volume 120 (2015) no. 2, p. 249 | DOI:10.1007/s10659-015-9513-x
  • Renata Bunoiu; Philippe G. Ciarlet; Cristinel Mardare Existence Theorem for a Nonlinear Elliptic Shell Model, Journal of Elliptic and Parabolic Equations, Volume 1 (2015) no. 1, p. 31 | DOI:10.1007/bf03377366
  • Olivier Pantz; Karim Trabelsi Derivation of nonlinear shell models combining shear and flexure: application to biological membranes, Mathematics and Mechanics of Complex Systems, Volume 3 (2015) no. 2, p. 101 | DOI:10.2140/memocs.2015.3.101
  • David J Steigmann Mechanics of materially uniform thin films, Mathematics and Mechanics of Solids, Volume 20 (2015) no. 3, p. 309 | DOI:10.1177/1081286514545914
  • Daniel Lengeler; Michael Růžička Weak Solutions for an Incompressible Newtonian Fluid Interacting with a Koiter Type Shell, Archive for Rational Mechanics and Analysis, Volume 211 (2014) no. 1, p. 205 | DOI:10.1007/s00205-013-0686-9
  • Raz Kupferman; Cy Maor A Riemannian approach to the membrane limit in non-Euclidean elasticity, Communications in Contemporary Mathematics, Volume 16 (2014) no. 05, p. 1350052 | DOI:10.1142/s0219199713500521
  • Marta Lewicka; Hui Li Convergence of equilibria for incompressible elastic plates in the von Kármán regime, Communications on Pure and Applied Analysis, Volume 14 (2014) no. 1, p. 143 | DOI:10.3934/cpaa.2015.14.143
  • Raz Kupferman; Jake P. Solomon A Riemannian approach to reduced plate, shell, and rod theories, Journal of Functional Analysis, Volume 266 (2014) no. 5, p. 2989 | DOI:10.1016/j.jfa.2013.09.003
  • Elisa Davoli Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 10, p. 2085 | DOI:10.1142/s021820251450016x
  • Erick Pruchnicki Two-dimensional model for the combined bending, stretching and shearing of shells: A general approach and application to laminated cylindrical shells derived from three-dimensional elasticity, Mathematics and Mechanics of Solids, Volume 19 (2014) no. 5, p. 491 | DOI:10.1177/1081286512470676
  • Marta Lewicka; L. Mahadevan; Mohammad Reza Pakzad Models for elastic shells with incompatible strains, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 470 (2014) no. 2165, p. 20130604 | DOI:10.1098/rspa.2013.0604
  • Elisa Davoli; Maria Giovanna Mora A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 4, p. 615 | DOI:10.1016/j.anihpc.2012.11.001
  • Hui Li; Milena Chermisi The von Kármán theory for incompressible elastic shells, Calculus of Variations and Partial Differential Equations, Volume 48 (2013) no. 1-2, p. 185 | DOI:10.1007/s00526-012-0549-5
  • Holm Altenbach; Victor A. Eremeyev Cosserat-Type Shells, Generalized Continua from the Theory to Engineering Applications, Volume 541 (2013), p. 131 | DOI:10.1007/978-3-7091-1371-4_3
  • Marta Lewicka; Mohammad Reza Pakzad The Infinite Hierarchy of Elastic Shell Models: Some Recent Results and a Conjecture, Infinite Dimensional Dynamical Systems, Volume 64 (2013), p. 407 | DOI:10.1007/978-1-4614-4523-4_16
  • Philippe Ciarlet; Radu Gogu; Cristinel Mardare Orientation-preserving condition and polyconvexity on a surface: Application to nonlinear shell theory, Journal de Mathématiques Pures et Appliquées, Volume 99 (2013) no. 6, p. 704 | DOI:10.1016/j.matpur.2012.10.006
  • Peter Hornung; Marta Lewicka; Mohammad Reza Pakzad Infinitesimal Isometries on Developable Surfaces and Asymptotic Theories for Thin Developable Shells, Journal of Elasticity, Volume 111 (2013) no. 1, p. 1 | DOI:10.1007/s10659-012-9391-4
  • Hui Li The Kirchhoff theory for elastic pre-strained shells, Nonlinear Analysis: Theory, Methods Applications, Volume 78 (2013), p. 1 | DOI:10.1016/j.na.2012.07.035
  • Martin Rumpf; Benedikt Wirth Discrete Geodesic Calculus in Shape Space and Applications in the Space of Viscous Fluidic Objects, SIAM Journal on Imaging Sciences, Volume 6 (2013) no. 4, p. 2581 | DOI:10.1137/120870864
  • B. Heeren; M. Rumpf; M. Wardetzky; B. Wirth Time‐Discrete Geodesics in the Space of Shells, Computer Graphics Forum, Volume 31 (2012) no. 5, p. 1755 | DOI:10.1111/j.1467-8659.2012.03180.x
  • Peng-Fei Yao; Shun Li Modeling of a nonlinear plate, Evolution Equations and Control Theory, Volume 1 (2012) no. 1, p. 155 | DOI:10.3934/eect.2012.1.155
  • Igor Velčić Nonlinear Weakly Curved Rod by Γ-Convergence, Journal of Elasticity, Volume 108 (2012) no. 2, p. 125 | DOI:10.1007/s10659-011-9358-x
  • Igor Velčić Shallow-shell models by Γ-convergence, Mathematics and Mechanics of Solids, Volume 17 (2012) no. 8, p. 781 | DOI:10.1177/1081286511429889
  • Shun Li; Peng-Fei Yao, Proceedings of the 10th World Congress on Intelligent Control and Automation (2012), p. 1585 | DOI:10.1109/wcica.2012.6358131
  • Marta Lewicka; Maria Giovanna Mora; Mohammad Reza Pakzad The Matching Property of Infinitesimal Isometries on Elliptic Surfaces and Elasticity of Thin Shells, Archive for Rational Mechanics and Analysis, Volume 200 (2011) no. 3, p. 1023 | DOI:10.1007/s00205-010-0387-6
  • Marta Lewicka; Mohammad Reza Pakzad Scaling laws for non-Euclidean plates and theW2,2isometric immersions of Riemannian metrics, ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 4, p. 1158 | DOI:10.1051/cocv/2010039
  • Marta Lewicka Reduced Theories in Nonlinear Elasticity, Nonlinear Conservation Laws and Applications, Volume 153 (2011), p. 393 | DOI:10.1007/978-1-4419-9554-4_22
  • Marta Lewicka Metric-induced Morphogenesis and Non-Euclidean Elasticity: Scaling Laws and Thin Film Models, Parabolic Problems, Volume 80 (2011), p. 433 | DOI:10.1007/978-3-0348-0075-4_22
  • Johannes Altenbach; Holm Altenbach; Victor A. Eremeyev On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Archive of Applied Mechanics, Volume 80 (2010) no. 1, p. 73 | DOI:10.1007/s00419-009-0365-3
  • Dominique Blanchard; Georges Griso Decomposition of the Deformations of a Thin Shell. Asymptotic Behavior of the Green-St Venant’s Strain Tensor, Journal of Elasticity, Volume 101 (2010) no. 2, p. 179 | DOI:10.1007/s10659-010-9255-8
  • PATRIZIO NEFF; KWON-IL HONG; JENA JEONG THE REISSNER–MINDLIN PLATE IS THE Γ-LIMIT OF COSSERAT ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 09, p. 1553 | DOI:10.1142/s0218202510004763
  • Patrizio Neff Γ-convergene e for a geometrically exact Cosserat shell-model of defective elastic crystals, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, Volume 516 (2010), p. 301 | DOI:10.1007/978-3-7091-0174-2_9
  • Pavel Bělík; Bob Jennings; Mikhail M. Shvartsman; Cristina U. Thomas Modeling the Behavior of Heat-Shrinkable Thin Films, Journal of Elasticity, Volume 95 (2009) no. 1-2, p. 57 | DOI:10.1007/s10659-009-9194-4
  • Bernd Schmidt Qualitative properties of a continuum theory for thin films, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 25 (2008) no. 1, p. 43 | DOI:10.1016/j.anihpc.2006.09.001
  • Bernd Schmidt On the Passage from Atomic to Continuum Theory for Thin Films, Archive for Rational Mechanics and Analysis, Volume 190 (2008) no. 1, p. 1 | DOI:10.1007/s00205-008-0138-0
  • Philippe G. Ciarlet A brief introduction to mathematical shell theory, Classical and Advanced Theories of Thin Structures, Volume 503 (2008), p. 111 | DOI:10.1007/978-3-211-85430-3_5
  • E. L. Starostin; G. H. M. van der Heijden Tension-Induced Multistability in Inextensible Helical Ribbons, Physical Review Letters, Volume 101 (2008) no. 8 | DOI:10.1103/physrevlett.101.084301
  • David J. Steigmann Asymptotic finite-strain thin-plate theory for elastic solids, Computers Mathematics with Applications, Volume 53 (2007) no. 2, p. 287 | DOI:10.1016/j.camwa.2006.02.025
  • Bernd Schmidt Plate theory for stressed heterogeneous multilayers of finite bending energy, Journal de Mathématiques Pures et Appliquées, Volume 88 (2007) no. 1, p. 107 | DOI:10.1016/j.matpur.2007.04.011
  • C.-M. Lee; V.N. Goverdovskiy; A.I. Temnikov Design of springs with “negative” stiffness to improve vehicle driver vibration isolation, Journal of Sound and Vibration, Volume 302 (2007) no. 4-5, p. 865 | DOI:10.1016/j.jsv.2006.12.024
  • Gero Friesecke; Richard D. James; Stefan Müller A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence, Archive for Rational Mechanics and Analysis, Volume 180 (2006) no. 2, p. 183 | DOI:10.1007/s00205-005-0400-7
  • Philippe G. Ciarlet; Liliana Gratie; Cristinel Mardare A nonlinear Korn inequality on a surface, Journal de Mathématiques Pures et Appliquées, Volume 85 (2006) no. 1, p. 2 | DOI:10.1016/j.matpur.2005.10.010
  • Erick Pruchnicki NonLinearly Elastic Membrane Model For Heterogeneous Shells by Using a New Double Scale Variational Formulation: A Formal Asymptotic Approach, Journal of Elasticity, Volume 84 (2006) no. 3, p. 245 | DOI:10.1007/s10659-006-9066-0
  • Jens Frehse; Moritz Kassmann Nonlinear partial differential equations of fourth order under mixed boundary conditions, Mathematische Zeitschrift, Volume 254 (2006) no. 1, p. 33 | DOI:10.1007/s00209-005-0917-3
  • Bernd Schmidt A Derivation of Continuum Nonlinear Plate Theory from Atomistic Models, Multiscale Modeling Simulation, Volume 5 (2006) no. 2, p. 664 | DOI:10.1137/050646251
  • R. Monneau Some remarks on the asymptotic invertibility of the linearized operator of nonlinear elasticity in the context of the displacement approach, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 86 (2006) no. 5, p. 400 | DOI:10.1002/zamm.200510249
  • KARIM TRABELSI NONLINEARLY ELASTIC THIN PLATE MODELS FOR A CLASS OF OGDEN MATERIALS II: THE BENDING MODEL, Analysis and Applications, Volume 03 (2005) no. 03, p. 271 | DOI:10.1142/s0219530505000571
  • Philippe G. Ciarlet An Introduction to Differential Geometry with Applications to Elasticity, Journal of Elasticity, Volume 78-79 (2005) no. 1-3, p. 1 | DOI:10.1007/s10659-005-4738-8
  • Pedro Miguel Santos; Elvira Zappale Second-order analysis for thin structures, Nonlinear Analysis: Theory, Methods Applications, Volume 56 (2004) no. 5, p. 679 | DOI:10.1016/j.na.2003.10.007
  • Philippe G. Ciarlet The Continuity of a surface as a function of its two fundamental forms, Journal de Mathématiques Pures et Appliquées, Volume 82 (2003) no. 3, p. 253 | DOI:10.1016/s0021-7824(03)00017-5

Cité par 104 documents. Sources : Crossref

Commentaires - Politique