[Dérivation de la théorie non linéaire des coques en flexion à partir de l'élasticité non linéaire tridimensionelle par Gamma-convergence]
Nous montrons que la théorie non linéaire des coques en flexion émerge comme Γ-limite de la théorie de l'élasticité tridimensionelle.
We show that the nonlinear bending theory of shells arises as a Γ-limit of three-dimensional nonlinear elasticity.
Accepté le :
Publié le :
Gero Friesecke 1 ; Richard D. James 2 ; Maria Giovanna Mora 3 ; Stefan Müller 3
@article{CRMATH_2003__336_8_697_0, author = {Gero Friesecke and Richard D. James and Maria Giovanna Mora and Stefan M\"uller}, title = {Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by {Gamma-convergence}}, journal = {Comptes Rendus. Math\'ematique}, pages = {697--702}, publisher = {Elsevier}, volume = {336}, number = {8}, year = {2003}, doi = {10.1016/S1631-073X(03)00028-1}, language = {en}, }
TY - JOUR AU - Gero Friesecke AU - Richard D. James AU - Maria Giovanna Mora AU - Stefan Müller TI - Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence JO - Comptes Rendus. Mathématique PY - 2003 SP - 697 EP - 702 VL - 336 IS - 8 PB - Elsevier DO - 10.1016/S1631-073X(03)00028-1 LA - en ID - CRMATH_2003__336_8_697_0 ER -
%0 Journal Article %A Gero Friesecke %A Richard D. James %A Maria Giovanna Mora %A Stefan Müller %T Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence %J Comptes Rendus. Mathématique %D 2003 %P 697-702 %V 336 %N 8 %I Elsevier %R 10.1016/S1631-073X(03)00028-1 %G en %F CRMATH_2003__336_8_697_0
Gero Friesecke; Richard D. James; Maria Giovanna Mora; Stefan Müller. Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. Comptes Rendus. Mathématique, Volume 336 (2003) no. 8, pp. 697-702. doi : 10.1016/S1631-073X(03)00028-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00028-1/
[1] A variational definition for the strain energy of an elastic string, J. Elasticity, Volume 25 (1991), pp. 137-148
[2] Nonlinear Problems of Elasticity, Springer, New York, 1995
[3] Mathematical Elasticity, Vols. II and III, Elsevier, 1997 (2000)
[4] A justification of properly invariant plate theories, Arch. Rational Mech. Anal., Volume 124 (1993), pp. 157-199
[5] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Sér. I, Volume 334 (2002), pp. 173-178
[6] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[7] Rotation and strain, Comm. Pure Appl. Math., Volume 14 (1961), pp. 391-413
[8] Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math., Volume 40 (1850), pp. 51-88
[9] Le modèle de membrane non linéaire comme limite variationelle de l'élasticité non linéaire tridimensionelle, C. R. Acad. Sci. Paris Sér. I, Volume 317 (1993), pp. 221-226
[10] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578
[11] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci., Volume 6 (1996), pp. 59-84
[12] Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Sér. I, Volume 332 (2001), pp. 587-592
- Numerical approximations of thin structure deformations, Comptes Rendus. Mécanique, Volume 351 (2024) no. S1, p. 181 | DOI:10.5802/crmeca.201
- The Euler–Bernoulli Limit of Thin Brittle Linearized Elastic Beams, Journal of Elasticity, Volume 156 (2024) no. 1, p. 125 | DOI:10.1007/s10659-023-10040-x
- Derivation of effective theories for thin 3D nonlinearly elastic rods with voids, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 04, p. 723 | DOI:10.1142/s0218202524500131
- Derivation of a von Kármán plate theory for thermoviscoelastic solids, Mathematical Models and Methods in Applied Sciences, Volume 34 (2024) no. 14, p. 2749 | DOI:10.1142/s0218202524500581
- An essay on deformation measures in isotropic thin shell theories: Bending versus curvature, Mathematics and Mechanics of Solids (2024) | DOI:10.1177/10812865241269725
- Finite element methods for the stretching and bending of thin structures with folding, Numerische Mathematik, Volume 156 (2024) no. 6, p. 2031 | DOI:10.1007/s00211-024-01442-7
- A Blake-Zisserman-Kirchhoff theory for plates with soft inclusions, Journal de Mathématiques Pures et Appliquées, Volume 175 (2023), p. 143 | DOI:10.1016/j.matpur.2023.05.005
- The Buckling Load of Cylindrical Shells Under Axial Compression Depends on the Cross-Sectional Curvature, Journal of Nonlinear Science, Volume 33 (2023) no. 2 | DOI:10.1007/s00332-022-09880-z
- A Geometrically Nonlinear Cosserat (Micropolar) Curvy Shell Model Via Gamma Convergence, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09906-0
- Nonlinear Equations for Plates and Shells, Lecture Notes on the Theory of Plates and Shells, Volume 274 (2023), p. 169 | DOI:10.1007/978-3-031-25674-5_6
- Asymptotic Justification of Equations for von Kármán Membrane Shells, Mathematical Notes, Volume 114 (2023) no. 3-4, p. 536 | DOI:10.1134/s0001434623090237
- Brittle fracture in linearly elastic plates, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 153 (2023) no. 1, p. 68 | DOI:10.1017/prm.2021.71
- Geometry, analysis, and morphogenesis: Problems and prospects, Bulletin of the American Mathematical Society, Volume 59 (2022) no. 3, p. 331 | DOI:10.1090/bull/1765
- The mathematics of thin structures, Quarterly of Applied Mathematics, Volume 81 (2022) no. 1, p. 1 | DOI:10.1090/qam/1628
- Finite Element Approximation of Large-Scale Isometric Deformations of Parametrized Surfaces, SIAM Journal on Numerical Analysis, Volume 60 (2022) no. 5, p. 2945 | DOI:10.1137/21m1455292
- On the Justification of Koiter’s Equations for Viscoelastic Shells, Applied Mathematics Optimization, Volume 84 (2021) no. 2, p. 2221 | DOI:10.1007/s00245-020-09708-w
- Rigidity of a Thin Domain Depends on the Curvature, Width, and Boundary Conditions, Applied Mathematics Optimization, Volume 84 (2021) no. 3, p. 3229 | DOI:10.1007/s00245-021-09746-y
- A hierarchy of multilayered plate models, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. S16 | DOI:10.1051/cocv/2020067
- On the Kirchhoff-Love Hypothesis (Revised and Vindicated), Journal of Elasticity, Volume 143 (2021) no. 2, p. 359 | DOI:10.1007/s10659-021-09819-7
- Lower Bounds of Optimal Exponentials of Thickness in Geometry Rigidity Inequality for Shells, Journal of Systems Science and Complexity, Volume 34 (2021) no. 6, p. 2092 | DOI:10.1007/s11424-020-0075-z
- Shell equations in terms of Günter's derivatives, derived by the Γ‐convergence, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 12, p. 9710 | DOI:10.1002/mma.7226
- A dimension-reduction model for brittle fractures on thin shells with mesh adaptivity, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 01, p. 37 | DOI:10.1142/s0218202521500020
- Discrete Riemannian calculus on shell space, Geometric Partial Differential Equations - Part I, Volume 21 (2020), p. 621 | DOI:10.1016/bs.hna.2019.06.005
- The Asymptotically Sharp Geometric Rigidity Interpolation Estimate in Thin Bi-Lipschitz Domains, Journal of Elasticity, Volume 141 (2020) no. 2, p. 291 | DOI:10.1007/s10659-020-09783-8
- A Naghdi Type Nonlinear Model for Shells with Little Regularity, Journal of Elasticity, Volume 142 (2020) no. 2, p. 447 | DOI:10.1007/s10659-020-09802-8
- Relative bending energy for weakly prestrained shells, Rocky Mountain Journal of Mathematics, Volume 50 (2020) no. 3 | DOI:10.1216/rmj.2020.50.1001
- Nonlinear Shell Models of Kirchhoff-Love Type: Existence Theorem and Comparison with Koiter’s Model, Acta Mathematicae Applicatae Sinica, English Series, Volume 35 (2019) no. 1, p. 3 | DOI:10.1007/s10255-019-0800-3
- On a consistent finite-strain shell theory for incompressible hyperelastic materials, Mathematics and Mechanics of Solids, Volume 24 (2019) no. 5, p. 1320 | DOI:10.1177/1081286518787837
- On a consistent dynamic finite-strain shell theory and its linearization, Mathematics and Mechanics of Solids, Volume 24 (2019) no. 8, p. 2335 | DOI:10.1177/1081286517754245
- The Viscous Surface Wave Problem with Generalized Surface Energies, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 6, p. 4894 | DOI:10.1137/18m1195851
- Quasistatic evolution of perfectly plastic shallow shells: a rigorous variational derivation, Annali di Matematica Pura ed Applicata (1923 -), Volume 197 (2018) no. 3, p. 775 | DOI:10.1007/s10231-017-0704-x
- Regularity of intrinsically convex W2,2 surfaces and a derivation of a homogenized bending theory of convex shells, Journal de Mathématiques Pures et Appliquées, Volume 115 (2018), p. 1 | DOI:10.1016/j.matpur.2018.04.008
- Polyconvexity and Existence Theorem for Nonlinearly Elastic Shells, Journal of Elasticity, Volume 132 (2018) no. 1, p. 161 | DOI:10.1007/s10659-017-9664-z
- An existence theorem for a two-dimensional nonlinear shell model of Koiter’s type, Mathematical Models and Methods in Applied Sciences, Volume 28 (2018) no. 14, p. 2833 | DOI:10.1142/s0218202518500628
- On the Korn Interpolation and Second Inequalities in Thin Domains, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 5, p. 4964 | DOI:10.1137/18m1167474
- A short note on the derivation of the elastic von Kármán shell theory, Acta Mathematicae Applicatae Sinica, English Series, Volume 33 (2017) no. 1, p. 93 | DOI:10.1007/s10255-017-0640-y
- Plates with incompatible prestrain of high order, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 7, p. 1883 | DOI:10.1016/j.anihpc.2017.01.003
- Phase Field Models for Thin Elastic Structures with Topological Constraint, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 2, p. 693 | DOI:10.1007/s00205-016-1043-6
- Gaussian Curvature as an Identifier of Shell Rigidity, Archive for Rational Mechanics and Analysis, Volume 226 (2017) no. 2, p. 743 | DOI:10.1007/s00205-017-1143-y
- Stationary points of nonlinear plate theories, Journal of Functional Analysis, Volume 273 (2017) no. 3, p. 946 | DOI:10.1016/j.jfa.2017.04.010
- A Griffith–Euler–Bernoulli theory for thin brittle beams derived from nonlinear models in variational fracture mechanics, Mathematical Models and Methods in Applied Sciences, Volume 27 (2017) no. 09, p. 1685 | DOI:10.1142/s0218202517500294
- Mathematical Problems in Thin Elastic Sheets: Scaling Limits, Packing, Crumpling and Singularities, Vector-Valued Partial Differential Equations and Applications, Volume 2179 (2017), p. 125 | DOI:10.1007/978-3-319-54514-1_3
- Plates with Incompatible Prestrain, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 1, p. 143 | DOI:10.1007/s00205-015-0958-7
- On a consistent finite-strain shell theory based on 3-D nonlinear elasticity, International Journal of Solids and Structures, Volume 97-98 (2016), p. 137 | DOI:10.1016/j.ijsolstr.2016.07.034
- A Local and Global Well-Posedness Results for the General Stress-Assisted Diffusion Systems, Journal of Elasticity, Volume 123 (2016) no. 1, p. 19 | DOI:10.1007/s10659-015-9545-2
- A Geometric Theory of Nonlinear Morphoelastic Shells, Journal of Nonlinear Science, Volume 26 (2016) no. 4, p. 929 | DOI:10.1007/s00332-016-9294-9
- A dynamic evolution model for perfectly plastic plates, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 10, p. 1825 | DOI:10.1142/s0218202516500469
- A fifth-order model for shells which combines bending, stretching and transverse shearing deduced from three-dimensional elasticity, Mathematics and Mechanics of Solids, Volume 21 (2016) no. 7, p. 842 | DOI:10.1177/1081286514542117
- A Variational Model for Anisotropic and Naturally Twisted Ribbons, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 6, p. 3883 | DOI:10.1137/16m1074862
- Equilibrium Shapes with Stress Localisation for Inextensible Elastic Möbius and Other Strips, The Mechanics of Ribbons and Möbius Bands (2016), p. 67 | DOI:10.1007/978-94-017-7300-3_8
- , 2015 IEEE International Conference on Computer Vision (ICCV) (2015), p. 1671 | DOI:10.1109/iccv.2015.195
- Derivation of a homogenized von-Kármán shell theory from 3D elasticity, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 5, p. 1039 | DOI:10.1016/j.anihpc.2014.05.003
- Nonlinear Korn inequalities, Journal de Mathématiques Pures et Appliquées, Volume 104 (2015) no. 6, p. 1119 | DOI:10.1016/j.matpur.2015.07.007
- Equilibrium Shapes with Stress Localisation for Inextensible Elastic Möbius and Other Strips, Journal of Elasticity, Volume 119 (2015) no. 1-2, p. 67 | DOI:10.1007/s10659-014-9495-0
- Rigorous Derivation of the Formula for the Buckling Load in Axially Compressed Circular Cylindrical Shells, Journal of Elasticity, Volume 120 (2015) no. 2, p. 249 | DOI:10.1007/s10659-015-9513-x
- Existence Theorem for a Nonlinear Elliptic Shell Model, Journal of Elliptic and Parabolic Equations, Volume 1 (2015) no. 1, p. 31 | DOI:10.1007/bf03377366
- Derivation of nonlinear shell models combining shear and flexure: application to biological membranes, Mathematics and Mechanics of Complex Systems, Volume 3 (2015) no. 2, p. 101 | DOI:10.2140/memocs.2015.3.101
- Mechanics of materially uniform thin films, Mathematics and Mechanics of Solids, Volume 20 (2015) no. 3, p. 309 | DOI:10.1177/1081286514545914
- Weak Solutions for an Incompressible Newtonian Fluid Interacting with a Koiter Type Shell, Archive for Rational Mechanics and Analysis, Volume 211 (2014) no. 1, p. 205 | DOI:10.1007/s00205-013-0686-9
- A Riemannian approach to the membrane limit in non-Euclidean elasticity, Communications in Contemporary Mathematics, Volume 16 (2014) no. 05, p. 1350052 | DOI:10.1142/s0219199713500521
- Convergence of equilibria for incompressible elastic plates in the von Kármán regime, Communications on Pure and Applied Analysis, Volume 14 (2014) no. 1, p. 143 | DOI:10.3934/cpaa.2015.14.143
- A Riemannian approach to reduced plate, shell, and rod theories, Journal of Functional Analysis, Volume 266 (2014) no. 5, p. 2989 | DOI:10.1016/j.jfa.2013.09.003
- Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 10, p. 2085 | DOI:10.1142/s021820251450016x
- Two-dimensional model for the combined bending, stretching and shearing of shells: A general approach and application to laminated cylindrical shells derived from three-dimensional elasticity, Mathematics and Mechanics of Solids, Volume 19 (2014) no. 5, p. 491 | DOI:10.1177/1081286512470676
- Models for elastic shells with incompatible strains, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 470 (2014) no. 2165, p. 20130604 | DOI:10.1098/rspa.2013.0604
- A quasistatic evolution model for perfectly plastic plates derived by Γ-convergence, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 4, p. 615 | DOI:10.1016/j.anihpc.2012.11.001
- The von Kármán theory for incompressible elastic shells, Calculus of Variations and Partial Differential Equations, Volume 48 (2013) no. 1-2, p. 185 | DOI:10.1007/s00526-012-0549-5
- Cosserat-Type Shells, Generalized Continua from the Theory to Engineering Applications, Volume 541 (2013), p. 131 | DOI:10.1007/978-3-7091-1371-4_3
- The Infinite Hierarchy of Elastic Shell Models: Some Recent Results and a Conjecture, Infinite Dimensional Dynamical Systems, Volume 64 (2013), p. 407 | DOI:10.1007/978-1-4614-4523-4_16
- Orientation-preserving condition and polyconvexity on a surface: Application to nonlinear shell theory, Journal de Mathématiques Pures et Appliquées, Volume 99 (2013) no. 6, p. 704 | DOI:10.1016/j.matpur.2012.10.006
- Infinitesimal Isometries on Developable Surfaces and Asymptotic Theories for Thin Developable Shells, Journal of Elasticity, Volume 111 (2013) no. 1, p. 1 | DOI:10.1007/s10659-012-9391-4
- The Kirchhoff theory for elastic pre-strained shells, Nonlinear Analysis: Theory, Methods Applications, Volume 78 (2013), p. 1 | DOI:10.1016/j.na.2012.07.035
- Discrete Geodesic Calculus in Shape Space and Applications in the Space of Viscous Fluidic Objects, SIAM Journal on Imaging Sciences, Volume 6 (2013) no. 4, p. 2581 | DOI:10.1137/120870864
- Time‐Discrete Geodesics in the Space of Shells, Computer Graphics Forum, Volume 31 (2012) no. 5, p. 1755 | DOI:10.1111/j.1467-8659.2012.03180.x
- Modeling of a nonlinear plate, Evolution Equations and Control Theory, Volume 1 (2012) no. 1, p. 155 | DOI:10.3934/eect.2012.1.155
- Nonlinear Weakly Curved Rod by Γ-Convergence, Journal of Elasticity, Volume 108 (2012) no. 2, p. 125 | DOI:10.1007/s10659-011-9358-x
- Shallow-shell models by Γ-convergence, Mathematics and Mechanics of Solids, Volume 17 (2012) no. 8, p. 781 | DOI:10.1177/1081286511429889
- , Proceedings of the 10th World Congress on Intelligent Control and Automation (2012), p. 1585 | DOI:10.1109/wcica.2012.6358131
- The Matching Property of Infinitesimal Isometries on Elliptic Surfaces and Elasticity of Thin Shells, Archive for Rational Mechanics and Analysis, Volume 200 (2011) no. 3, p. 1023 | DOI:10.1007/s00205-010-0387-6
- Scaling laws for non-Euclidean plates and theW2,2isometric immersions of Riemannian metrics, ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 4, p. 1158 | DOI:10.1051/cocv/2010039
- Reduced Theories in Nonlinear Elasticity, Nonlinear Conservation Laws and Applications, Volume 153 (2011), p. 393 | DOI:10.1007/978-1-4419-9554-4_22
- Metric-induced Morphogenesis and Non-Euclidean Elasticity: Scaling Laws and Thin Film Models, Parabolic Problems, Volume 80 (2011), p. 433 | DOI:10.1007/978-3-0348-0075-4_22
- On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Archive of Applied Mechanics, Volume 80 (2010) no. 1, p. 73 | DOI:10.1007/s00419-009-0365-3
- Decomposition of the Deformations of a Thin Shell. Asymptotic Behavior of the Green-St Venant’s Strain Tensor, Journal of Elasticity, Volume 101 (2010) no. 2, p. 179 | DOI:10.1007/s10659-010-9255-8
- THE REISSNER–MINDLIN PLATE IS THE Γ-LIMIT OF COSSERAT ELASTICITY, Mathematical Models and Methods in Applied Sciences, Volume 20 (2010) no. 09, p. 1553 | DOI:10.1142/s0218202510004763
- Γ-convergene e for a geometrically exact Cosserat shell-model of defective elastic crystals, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, Volume 516 (2010), p. 301 | DOI:10.1007/978-3-7091-0174-2_9
- Modeling the Behavior of Heat-Shrinkable Thin Films, Journal of Elasticity, Volume 95 (2009) no. 1-2, p. 57 | DOI:10.1007/s10659-009-9194-4
- Qualitative properties of a continuum theory for thin films, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 25 (2008) no. 1, p. 43 | DOI:10.1016/j.anihpc.2006.09.001
- On the Passage from Atomic to Continuum Theory for Thin Films, Archive for Rational Mechanics and Analysis, Volume 190 (2008) no. 1, p. 1 | DOI:10.1007/s00205-008-0138-0
- A brief introduction to mathematical shell theory, Classical and Advanced Theories of Thin Structures, Volume 503 (2008), p. 111 | DOI:10.1007/978-3-211-85430-3_5
- Tension-Induced Multistability in Inextensible Helical Ribbons, Physical Review Letters, Volume 101 (2008) no. 8 | DOI:10.1103/physrevlett.101.084301
- Asymptotic finite-strain thin-plate theory for elastic solids, Computers Mathematics with Applications, Volume 53 (2007) no. 2, p. 287 | DOI:10.1016/j.camwa.2006.02.025
- Plate theory for stressed heterogeneous multilayers of finite bending energy, Journal de Mathématiques Pures et Appliquées, Volume 88 (2007) no. 1, p. 107 | DOI:10.1016/j.matpur.2007.04.011
- Design of springs with “negative” stiffness to improve vehicle driver vibration isolation, Journal of Sound and Vibration, Volume 302 (2007) no. 4-5, p. 865 | DOI:10.1016/j.jsv.2006.12.024
- A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence, Archive for Rational Mechanics and Analysis, Volume 180 (2006) no. 2, p. 183 | DOI:10.1007/s00205-005-0400-7
- A nonlinear Korn inequality on a surface, Journal de Mathématiques Pures et Appliquées, Volume 85 (2006) no. 1, p. 2 | DOI:10.1016/j.matpur.2005.10.010
- NonLinearly Elastic Membrane Model For Heterogeneous Shells by Using a New Double Scale Variational Formulation: A Formal Asymptotic Approach, Journal of Elasticity, Volume 84 (2006) no. 3, p. 245 | DOI:10.1007/s10659-006-9066-0
- Nonlinear partial differential equations of fourth order under mixed boundary conditions, Mathematische Zeitschrift, Volume 254 (2006) no. 1, p. 33 | DOI:10.1007/s00209-005-0917-3
- A Derivation of Continuum Nonlinear Plate Theory from Atomistic Models, Multiscale Modeling Simulation, Volume 5 (2006) no. 2, p. 664 | DOI:10.1137/050646251
- Some remarks on the asymptotic invertibility of the linearized operator of nonlinear elasticity in the context of the displacement approach, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 86 (2006) no. 5, p. 400 | DOI:10.1002/zamm.200510249
- NONLINEARLY ELASTIC THIN PLATE MODELS FOR A CLASS OF OGDEN MATERIALS II: THE BENDING MODEL, Analysis and Applications, Volume 03 (2005) no. 03, p. 271 | DOI:10.1142/s0219530505000571
- An Introduction to Differential Geometry with Applications to Elasticity, Journal of Elasticity, Volume 78-79 (2005) no. 1-3, p. 1 | DOI:10.1007/s10659-005-4738-8
- Second-order analysis for thin structures, Nonlinear Analysis: Theory, Methods Applications, Volume 56 (2004) no. 5, p. 679 | DOI:10.1016/j.na.2003.10.007
- The Continuity of a surface as a function of its two fundamental forms, Journal de Mathématiques Pures et Appliquées, Volume 82 (2003) no. 3, p. 253 | DOI:10.1016/s0021-7824(03)00017-5
Cité par 104 documents. Sources : Crossref
Commentaires - Politique