[Un principe du maximum pour les solutions bornées de l'équation des télégraphistes en dimension spatiale trois]
On démontre un principe du maximum pour les solutions faibles
A maximum principle is proved for the weak solutions
Accepté le :
Publié le :
Jean Mawhin 1 ; Rafael Ortega 2 ; Aureliano M. Robles-Pérez 2
@article{CRMATH_2002__334_12_1089_0, author = {Jean Mawhin and Rafael Ortega and Aureliano M. Robles-P\'erez}, title = {A maximum principle for bounded solutions of the telegraph equation in space dimension three}, journal = {Comptes Rendus. Math\'ematique}, pages = {1089--1094}, publisher = {Elsevier}, volume = {334}, number = {12}, year = {2002}, doi = {10.1016/S1631-073X(02)02406-8}, language = {en}, }
TY - JOUR AU - Jean Mawhin AU - Rafael Ortega AU - Aureliano M. Robles-Pérez TI - A maximum principle for bounded solutions of the telegraph equation in space dimension three JO - Comptes Rendus. Mathématique PY - 2002 SP - 1089 EP - 1094 VL - 334 IS - 12 PB - Elsevier DO - 10.1016/S1631-073X(02)02406-8 LA - en ID - CRMATH_2002__334_12_1089_0 ER -
%0 Journal Article %A Jean Mawhin %A Rafael Ortega %A Aureliano M. Robles-Pérez %T A maximum principle for bounded solutions of the telegraph equation in space dimension three %J Comptes Rendus. Mathématique %D 2002 %P 1089-1094 %V 334 %N 12 %I Elsevier %R 10.1016/S1631-073X(02)02406-8 %G en %F CRMATH_2002__334_12_1089_0
Jean Mawhin; Rafael Ortega; Aureliano M. Robles-Pérez. A maximum principle for bounded solutions of the telegraph equation in space dimension three. Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1089-1094. doi : 10.1016/S1631-073X(02)02406-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02406-8/
[1] Éléments d'analyse, Tome II, Gauthier-Villars, Paris, 1974
[2] Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer, Berlin, 1974
[3] A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings, J. Math. Anal. Appl., Volume 251 (2000), pp. 695-709
[4] A maximum principle for periodic solutions of the telegraph equation, J. Math. Anal. Appl., Volume 221 (1998), pp. 625-651
[5] Equations of Mathematical Physics, Marcel Dekker, New York, 1971
- The theory of solution for a class of nonlinear telegraph systems with a parameter, Acta Mathematicae Applicatae Sinica, Volume 47 (2024) no. 3, pp. 429-442 | DOI:10.20142/j.cnki.amas.202401024 | Zbl:7959386
- Qualitative analysis of fourth-order hyperbolic equations, Frontiers in Applied Mathematics and Statistics, Volume 10 (2024) | DOI:10.3389/fams.2024.1467199
- New results of positive doubly periodic solutions to telegraph equations, Electronic Research Archive, Volume 30 (2022) no. 3, pp. 1104-1125 | DOI:10.3934/era.2022059 | Zbl:1490.35022
- Strong full bounded solutions of nonlinear parabolic equations with nonlinear boundary conditions, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 74 (2011) no. 15, pp. 5171-5188 | DOI:10.1016/j.na.2011.05.012 | Zbl:1223.35205
- Maximum Principle for Bounded Solutions of the Telegraph Equation: The Case of High Dimensions, Elliptic and Parabolic Problems, Volume 63 (2005), p. 343 | DOI:10.1007/3-7643-7384-9_34
- Maximum principles for bounded solutions of the telegraph equation in space dimensions two and three and applications, Journal of Differential Equations, Volume 208 (2005) no. 1, pp. 42-63 | DOI:10.1016/j.jde.2003.11.003 | Zbl:1082.35040
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier