Comptes Rendus
A maximum principle for bounded solutions of the telegraph equation in space dimension three
[Un principe du maximum pour les solutions bornées de l'équation des télégraphistes en dimension spatiale trois]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1089-1094.

On démontre un principe du maximum pour les solutions faibles uL (×𝕋 3 ) de l'équation des télégraphistes uttΔxu+cut+λu=f(t,x) en dimension spatiale trois lorsque c>0, λ∈(0,c2/4] et fL (×𝕋 3 ) (Théorème 1). Le résultat est étendu à une solution et un terme forçant appartenant à un certain espace de mesures bornées (Théorème 2). Ces résultats fournissent une méthode de sous- et sur-solutions pour l'équation semilinéaire uttΔxu+cut=F(t,x,u).

A maximum principle is proved for the weak solutions uL (×𝕋 3 ) of the telegraph equation uttΔxu+cut+λu=f(t,x), in space dimension three, when c>0, λ∈(0,c2/4] and fL (×𝕋 3 ) (Theorem 1). The result is extended to a solution and a forcing belonging to a suitable space of bounded measures (Theorem 2). Those results provide a method of upper and lower solutions for the semilinear equation uttΔxu+cut=F(t,x,u).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02406-8

Jean Mawhin 1 ; Rafael Ortega 2 ; Aureliano M. Robles-Pérez 2

1 Département de mathématique, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
2 Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
@article{CRMATH_2002__334_12_1089_0,
     author = {Jean Mawhin and Rafael Ortega and Aureliano M. Robles-P\'erez},
     title = {A maximum principle for bounded solutions of the telegraph equation in space dimension three},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1089--1094},
     publisher = {Elsevier},
     volume = {334},
     number = {12},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02406-8},
     language = {en},
}
TY  - JOUR
AU  - Jean Mawhin
AU  - Rafael Ortega
AU  - Aureliano M. Robles-Pérez
TI  - A maximum principle for bounded solutions of the telegraph equation in space dimension three
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 1089
EP  - 1094
VL  - 334
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02406-8
LA  - en
ID  - CRMATH_2002__334_12_1089_0
ER  - 
%0 Journal Article
%A Jean Mawhin
%A Rafael Ortega
%A Aureliano M. Robles-Pérez
%T A maximum principle for bounded solutions of the telegraph equation in space dimension three
%J Comptes Rendus. Mathématique
%D 2002
%P 1089-1094
%V 334
%N 12
%I Elsevier
%R 10.1016/S1631-073X(02)02406-8
%G en
%F CRMATH_2002__334_12_1089_0
Jean Mawhin; Rafael Ortega; Aureliano M. Robles-Pérez. A maximum principle for bounded solutions of the telegraph equation in space dimension three. Comptes Rendus. Mathématique, Volume 334 (2002) no. 12, pp. 1089-1094. doi : 10.1016/S1631-073X(02)02406-8. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02406-8/

[1] J. Dieudonné Éléments d'analyse, Tome II, Gauthier-Villars, Paris, 1974

[2] A.M. Fink Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer, Berlin, 1974

[3] J. Mawhin; R. Ortega; A.M. Robles-Pérez A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings, J. Math. Anal. Appl., Volume 251 (2000), pp. 695-709

[4] R. Ortega; A.M. Robles-Pérez A maximum principle for periodic solutions of the telegraph equation, J. Math. Anal. Appl., Volume 221 (1998), pp. 625-651

[5] V.S. Vladimirov Equations of Mathematical Physics, Marcel Dekker, New York, 1971

Cité par Sources :

Commentaires - Politique