[Groupes d'homotopie rationnels et algèbres de Koszul]
Soient X et Y deux CW-espaces de type fini (X connexe, Y simplement connexe), tels que l'anneau de cohomologie soit un k-recalibrage de . Si est une algèbre de Koszul, alors l'algèbre de Lie graduée est le k-recalibrage de . Si Y est un espace formel, alors l'implication réciproque est vraie aussi, et l'espace Y est coformel. De plus, si X est formel, avec algèbre de cohomologie de Koszul, on trouve des isomorphismes de groupes filtrés entre le complété de Malcev de π1X, le complété de , et le groupe de Milnor–Moore d'applications de cogèbres entre et .
Let X and Y be finite-type CW-spaces (X connected, Y simply connected), such that the ring is a k-rescaling of . If is a Koszul algebra, then the graded Lie algebra is the k-rescaling of . If Y is a formal space, then the converse holds, and Y is coformal. Furthermore, if X is formal, with Koszul cohomology algebra, there exist filtered group isomorphisms between the Malcev completion of π1X, the completion of , and the Milnor–Moore group of coalgebra maps from to .
Accepté le :
Publié le :
Stefan Papadima 1 ; Alexander I. Suciu 2
@article{CRMATH_2002__335_1_53_0, author = {Stefan Papadima and Alexander I. Suciu}, title = {Rational homotopy groups and {Koszul} algebras}, journal = {Comptes Rendus. Math\'ematique}, pages = {53--58}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02420-2}, language = {en}, }
Stefan Papadima; Alexander I. Suciu. Rational homotopy groups and Koszul algebras. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 53-58. doi : 10.1016/S1631-073X(02)02420-2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02420-2/
[1] Commutator Calculus and Groups of Homotopy Classes, London Math. Soc. Lecture Note Series, 50, Cambridge University Press, Cambridge, 1981
[2] D.C. Cohen, F.R. Cohen, M. Xicoténcatl, Lie algebras associated to fiber-type arrangements, Preprint, 2000, available at arXiv:math.AT/0005091
[3] Loop spaces of configuration spaces, braid-like groups, and knots, Cohomological Methods in Homotopy Theory, Progress in Math., 196, Birkhäuser, Basel, 2001, pp. 59-78
[4] F.R. Cohen, T. Sato, On groups of homotopy groups, loop spaces, and braid-like groups, Preprint, 2001
[5] Higher dimensional link operations and stable homotopy, Pacific J. Math., Volume 139 (1989), pp. 87-106
[6] Homotopy Lie algebras and fundamental groups via deformation theory, Ann. Inst. Fourier, Volume 42 (1992), pp. 905-935
[7] On the structure of Hopf algebras, Ann. of Math., Volume 81 (1965), pp. 211-264
[8] Campbell–Hausdorff invariants of links, Proc. London Math. Soc., Volume 75 (1997), pp. 641-670
[9] S. Papadima, A.I. Suciu, Homotopy Lie algebras, lower central series, and the Koszul property, Preprint, 2001, available at arXiv:math.AT/0110303
[10] On rational K[π,1] spaces and Koszul algebras, J. Pure Appl. Algebra, Volume 144 (1999), pp. 157-167
[11] Rational homotopy theory, Ann. of Math., Volume 90 (1969), pp. 205-295
[12] Koszul algebras from graphs and hyperplane arrangements, J. London Math. Soc., Volume 56 (1997), pp. 477-490
[13] Graded algebras having a unique rational homotopy type, Proc. Amer. Math. Soc., Volume 85 (1982), pp. 623-632
[14] Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math., Volume 47 (1977), pp. 269-331
Cité par Sources :
Commentaires - Politique