[Linear forms in multiple zeta values and multiple integrals]
The problem we consider is to define families of n-dimensional integrals, endowed with group actions as in Rhin–Viola's work [5,6], the values of which are linear forms, over the rationals, in multiple zeta values of weight at most n. We generalize Vasilyev's [10] and Sorokin's [7] approaches, and give a change of variables that connects them to each other. We describe a group structure for a n-dimensional integral that specializes, for n=2 and n=3, to the ones obtained by Rhin and Viola.
Le problème considéré ici est de définir des familles d'intégrales n-uples, munies d'une action de groupe comme dans les travaux de Rhin–Viola [5,6], dont les valeurs soient des formes linéaires, sur le corps des rationnels, en les polyzêtas de poids au plus n. On généralise pour cela les approches de Vasilyev [10] et Sorokin [7], en les reliant par un changement de variables. On décrit aussi une structure de groupe pour une intégrale n-uple qui donne, pour n=2 et n=3, celles obtenues par Rhin et Viola.
Accepted:
Published online:
Stéphane Fischler 1
@article{CRMATH_2002__335_1_1_0, author = {St\'ephane Fischler}, title = {Formes lin\'eaires en polyz\^etas et int\'egrales multiples}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--4}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02424-X}, language = {fr}, }
Stéphane Fischler. Formes linéaires en polyzêtas et intégrales multiples. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 1-4. doi : 10.1016/S1631-073X(02)02424-X. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02424-X/
[1] Irrationalité de ζ(2) et ζ(3), Astérisque, Volume 61 (1979), pp. 11-13
[2] A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc., Volume 11 (1979) no. 3, pp. 268-272
[3] S. Fischler, Groupes de Rhin–Viola et intégrales multiples, J. Théor. Nombres Bordeaux, soumis
[4] Periods, Mathematics Unlimited – 2001 and Beyond, Springer, 2001, pp. 771-808
[5] On a permutation group related to ζ(2), Acta Arith., Volume 77 (1996) no. 1, pp. 23-56
[6] The group structure for ζ(3), Acta Arith., Volume 97 (2001) no. 3, pp. 269-293
[7] A transcendence measure for π2, Sb. Math., Volume 187 (1996) no. 12, pp. 1819-1852
[8] Apéry's theorem, Moscow Univ. Math. Bull., Volume 53 (1998) no. 3, pp. 48-52
[9] Some formulas for Riemann zeta-function at integer points, Moscow Univ. Math. Bull., Volume 51 (1996) no. 1, pp. 41-43
[10] On small linear forms for the values of the Riemann zeta-function at odd integers, Doklady NAN Belarusi (Reports of the Belarus National Academy of Sciences), Volume 45 (2001) no. 5, pp. 36-40 (en russe)
[11] Valeurs zêta multiples : une introduction, J. Théor. Nombres Bordeaux, Volume 12 (2000) no. 2, pp. 581-595
[12] Integrals represented as linear forms in generalized polylogarithms, Mat. Zametki, Volume 71 (2002) no. 5, pp. 782-787 (en russe)
Cited by Sources:
Comments - Policy