[L'inégalité de Harnack pour les processus symétriques stables sur les fractals]
Nous présentons l'inégalité de Harnack pour les fonctions α-harmoniques sur d-ensembles. En particulier cas de cellule naturelle du triangle de Sierpiński nous obtenons le principe de Harnack à la frontiére. Nous donnons aussi une estimation de la vitesse de decroissance des fonctions α-harmoniques près de la frontière ainsi que l'estimation de Carleson.
We study nonnegative harmonic functions of symmetric α-stable processes on d-sets F. We prove the Harnack inequality for such functions when α∈(0,2/dw)∪(ds,2). Furthermore, we investigate the decay rate of harmonic functions and the Carleson estimate near the boundary of a region in F. In the particular case of natural cells in the Sierpiński gasket we also prove the boundary Harnack principle.
Révisé le :
Publié le :
Krzysztof Bogdan 1 ; Andrzej Stós 1 ; Paweł Sztonyk 1
@article{CRMATH_2002__335_1_59_0, author = {Krzysztof Bogdan and Andrzej St\'os and Pawe{\l} Sztonyk}, title = {Harnack inequality for symmetric stable processes on fractals}, journal = {Comptes Rendus. Math\'ematique}, pages = {59--63}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02425-1}, language = {en}, }
TY - JOUR AU - Krzysztof Bogdan AU - Andrzej Stós AU - Paweł Sztonyk TI - Harnack inequality for symmetric stable processes on fractals JO - Comptes Rendus. Mathématique PY - 2002 SP - 59 EP - 63 VL - 335 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(02)02425-1 LA - en ID - CRMATH_2002__335_1_59_0 ER -
Krzysztof Bogdan; Andrzej Stós; Paweł Sztonyk. Harnack inequality for symmetric stable processes on fractals. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 59-63. doi : 10.1016/S1631-073X(02)02425-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02425-1/
[1] Diffusion on fractals, Lectures on Probability Theory and Statistics, École d'Ete de Probabilites de Saint-Flour XXV, 1995, Lecture Notes in Math., 1690, Springer-Verlag, New York, 1999, pp. 1-121
[2] The construction of Brownian motion on the Sierpinski carpet, Ann. Inst. H. Poincaré, Volume 25 (1989), pp. 225-257
[3] Brownian motion on the Sierpinski gasket, Probab. Theory Related Fields, Volume 79 (1988), pp. 543-623
[4] R.F. Bass, D.A. Levin, Harnack inequalities for jump processes, Preprint
[5] Lévy Processes, Cambridge University Press, Cambridge, 1996
[6] Markov Processes and Potential Theory, Pure Appl. Math., Academic Press, New York, 1968
[7] The boundary Harnack principle for the fractional Laplacian, Studia Math., Volume 123 (1997), pp. 43-80
[8] Probabilistic proof of boundary Harnack principle for α-harmonic functions, Potential Anal., Volume 11 (1999), pp. 135-156
[9] K. Bogdan, A. Stós, P. Sztonyk, Potential theory for Lévy stable processes, Bull. Polish Acad. Sci. Math. 50 (3) (2002), to appear
[10] K. Bogdan, A. Stós, P. Sztonyk, Harnack inequality for symmetric stable processes on d-sets, Preprint
[11] Fractal Geometry, Mathematical Foundations and Applications, Willey, Chichester, 1990
[12] Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions, Math. Nachr., Volume 224 (2001), pp. 75-104
[13] M. Fukushima, T. Uemura, On Sobolev and capacitary inequalities for contractive Besov spaces over d-sets, Preprint, 2001
[14] On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ., Volume 2 (1962), pp. 79-95
[15] Brownian motion on fractals and function spaces, Math. Z., Volume 222 (1996), pp. 495-504
[16] T. Kumagai, Some remarks for stable-like jump processes on fractals, Preprint, 2001
[17] On function spaces related to the fractional diffusions on d-sets, Stochastics Stochastics Rep., Volume 70 (2000), pp. 153-164
[18] Symmetric stable processes on d-sets, Bull. Polish. Acad. Sci. Math., Volume 48 (2000), pp. 237-245
Cité par Sources :
Commentaires - Politique