Comptes Rendus
Harnack inequality for symmetric stable processes on fractals
[L'inégalité de Harnack pour les processus symétriques stables sur les fractals]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 59-63.

Nous présentons l'inégalité de Harnack pour les fonctions α-harmoniques sur d-ensembles. En particulier cas de cellule naturelle du triangle de Sierpiński nous obtenons le principe de Harnack à la frontiére. Nous donnons aussi une estimation de la vitesse de decroissance des fonctions α-harmoniques près de la frontière ainsi que l'estimation de Carleson.

We study nonnegative harmonic functions of symmetric α-stable processes on d-sets F. We prove the Harnack inequality for such functions when α∈(0,2/dw)∪(ds,2). Furthermore, we investigate the decay rate of harmonic functions and the Carleson estimate near the boundary of a region in F. In the particular case of natural cells in the Sierpiński gasket we also prove the boundary Harnack principle.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02425-1

Krzysztof Bogdan 1 ; Andrzej Stós 1 ; Paweł Sztonyk 1

1 Institute of Mathematics, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
@article{CRMATH_2002__335_1_59_0,
     author = {Krzysztof Bogdan and Andrzej St\'os and Pawe{\l} Sztonyk},
     title = {Harnack inequality for symmetric stable processes on fractals},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {59--63},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02425-1},
     language = {en},
}
TY  - JOUR
AU  - Krzysztof Bogdan
AU  - Andrzej Stós
AU  - Paweł Sztonyk
TI  - Harnack inequality for symmetric stable processes on fractals
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 59
EP  - 63
VL  - 335
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02425-1
LA  - en
ID  - CRMATH_2002__335_1_59_0
ER  - 
%0 Journal Article
%A Krzysztof Bogdan
%A Andrzej Stós
%A Paweł Sztonyk
%T Harnack inequality for symmetric stable processes on fractals
%J Comptes Rendus. Mathématique
%D 2002
%P 59-63
%V 335
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)02425-1
%G en
%F CRMATH_2002__335_1_59_0
Krzysztof Bogdan; Andrzej Stós; Paweł Sztonyk. Harnack inequality for symmetric stable processes on fractals. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 59-63. doi : 10.1016/S1631-073X(02)02425-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02425-1/

[1] M.T. Barlow Diffusion on fractals, Lectures on Probability Theory and Statistics, École d'Ete de Probabilites de Saint-Flour XXV, 1995, Lecture Notes in Math., 1690, Springer-Verlag, New York, 1999, pp. 1-121

[2] M.T. Barlow; R.F. Bass The construction of Brownian motion on the Sierpinski carpet, Ann. Inst. H. Poincaré, Volume 25 (1989), pp. 225-257

[3] M.T. Barlow; E.A. Perkins Brownian motion on the Sierpinski gasket, Probab. Theory Related Fields, Volume 79 (1988), pp. 543-623

[4] R.F. Bass, D.A. Levin, Harnack inequalities for jump processes, Preprint

[5] J. Bertoin Lévy Processes, Cambridge University Press, Cambridge, 1996

[6] R.M. Blumenthal; R.K. Getoor Markov Processes and Potential Theory, Pure Appl. Math., Academic Press, New York, 1968

[7] K. Bogdan The boundary Harnack principle for the fractional Laplacian, Studia Math., Volume 123 (1997), pp. 43-80

[8] K. Bogdan; T. Byczkowski Probabilistic proof of boundary Harnack principle for α-harmonic functions, Potential Anal., Volume 11 (1999), pp. 135-156

[9] K. Bogdan, A. Stós, P. Sztonyk, Potential theory for Lévy stable processes, Bull. Polish Acad. Sci. Math. 50 (3) (2002), to appear

[10] K. Bogdan, A. Stós, P. Sztonyk, Harnack inequality for symmetric stable processes on d-sets, Preprint

[11] K. Falconer Fractal Geometry, Mathematical Foundations and Applications, Willey, Chichester, 1990

[12] W. Farkas; N. Jacob Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions, Math. Nachr., Volume 224 (2001), pp. 75-104

[13] M. Fukushima, T. Uemura, On Sobolev and capacitary inequalities for contractive Besov spaces over d-sets, Preprint, 2001

[14] N. Ikeda; S. Watanabe On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ., Volume 2 (1962), pp. 79-95

[15] A. Jonsson Brownian motion on fractals and function spaces, Math. Z., Volume 222 (1996), pp. 495-504

[16] T. Kumagai, Some remarks for stable-like jump processes on fractals, Preprint, 2001

[17] K. Pietruska-Pałuba On function spaces related to the fractional diffusions on d-sets, Stochastics Stochastics Rep., Volume 70 (2000), pp. 153-164

[18] A. Stós Symmetric stable processes on d-sets, Bull. Polish. Acad. Sci. Math., Volume 48 (2000), pp. 237-245

Cité par Sources :

Commentaires - Politique