Comptes Rendus
Log-Lipschitz regularity and uniqueness of the flow for a field in (Wloc𝐧/𝐩+1,𝐩(𝐧))𝐧
[Régularité Log-Lipschitz et unicité du flot pour les champs de vecteurs (Wloc𝐧/𝐩+1,𝐩(𝐧))𝐧]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 17-22.

On considère le problème de Cauchy pour un système d'équations différentielles ordinaires x˙=b(x),t>0;x(0)=x0 où l'état x=x(t)n et où b est un champ de vecteurs dans (Wlocn/p+1,p(n))n. On démontre que, pour tout x0n, il existe une unique solution locale (en temps). Ceci correspond à un cas limite du point de vue de l'appartenance à des espaces de Sobolev. En effet, si s<n/p+1 il existe des champs de vecteurs b(Wlocs,p(n))n pour lesquels l'unicité n'est pas satisfaite. Par contre, lorsque s>n/p+1 l'unicité est trivialement vraie car b est localement Lipschitz grâce aux inclusions de Sobolev. La preuve consiste à démontrer que le champ de vitesses vérifie une condition de continuité de type Log-Lipschitz permettant de vérifier que la condition classique d'unicité d'Osgood est satisfaite. Lorsque p=2 la preuve se fait à l'aide des séries de Fourier. Lorsque p≠2 on utilise l'inégalité de Trudinger et la stratégie de la preuve du théorème de Morrey.

We consider the initial value problem x˙=b(x),t>0;x(0)=x0, with x=x(t)n. We prove that local existence and uniqueness of solutions holds when the field b belongs to (Wlocn/p+1,p(n))n. This case corresponds to the limit regularity one in Sobolev terms since uniqueness may fail when b(Wlocs,p(n)) with s<n/p+1 but holds immediately when s>n/p+1 because of the Sobolev imbedding from (Wlocs,p(n))n into the space of locally Lipschitz fields. The proof of uniqueness relies on a Log-Lipschitz continuity property we prove for vector fields in this Sobolev class. When p=2 the proof is carried out by means of Fourier series, decomposing the field into the low and high frequencies. When p≠2 the proof uses Trudinger's inequality and the strategy of proof of Morrey's theorem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02426-3

Enrique Zuazua 1

1 Departamento de Matemáticas, Universidad Autónoma, 28049 Madrid, Spain
@article{CRMATH_2002__335_1_17_0,
     author = {Enrique Zuazua},
     title = {Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {17--22},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02426-3},
     language = {en},
}
TY  - JOUR
AU  - Enrique Zuazua
TI  - Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 17
EP  - 22
VL  - 335
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02426-3
LA  - en
ID  - CRMATH_2002__335_1_17_0
ER  - 
%0 Journal Article
%A Enrique Zuazua
%T Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$
%J Comptes Rendus. Mathématique
%D 2002
%P 17-22
%V 335
%N 1
%I Elsevier
%R 10.1016/S1631-073X(02)02426-3
%G en
%F CRMATH_2002__335_1_17_0
Enrique Zuazua. Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 17-22. doi : 10.1016/S1631-073X(02)02426-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02426-3/

[1] R.A. Adams Sobolev Spaces, Academic Press, 1975

[2] J.Y. Chemin; N. Lerner Flot de champs de vecteurs non Lipschitziens et équations de Navier–Stokes, J. Differential Equations, Volume 121 (1995), pp. 314-328

[3] F. Colombini; N. Lerner Sur les champs de vecteurs peu réguliers, Séminaire X-EDP, 2000–2001, Exp. No. XV, École Polytechnique, Palaiseau, 2001

[4] B. Desjardins Linear transport equations with initial values in Sobolev spaces and application to the Navier–Stokes equations, Differential Integral Equations, Volume 10 (1997) no. 3, pp. 577-586

[5] R. Diperna; P.-L. Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547

[6] L.C. Evans Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, 1998

[7] N. Fusco; P.-L. Lions; C. Sbordone Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., Volume 124 (1996) no. 2, pp. 561-565

[8] D. Gilbarg; N.S. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001

[9] P.-L. Lions Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris, Série I, Volume 326 (1998), pp. 833-838

[10] V.J. Sedenko A proof of a uniqueness theorem for generalized solutions of initial-boundary value problems for Marguerre–Vlasov equations of the vibration of shells with damped boundary conditions, Appl. Math. Optim., Volume 39 (1999) no. 3, pp. 309-326

[11] E. Stein Singular Integrals and the Differentiablity Properties of Functions, Princeton University Press, 1970

  • Nicola De Nitti; David Meyer; Christian Seis Optimal regularity for the 2D Euler equations in the Yudovich class, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 191 (2024), p. 36 (Id/No 103631) | DOI:10.1016/j.matpur.2024.103631 | Zbl:7947619
  • Óscar Domínguez; Sergey Tikhonov Function spaces of logarithmic smoothness: embeddings and characterizations, Memoirs of the American Mathematical Society, 1393, Providence, RI: American Mathematical Society (AMS), 2023 | DOI:10.1090/memo/1393 | Zbl:1512.46001
  • A. Constantin A uniqueness criterion for ordinary differential equations, Journal of Differential Equations, Volume 342 (2023), pp. 179-192 | DOI:10.1016/j.jde.2022.09.035 | Zbl:1512.34018
  • Luigi Ambrosio; Sebastiano Nicolussi Golo; Francesco Serra Cassano Classical flows of vector fields with exponential or sub-exponential summability, Journal of Differential Equations, Volume 372 (2023), pp. 458-504 | DOI:10.1016/j.jde.2023.07.005 | Zbl:1527.35333
  • Elia Brué; Quoc-Hung Nguyen Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts, Mathematische Annalen, Volume 380 (2021) no. 1-2, pp. 855-883 | DOI:10.1007/s00208-020-01988-5 | Zbl:1512.35019
  • Óscar Domínguez; Dorothee D. Haroske; Sergey Tikhonov Embeddings and characterizations of Lipschitz spaces, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 144 (2020), pp. 69-105 | DOI:10.1016/j.matpur.2020.11.004 | Zbl:1458.46023
  • Dan Tiba Implicit parametrizations and applications in optimization and control, Mathematical Control and Related Fields, Volume 10 (2020) no. 3, pp. 455-470 | DOI:10.3934/mcrf.2020006 | Zbl:1456.49008
  • Sourav Mitra Stabilization of the non-homogeneous Navier-Stokes equations in a 2d channel, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 25 (2019), p. 35 (Id/No 66) | DOI:10.1051/cocv/2019036 | Zbl:1468.35111
  • Dan Tiba Iterated Hamiltonian type systems and applications, Journal of Differential Equations, Volume 264 (2018) no. 8, pp. 5465-5479 | DOI:10.1016/j.jde.2018.01.003 | Zbl:1382.37065
  • Mehdi Badra; Sylvain Ervedoza; Sergio Guerrero Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 33 (2016) no. 2, pp. 529-574 | DOI:10.1016/j.anihpc.2014.11.006 | Zbl:1339.35207
  • Hantaek Bae; Marco Cannone Log-Lipschitz regularity of the 3D Navier-Stokes equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 135 (2016), pp. 223-235 | DOI:10.1016/j.na.2016.01.014 | Zbl:1337.35110
  • Mihaela Roxana Nicolai; Dan Tiba Implicit Parametrizations and Applications, System Modeling and Optimization, Volume 494 (2016), p. 390 | DOI:10.1007/978-3-319-55795-3_37
  • Mihaela Roxana Nicolai; Dan Tiba Implicit functions and parametrizations in dimension three: generalized solutions, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 6, pp. 2701-2710 | DOI:10.3934/dcds.2015.35.2701 | Zbl:1336.26013
  • K. Bahlali; E. Essaky; M. Hassani Existence and uniqueness of multidimensional BSDEs and of systems of degenerate PDEs with superlinear growth generator, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 6, pp. 4251-4288 | DOI:10.1137/130947933 | Zbl:1331.60107
  • Paola F. Antonietti; Aldo Pratelli Finite element approximation of the Sobolev constant, Numerische Mathematik, Volume 117 (2011) no. 1, pp. 37-64 | DOI:10.1007/s00211-010-0347-y | Zbl:1208.65162
  • M Dashti; J C Robinson A simple proof of uniqueness of the particle trajectories for solutions of the Navier–Stokes equations, Nonlinearity, Volume 22 (2009) no. 4, p. 735 | DOI:10.1088/0951-7715/22/4/003
  • Juan Luis Vázquez; Enrique Zuazua Lack of collision in a simplified 1D model for fluid-solid interaction, M3AS. Mathematical Models Methods in Applied Sciences, Volume 16 (2006) no. 5, pp. 637-678 | DOI:10.1142/s0218202506001303 | Zbl:1387.35634

Cité par 17 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: