[Régularité Log-Lipschitz et unicité du flot pour les champs de vecteurs
On considère le problème de Cauchy pour un système d'équations différentielles ordinaires
We consider the initial value problem
Accepté le :
Publié le :
Enrique Zuazua 1
@article{CRMATH_2002__335_1_17_0, author = {Enrique Zuazua}, title = {Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {17--22}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02426-3}, language = {en}, }
TY - JOUR AU - Enrique Zuazua TI - Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$ JO - Comptes Rendus. Mathématique PY - 2002 SP - 17 EP - 22 VL - 335 IS - 1 PB - Elsevier DO - 10.1016/S1631-073X(02)02426-3 LA - en ID - CRMATH_2002__335_1_17_0 ER -
%0 Journal Article %A Enrique Zuazua %T Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$ %J Comptes Rendus. Mathématique %D 2002 %P 17-22 %V 335 %N 1 %I Elsevier %R 10.1016/S1631-073X(02)02426-3 %G en %F CRMATH_2002__335_1_17_0
Enrique Zuazua. Log-Lipschitz regularity and uniqueness of the flow for a field in $ \mathbf{(}\mathrm{W}_{\mathrm{loc}}^{\mathbf{n/p+1,p}}\mathbf{(}\mathbb{R}^{\mathbf{n}}\mathbf{))}^{\mathbf{n}}$. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 17-22. doi : 10.1016/S1631-073X(02)02426-3. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02426-3/
[1] Sobolev Spaces, Academic Press, 1975
[2] Flot de champs de vecteurs non Lipschitziens et équations de Navier–Stokes, J. Differential Equations, Volume 121 (1995), pp. 314-328
[3] Sur les champs de vecteurs peu réguliers, Séminaire X-EDP, 2000–2001, Exp. No. XV, École Polytechnique, Palaiseau, 2001
[4] Linear transport equations with initial values in Sobolev spaces and application to the Navier–Stokes equations, Differential Integral Equations, Volume 10 (1997) no. 3, pp. 577-586
[5] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[6] Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, 1998
[7] Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., Volume 124 (1996) no. 2, pp. 561-565
[8] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001
[9] Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris, Série I, Volume 326 (1998), pp. 833-838
[10] A proof of a uniqueness theorem for generalized solutions of initial-boundary value problems for Marguerre–Vlasov equations of the vibration of shells with damped boundary conditions, Appl. Math. Optim., Volume 39 (1999) no. 3, pp. 309-326
[11] Singular Integrals and the Differentiablity Properties of Functions, Princeton University Press, 1970
- Optimal regularity for the 2D Euler equations in the Yudovich class, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 191 (2024), p. 36 (Id/No 103631) | DOI:10.1016/j.matpur.2024.103631 | Zbl:7947619
- Function spaces of logarithmic smoothness: embeddings and characterizations, Memoirs of the American Mathematical Society, 1393, Providence, RI: American Mathematical Society (AMS), 2023 | DOI:10.1090/memo/1393 | Zbl:1512.46001
- A uniqueness criterion for ordinary differential equations, Journal of Differential Equations, Volume 342 (2023), pp. 179-192 | DOI:10.1016/j.jde.2022.09.035 | Zbl:1512.34018
- Classical flows of vector fields with exponential or sub-exponential summability, Journal of Differential Equations, Volume 372 (2023), pp. 458-504 | DOI:10.1016/j.jde.2023.07.005 | Zbl:1527.35333
- Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts, Mathematische Annalen, Volume 380 (2021) no. 1-2, pp. 855-883 | DOI:10.1007/s00208-020-01988-5 | Zbl:1512.35019
- Embeddings and characterizations of Lipschitz spaces, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 144 (2020), pp. 69-105 | DOI:10.1016/j.matpur.2020.11.004 | Zbl:1458.46023
- Implicit parametrizations and applications in optimization and control, Mathematical Control and Related Fields, Volume 10 (2020) no. 3, pp. 455-470 | DOI:10.3934/mcrf.2020006 | Zbl:1456.49008
- Stabilization of the non-homogeneous Navier-Stokes equations in a 2d channel, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 25 (2019), p. 35 (Id/No 66) | DOI:10.1051/cocv/2019036 | Zbl:1468.35111
- Iterated Hamiltonian type systems and applications, Journal of Differential Equations, Volume 264 (2018) no. 8, pp. 5465-5479 | DOI:10.1016/j.jde.2018.01.003 | Zbl:1382.37065
- Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 33 (2016) no. 2, pp. 529-574 | DOI:10.1016/j.anihpc.2014.11.006 | Zbl:1339.35207
- Log-Lipschitz regularity of the 3D Navier-Stokes equations, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 135 (2016), pp. 223-235 | DOI:10.1016/j.na.2016.01.014 | Zbl:1337.35110
- Implicit Parametrizations and Applications, System Modeling and Optimization, Volume 494 (2016), p. 390 | DOI:10.1007/978-3-319-55795-3_37
- Implicit functions and parametrizations in dimension three: generalized solutions, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 6, pp. 2701-2710 | DOI:10.3934/dcds.2015.35.2701 | Zbl:1336.26013
- Existence and uniqueness of multidimensional BSDEs and of systems of degenerate PDEs with superlinear growth generator, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 6, pp. 4251-4288 | DOI:10.1137/130947933 | Zbl:1331.60107
- Finite element approximation of the Sobolev constant, Numerische Mathematik, Volume 117 (2011) no. 1, pp. 37-64 | DOI:10.1007/s00211-010-0347-y | Zbl:1208.65162
- A simple proof of uniqueness of the particle trajectories for solutions of the Navier–Stokes equations, Nonlinearity, Volume 22 (2009) no. 4, p. 735 | DOI:10.1088/0951-7715/22/4/003
- Lack of collision in a simplified 1D model for fluid-solid interaction, M
AS. Mathematical Models Methods in Applied Sciences, Volume 16 (2006) no. 5, pp. 637-678 | DOI:10.1142/s0218202506001303 | Zbl:1387.35634
Cité par 17 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier