Comptes Rendus
A reduced-basis element method
[Une méthode d'éléments en base réduite]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 195-200.

Les méthodes de base réduite sont particulièrement attractives par la diminution du nombre de degrés de liberté qu'elles entraı̂nent pour l'approximation d'un système d'équations aux dérivées partielles. L'idée principale sur laquelle repose cette approche est la définition de fonctions de base ad'hoc contenant une grande part d'information sur le système considéré. Dans cette Note nous proposons et analysons une méthode de base réduite pour la simulation d'écoulements dans un système hiérarchique comme ce peut être le cas dans un réseau de distribution de fluides ou le système sanguin. Nous proposons de décomposer la géométrie du domaine en un assemblage de formes génériques (des conduites et des bifurcations par exemple) et d'associer à ces sous parties des fonctions de bases réduites obtenues comme des instantanés géométriques représentatifs. Le système global est alors construit en recollant ces fonctions locales par des multiplicateurs de Lagrange.

Reduced basis methods are particularly attractive to use in order to diminish the number of degrees-of-freedom associated with the approximation to a set of partial differential equations. The main idea is to construct ad hoc basis functions with a large information content. In this Note, we propose to develop and analyze reduced basis methods for simulating hierarchical flow systems, which is of relevance for studying flows in a network of pipes, an example being a set of arteries or veins. We propose to decompose the geometry into generic parts (e.g., pipes and bifurcations), and to construct a reduced basis for these generic parts by considering representative geometric snapshots. The global system is constructed by gluing the individual basis solutions together via Lagrange multipliers.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02427-5

Yvon Maday 1 ; Einar M. Rønquist 2

1 Laboratoire Jacques Louis Lions, Université Paris VI, Boı̂te courrier 187, 75252 Paris cedex 05, France
2 Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway
@article{CRMATH_2002__335_2_195_0,
     author = {Yvon Maday and Einar M. R{\o}nquist},
     title = {A reduced-basis element method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {195--200},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02427-5},
     language = {en},
}
TY  - JOUR
AU  - Yvon Maday
AU  - Einar M. Rønquist
TI  - A reduced-basis element method
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 195
EP  - 200
VL  - 335
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02427-5
LA  - en
ID  - CRMATH_2002__335_2_195_0
ER  - 
%0 Journal Article
%A Yvon Maday
%A Einar M. Rønquist
%T A reduced-basis element method
%J Comptes Rendus. Mathématique
%D 2002
%P 195-200
%V 335
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02427-5
%G en
%F CRMATH_2002__335_2_195_0
Yvon Maday; Einar M. Rønquist. A reduced-basis element method. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 195-200. doi : 10.1016/S1631-073X(02)02427-5. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02427-5/

[1] C. Bernardi; Y. Maday; A.T. Patera A new nonconforming approach to domain decomposition: The mortar element method (H. Brezis; J.L. Lions, eds.), Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, Pitman, 1990

[2] L. Machiels; Y. Maday; Y. Oliveira; A.T. Patera; D.V. Rovas Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris, Série I, Volume 331 (2000) no. 2, pp. 153-158

[3] Y. Maday, E.M. Rønquist, A reduced-basis element method, J. Sci. Comput. (2002), to appear

[4] A.K. Noor; J.M. Peters Reduced basis technique for nonlinear analysis of structures, AIAA Journal, Volume 18 (1980) no. 4, pp. 455-462

  • Brody Gatza; Cheng Huang, AIAA SCITECH 2025 Forum (2025) | DOI:10.2514/6.2025-0357
  • Pierre-Eliot Malleval; Ronan Scanff; David Néron Advancing industrial finite element software: Developing Model Order Reduction for nonlinear transient thermal problems, Finite Elements in Analysis and Design, Volume 244 (2025), p. 104299 | DOI:10.1016/j.finel.2024.104299
  • Martin R. Pfaller; Luca Pegolotti; Jonathan Pham; Natalia L. Rubio; Alison L. Marsden Reduced-order modeling of cardiovascular hemodynamics, Biomechanics of the Aorta (2024), p. 449 | DOI:10.1016/b978-0-323-95484-6.00016-6
  • Floriane Wurtzer; David Néron; Pierre-Alain Boucard A modular model-order reduction approach for the solution of parametrized strongly-coupled thermo-mechanical problems, Finite Elements in Analysis and Design, Volume 239 (2024), p. 104207 | DOI:10.1016/j.finel.2024.104207
  • Amy de Castro; Pavel Bochev; Paul Kuberry; Irina Tezaur Explicit synchronous partitioned scheme for coupled reduced order models based on composite reduced bases, Computer Methods in Applied Mechanics and Engineering, Volume 417 (2023), p. 116398 | DOI:10.1016/j.cma.2023.116398
  • Hải Nam Nguyễn; Phung Van Binh Implementing PGD technique in solving the problem of identifying Young's modulus of linear elastic isotropic material from full-field measurements by FEMU method, Journal of Military Science and Technology, Volume 91 (2023), p. 96 | DOI:10.54939/1859-1043.j.mst.91.2023.96-106
  • Louis Schuler; Ludovic Chamoin; Zoubir Khatir; Mounira Berkani; Merouane Ouhab; Nicolas Degrenne Iterative PGD model reduction for the strongly-coupled thermomechanical analysis of crack propagation in power electronic modules, Computational Mechanics, Volume 70 (2022) no. 2, p. 407 | DOI:10.1007/s00466-022-02173-y
  • Ronan Scanff; David Néron; Pierre Ladevèze; Philippe Barabinot; Frédéric Cugnon; Jean-Pierre Delsemme Weakly-invasive LATIN-PGD for solving time-dependent non-linear parametrized problems in solid mechanics, Computer Methods in Applied Mechanics and Engineering, Volume 396 (2022), p. 114999 | DOI:10.1016/j.cma.2022.114999
  • Christina Nasika; Pedro Díez; Pierre Gerard; Thierry J. Massart; Sergio Zlotnik Towards real time assessment of earthfill dams via Model Order Reduction, Finite Elements in Analysis and Design, Volume 199 (2022), p. 103666 | DOI:10.1016/j.finel.2021.103666
  • Wangkun Jia; Ming-C. Cheng A methodology for thermal simulation of interconnects enabled by model reduction with material property variation, Journal of Computational Science, Volume 61 (2022), p. 101665 | DOI:10.1016/j.jocs.2022.101665
  • Louis Schuler; Ludovic Chamoin; Zoubir Khatir; Mounira Berkani; Merouane Ouhab; Nicolas Degrenne A Reduced Model Based on Proper Generalized Decomposition for the Fast Analysis of IGBT Power Modules Lifetime, Journal of Electronic Packaging, Volume 144 (2022) no. 3 | DOI:10.1115/1.4053767
  • Ming-C. Cheng; Wangkun Jia, 2021 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2021), p. 73 | DOI:10.1109/sispad54002.2021.9592588
  • Luca Pegolotti; Martin R. Pfaller; Alison L. Marsden; Simone Deparis Model order reduction of flow based on a modular geometrical approximation of blood vessels, Computer Methods in Applied Mechanics and Engineering, Volume 380 (2021), p. 113762 | DOI:10.1016/j.cma.2021.113762
  • Ming Fang; Jian Wang; Hui Li An adaptive model order reduction method for nonlinear seismic analysis of civil structures based on the elastic–plastic states, International Journal for Numerical Methods in Engineering, Volume 122 (2021) no. 15, p. 3985 | DOI:10.1002/nme.6689
  • Carlos Quesada; Pierre Villon; Anne-Virginie Salsac Real-time prediction of the deformation of microcapsules using Proper Orthogonal Decomposition, Journal of Fluids and Structures, Volume 101 (2021), p. 103193 | DOI:10.1016/j.jfluidstructs.2020.103193
  • Ming-C. Cheng Quantum element method for quantum eigenvalue problems derived from projection-based model order reduction, AIP Advances, Volume 10 (2020) no. 11 | DOI:10.1063/5.0018698
  • Martin W. Hess; Annalisa Quaini; Gianluigi Rozza A Spectral Element Reduced Basis Method for Navier–Stokes Equations with Geometric Variations, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, Volume 134 (2020), p. 561 | DOI:10.1007/978-3-030-39647-3_45
  • Ming-C. Cheng, 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (2019), p. 1 | DOI:10.1109/sispad.2019.8870453
  • Martin W. Hess; Gianluigi Rozza A Spectral Element Reduced Basis Method in Parametric CFD, Numerical Mathematics and Advanced Applications ENUMATH 2017, Volume 126 (2019), p. 693 | DOI:10.1007/978-3-319-96415-7_64
  • E. Lopez; D. Gonzalez; J. V. Aguado; E. Abisset-Chavanne; E. Cueto; C. Binetruy; F. Chinesta A Manifold Learning Approach for Integrated Computational Materials Engineering, Archives of Computational Methods in Engineering, Volume 25 (2018) no. 1, p. 59 | DOI:10.1007/s11831-016-9172-5
  • D. González; J. V. Aguado; E. Cueto; E. Abisset-Chavanne; F. Chinesta kPCA-Based Parametric Solutions Within the PGD Framework, Archives of Computational Methods in Engineering, Volume 25 (2018) no. 1, p. 69 | DOI:10.1007/s11831-016-9173-4
  • Alain Cimetiere; Francisco Chinesta; Michel Visonneau; Adrien Leygue; Guangtao Xu; Chady Ghnatios On the space separated representation when addressing the solution of PDE in complex domains, Discrete and Continuous Dynamical Systems - Series S, Volume 9 (2016) no. 2, p. 475 | DOI:10.3934/dcdss.2016008
  • Wangkun Jia; Brian T. Helenbrook; Ming-C. Cheng Fast Thermal Simulation of FinFET Circuits Based on a Multiblock Reduced-Order Model, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Volume 35 (2016) no. 7, p. 1114 | DOI:10.1109/tcad.2015.2501305
  • Elena Lopez; Emmanuelle Abisset-Chavanne; François Lebel; Ram Upadhyay; Sébastien Comas; Christophe Binetruy; Francisco Chinesta Advanced thermal simulation of processes involving materials exhibiting fine-scale microstructures, International Journal of Material Forming, Volume 9 (2016) no. 2, p. 179 | DOI:10.1007/s12289-015-1222-2
  • Simona Perotto; Alessandro Zilio Space–time adaptive hierarchical model reduction for parabolic equations, Advanced Modeling and Simulation in Engineering Sciences, Volume 2 (2015) no. 1 | DOI:10.1186/s40323-015-0046-4
  • S. Brugiapaglia; S. Micheletti; S. Perotto Compressed solving: A numerical approximation technique for elliptic PDEs based on Compressed Sensing, Computers Mathematics with Applications, Volume 70 (2015) no. 6, p. 1306 | DOI:10.1016/j.camwa.2015.07.015
  • D. Wirtz; N. Karajan; B. Haasdonk Surrogate modeling of multiscale models using kernel methods, International Journal for Numerical Methods in Engineering, Volume 101 (2015) no. 1, p. 1 | DOI:10.1002/nme.4767
  • Professor Bozidar Sarler, Dr Nicola Massarott; Saeid Aghighi; Amine Ammar; Christelle Metivier; Francisco Chinesta Parametric solution of the Rayleigh-Benard convection model by using the PGD, International Journal of Numerical Methods for Heat Fluid Flow, Volume 25 (2015) no. 6, p. 1252 | DOI:10.1108/hff-06-2014-0196
  • M. Ohlberger; F. Schindler Error Control for the Localized Reduced Basis Multiscale Method with Adaptive On-Line Enrichment, SIAM Journal on Scientific Computing, Volume 37 (2015) no. 6, p. A2865 | DOI:10.1137/151003660
  • Wangkun Jia; Brian T. Helenbrook; Ming-C. Cheng, Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (2014), p. 1 | DOI:10.1109/itherm.2014.6892257
  • Daniel S. Meyer; Brian T. Helenbrook; Wangkun Jia; Ming-C. Cheng, Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (2014), p. 9 | DOI:10.1109/itherm.2014.6892258
  • Wangkun Jia; Brian T. Helenbrook; Ming-Cheng Cheng Thermal Modeling of Multi-Fin Field Effect Transistor Structure Using Proper Orthogonal Decomposition, IEEE Transactions on Electron Devices, Volume 61 (2014) no. 8, p. 2752 | DOI:10.1109/ted.2014.2332414
  • Simona Perotto; Alessandro Veneziani Coupled Model and Grid Adaptivity in Hierarchical Reduction of Elliptic Problems, Journal of Scientific Computing, Volume 60 (2014) no. 3, p. 505 | DOI:10.1007/s10915-013-9804-y
  • F. Chinesta; A. Leygue; F. Bordeu; J. V. Aguado; E. Cueto; D. Gonzalez; I. Alfaro; A. Ammar; A. Huerta PGD-Based Computational Vademecum for Efficient Design, Optimization and Control, Archives of Computational Methods in Engineering, Volume 20 (2013) no. 1, p. 31 | DOI:10.1007/s11831-013-9080-x
  • D. Bui; M. Hamdaoui; F. De Vuyst POD–ISAT: An efficient POD‐based surrogate approach with adaptive tabulation and fidelity regions for parametrized steady‐state PDE discrete solutions, International Journal for Numerical Methods in Engineering, Volume 94 (2013) no. 7, p. 648 | DOI:10.1002/nme.4468
  • Ulrike Baur; Christopher Beattie; Peter Benner; Serkan Gugercin Interpolatory Projection Methods for Parameterized Model Reduction, SIAM Journal on Scientific Computing, Volume 33 (2011) no. 5, p. 2489 | DOI:10.1137/090776925

Cité par 36 documents. Sources : Crossref

Commentaires - Politique