[Une méthode de base réduite appliquée aux équations Restricted Hartree–Fock]
Dans cette Note, nous décrivons une méthode d'approximation par bases réduites pour les calculs de structures électroniques en chimie quantique basées sur le modèle Restricted Hartree–Fock. Nous présentons des résultats numériques montrant que la méthode permet des réductions de complexité et potentiellement de coûts de calculs.
In this Note, we describe a reduced basis approximation method for the computation of some electronic structure in quantum chemistry, based on the Restricted Hartree–Fock equations. Numerical results are presented to show that this approach allows for reducing the complexity and potentially the computational costs.
Accepté le :
Publié le :
Yvon Maday 1, 2 ; Ulrich Razafison 1
@article{CRMATH_2008__346_3-4_243_0, author = {Yvon Maday and Ulrich Razafison}, title = {A reduced basis method applied to the {Restricted} {Hartree{\textendash}Fock} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--248}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.11.015}, language = {en}, }
Yvon Maday; Ulrich Razafison. A reduced basis method applied to the Restricted Hartree–Fock equations. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 243-248. doi : 10.1016/j.crma.2007.11.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.015/
[1] M. Barrault, Développement de méthodes rapides pour le calcul de structures électroniques, Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, 2005
[2] An “empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 667-672
[3] Towards reduced basis approaches in ab initio electronic structure computations, J. Sci. Comput., Volume 17 (2002) no. 1–4, pp. 461-469
[4] Computational quantum chemistry: a primer (Ph. Ciarlet; C. Le Bris, eds.), Handbook of Numerical Analysis. Volume X: Special Volume: Computational Chemistry, North-Holland, 2003
[5] Feasibility and competitiveness of a reduced-basis approach for rapid electronic structure calculations in quantum chemistry, High-dimensional Partial Differential Equations in Science and Engineering, CRM Proceedings Series, vol. 41, American Mathematical Society, 2007, pp. 15-47
[6] Outputs bounds for the reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris, Ser. I., Volume 331 (2000) no. 2, pp. 153-158
[7] A.T. Patera, G. Rozza, Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations, http://augustine.mit.edu/methodology/methodology_book.htm
[8] G.S.H. Pau, Reduced-basis method for quantum models of periodic solids, Ph.D. Thesis, Massachusetts Institute of Technology, 2007
[9] n-Widths in Approximation Theory, Springer-Verlag, 1985
[10] Reliable real-time solution of parametrized partial differential equations: Reduced basis output bound methods, J. Fluids Engrg., Volume 124 (2002) no. 1, pp. 70-80
[11] A reduced basis element method for the steady Stokes problem, M2AN Math. Model. Numer. Anal., Volume 40 (2006) no. 3, p. 529-552.h
[12] Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigourous reduced basis a posteriori error-bounds, Internat. J. Numer. Methods Fluids, Volume 47 (2005) no. 8–9, pp. 773-788
- An approximation strategy to compute accurate initial density matrices for repeated self-consistent field calculations at different geometries, Molecular Physics, Volume 118 (2020) no. 19-20 | DOI:10.1080/00268976.2020.1779834
- The reduced basis method in all-electron calculations with finite elements, Advances in Computational Mathematics, Volume 41 (2015) no. 5, p. 1035 | DOI:10.1007/s10444-014-9374-z
- A Priori and A Posteriori Error Analysis in Chemistry, Encyclopedia of Applied and Computational Mathematics (2015), p. 5 | DOI:10.1007/978-3-540-70529-1_255
- h — P Finite element approximation for full-potential electronic structure calculations, Chinese Annals of Mathematics, Series B, Volume 35 (2014) no. 1, p. 1 | DOI:10.1007/s11401-013-0819-3
- Reliable Reduced-Order Model for Fast Frequency Sweep in Microwave Circuits, Electromagnetics, Volume 34 (2014) no. 3-4, p. 161 | DOI:10.1080/02726343.2014.877735
- h−P Finite Element Approximation for Full-Potential Electronic Structure Calculations, Partial Differential Equations: Theory, Control and Approximation (2014), p. 349 | DOI:10.1007/978-3-642-41401-5_14
- Block‐adaptive quantum mechanics: An adaptive divide‐and‐conquer approach to interactive quantum chemistry, Journal of Computational Chemistry, Volume 34 (2013) no. 6, p. 492 | DOI:10.1002/jcc.23157
- , 2010 14th International Workshop on Computational Electronics (2010), p. 1 | DOI:10.1109/iwce.2010.5677941
- Reliable Fast Frequency Sweep for Microwave Devices via the Reduced-Basis Method, IEEE Transactions on Microwave Theory and Techniques, Volume 57 (2009) no. 12, p. 2923 | DOI:10.1109/tmtt.2009.2034208
Cité par 9 documents. Sources : Crossref
Commentaires - Politique