A novel approach to periodic homogenization is proposed, based on an unfolding method, which leads to a fixed domain problem (without singularly oscillating coefficients). This method is elementary in nature and applies to cases of periodic multi-scale problems in domains with or without holes (including truss-like structures).
Cette Note présente une approche originale des problèmes d'homogénéisation périodique. Basée sur une méthode d'éclatement périodique, elle conduit à un problème limite à coefficients non oscillants sur un domaine fixe. En comparaison avec les méthodes classiques, cette approche passe par des démonstrations relativement élementaires, et son champs d'application inclut le cas périodique multi-échelle ainsi que le cas des domaines perforés et des structures réticulées.
Accepted:
Published online:
Doina Cioranescu 1; Alain Damlamian 2; Georges Griso 1
@article{CRMATH_2002__335_1_99_0, author = {Doina Cioranescu and Alain Damlamian and Georges Griso}, title = {Periodic unfolding and homogenization}, journal = {Comptes Rendus. Math\'ematique}, pages = {99--104}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02429-9}, language = {en}, }
Doina Cioranescu; Alain Damlamian; Georges Griso. Periodic unfolding and homogenization. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 99-104. doi : 10.1016/S1631-073X(02)02429-9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02429-9/
[1] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992), pp. 1482-1518
[2] Multiscale convergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh Sect. A, Volume 126 (1996), pp. 297-342
[3] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990), pp. 823-836
[4] Two-scale convergence for nonlinear Dirichlet problems in perforated domains, Proc. Roy. Soc. Edinburgh, Sect. A, Volume 130 (2000), pp. 249-276
[5] An adaptation of the multi-scale methods for the analysis of bery thin reticulated structures, C. R. Acad. Sci. Paris, Série I, Volume 332 (2001), pp. 223-228
[6] J. Casado-Dı́az, M. Luna-Laynez, J.D. Martı́n, Homogenization of nonhomogeneous monotone operators in thin reticulated structures: a multi-scale method, to appear
[7] An Introduction to Homogenization, Oxford Lecture Series in Math. Appl., 17, Oxford University Press, 1999
[8] A. Ene, J. Saint Jean Paulin, On a model of fractured porous media, Publication Dép. Math. Université de Metz 2 (1996)
[9] Correctors for the homogenization of monotone operators, Differential Integral Equations, Volume 3 (1990) no. 6, pp. 1151-1166
[10] G. Griso, Analyse asymptotique de structures réticulées. Thèse Université Pierre et Marie Curie (Paris VI), 1996
[11] Thin reticulated structures (M. Chipot; J. Saint Jean Paulin; I. Shafrir, eds.), Progress in Partial Differential Equations, The Metz Surveys, 3, Pitman, London, 1994, pp. 161-182
[12] A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20 (1989), pp. 608-629
Cited by Sources:
Comments - Policy