[La convexité faible n'implique pas la convexité des courbes dans , n>2]
Une courbe lisse fermée dans est appelée convexe si chaque hyperplan l'intersecte en au plus n points, compte tenu des multiplicités. Une courbe convexe n'a pas d'aplatissement et son hyperplan osculateur ne l'intersecte qu'au point d'osculation. Une courbe fermée dans est convexe si et seulement si elle a ces deux propriétés. En réponse à une question de V.I. Arnol'd ([2,3] et [4]), nous montrons que pour n>2, ces deux propriétés n'impliquent pas la convexité des courbes fermées dans .
A smooth closed curve in is called convex if any hyperplane intersects it in at most n points, taking multiplicities into account. A convex curve has no flattening and its osculating hyperplane intersects it only at the point of osculation. A closed curve in (in ) is convex if and only if it has these two properties. Answering a question of V.I. Arnol'd ([2,3] and [4]), we show that, for n>2, these two properties do not imply the convexity of closed curves in .
Accepté le :
Publié le :
Ricardo Uribe-Vargas 1
@article{CRMATH_2002__335_1_47_0, author = {Ricardo Uribe-Vargas}, title = {Weak convexity does not imply convexity for curves in~$ \mathbb{R}P^{n}$, \protect\emph{n}>2}, journal = {Comptes Rendus. Math\'ematique}, pages = {47--52}, publisher = {Elsevier}, volume = {335}, number = {1}, year = {2002}, doi = {10.1016/S1631-073X(02)02435-4}, language = {en}, }
Ricardo Uribe-Vargas. Weak convexity does not imply convexity for curves in $ \mathbb{R}P^{n}$, n>2. Comptes Rendus. Mathématique, Volume 335 (2002) no. 1, pp. 47-52. doi : 10.1016/S1631-073X(02)02435-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02435-4/
[1] Convex curves in , Proc. Steklov Math. Inst., Volume 221 (1998), pp. 3-39
[2] On the number of flattening points of space curves, Amer. Math. Soc. Trans. Ser., Volume 171 (1995), pp. 11-22
[3] Topological problems of the theory of wave propagation, Russian Math. Surveys, Volume 51 (1996) no. 1, pp. 1-47
[4] Problem 1994–15, Arnol'd's Problems Book, Phasis, 1999 (in Russian). English edition to appear
[5] Über die Mindestanzahl stationärer Schmiegeebenen bei geschlossenen Streng-Konvexen Raumkurven, Abh. Math. Sem. Univ. Hamburg, Volume 20 (1956), pp. 196-215
[6] The theorem about four vertices of a convex space curve, Funct. Anal. Appl., Volume 26 (1992) no. 1, pp. 28-32
[7] On the higher dimensional four-vertex theorem, C. R. Acad. Sci. Paris, Série I, Volume 321 (1995), pp. 1353-1358
Cité par Sources :
Commentaires - Politique