Comptes Rendus
Asymptotic zero distribution of sections and tails of Mittag–Leffler functions
[Distribution asymptotique des zéros pour les sections et les restes des fonctions de Mittag–Leffler]
Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 133-138.

We study the asymptotic (as n→∞) zéro distribution of (1−λ)sn(z)−λtn+1(z), where λ, sn is nth section, tn is nth tail of the power series of Mittag–Leffler function E1/ρ of order ρ>1. Our results generalize the results by Edrei, Saff and Varga for the case λ=0.

On étudie la distribution asymptotique (quand n→∞) des zéros de (1−λ)sn(z)−λtn+1(z), où λ, sn est la nème section, tn est le nème reste du developpement de la fonction de Mittag–Leffler E1/ρ d'ordre ρ>1. On généralise les résultats obtenus par Edrei, Saff et Varga dans le cas λ=0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(02)02442-1

Natalya Zheltukhina 1

1 Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey
@article{CRMATH_2002__335_2_133_0,
     author = {Natalya Zheltukhina},
     title = {Asymptotic zero distribution of sections and tails of {Mittag{\textendash}Leffler} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {133--138},
     publisher = {Elsevier},
     volume = {335},
     number = {2},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02442-1},
     language = {en},
}
TY  - JOUR
AU  - Natalya Zheltukhina
TI  - Asymptotic zero distribution of sections and tails of Mittag–Leffler functions
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 133
EP  - 138
VL  - 335
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02442-1
LA  - en
ID  - CRMATH_2002__335_2_133_0
ER  - 
%0 Journal Article
%A Natalya Zheltukhina
%T Asymptotic zero distribution of sections and tails of Mittag–Leffler functions
%J Comptes Rendus. Mathématique
%D 2002
%P 133-138
%V 335
%N 2
%I Elsevier
%R 10.1016/S1631-073X(02)02442-1
%G en
%F CRMATH_2002__335_2_133_0
Natalya Zheltukhina. Asymptotic zero distribution of sections and tails of Mittag–Leffler functions. Comptes Rendus. Mathématique, Volume 335 (2002) no. 2, pp. 133-138. doi : 10.1016/S1631-073X(02)02442-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02442-1/

[1] J.D. Buckholtz A characteriation of the exponential series, Part II, Amer. Math. Monthly, Volume 73 (1966), pp. 121-123

[2] A.J. Carpenter; R.S. Varga; J. Waldvogel Asymptotics for the partial sums of ez, I, Rocky Mountain J. Math., Volume 21 (1991) no. 1, pp. 99-120

[3] J. Dieudonné Sur les zéros des polynomes-sections de ex, Bull Soc. Math. France, Volume 70 (1935), pp. 333-351

[4] M.M. Djrbashian Integral Transforms and Representations of Functions in the Complex Domain, Nauka, Moskow, 1966 (in Russian)

[5] A. Edrei; E.B. Saff; R.S. Varga Zeros of sections of power series, Lecture Notes in Math., 1002, 1983, pp. 1-115

[6] I.V. Ostrovskii On zero distribution of sections and tails of power series, Israel Math. Conf. Proc., Volume 15 (2001), pp. 297-310

[7] G. Pólya; G. Szegö Problems and Theorems in Analysis, I, Springer-Verlag, Berlin, 1976

[8] G. Pólya; G. Szegö Problems and Theorems in Analysis, II, Springer-Verlag, Berlin, 1976

[9] D.J. Newman; T.J. Rivlin The zeros of the partial sums of the exponential function, J. Approx. Theory, Volume 5 (1972), pp. 405-412

[10] G. Szegö Über eine Eigenschaft der Exponentialreihe, Sitzungsber. Berliner Math. Gesellsch., Volume 23 (1924), pp. 50-64

[11] C.Y. Yıldırım A sum over the zeros of partial sums of ez, J. Ramanujan Math. Soc., Volume 6 (1991) no. 1, 2, pp. 51-66

  • Antonio R. Vargas The Saff-Varga width conjecture and entire functions with simple exponential growth, Constructive Approximation, Volume 49 (2019) no. 2, pp. 307-383 | DOI:10.1007/s00365-018-9422-x | Zbl:1412.30006
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin Introduction, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 1 | DOI:10.1007/978-3-662-43930-2_1
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin Multi-index Mittag-Leffler Functions, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 129 | DOI:10.1007/978-3-662-43930-2_6
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin Applications to Fractional Order Equations, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 165 | DOI:10.1007/978-3-662-43930-2_7
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin The Classical Mittag-Leffler Function, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 17 | DOI:10.1007/978-3-662-43930-2_3
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin Applications to Deterministic Models, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 201 | DOI:10.1007/978-3-662-43930-2_8
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin Applications to Stochastic Models, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 235 | DOI:10.1007/978-3-662-43930-2_9
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin The Two-Parametric Mittag-Leffler Function, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 55 | DOI:10.1007/978-3-662-43930-2_4
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin Historical Overview of the Mittag-Leffler Functions, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 7 | DOI:10.1007/978-3-662-43930-2_2
  • Rudolf Gorenflo; Anatoly A. Kilbas; Francesco Mainardi; Sergei V. Rogosin Mittag-Leffler Functions with Three Parameters, Mittag-Leffler Functions, Related Topics and Applications (2014), p. 97 | DOI:10.1007/978-3-662-43930-2_5
  • Vladimir Petrov Kostov; Boris Shapiro Hardy-Petrovitch-Hutchinson's problem and partial theta function, Duke Mathematical Journal, Volume 162 (2013) no. 5, pp. 825-861 | DOI:10.1215/00127094-2087264 | Zbl:1302.30008
  • Iossif Ostrovskii; Natalya Zheltukhina The asymptotic zero distribution of sections and tails of classical Lindelöf functions, Mathematische Nachrichten, Volume 283 (2010) no. 4, pp. 573-587 | DOI:10.1002/mana.200610831 | Zbl:1189.30061
  • Thomas Craven; George Csordas The Fox-Wright functions and Laguerre multiplier sequences, Journal of Mathematical Analysis and Applications, Volume 314 (2006) no. 1, pp. 109-125 | DOI:10.1016/j.jmaa.2005.03.058 | Zbl:1081.30030

Cité par 13 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: